Effects of Alkali-Activated Algae Biochar on Soil Improvement after Phosphorus Absorption: Efficiency and Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Material
2.1.1. Experimental Materials and Instruments
2.1.2. Tested Soil and Plants
2.2. Experiment Method
2.2.1. Preparation and Characterization of Modified Algae Biochar (ABC)
2.2.2. ABC Adsorption Experiment on P
2.2.3. Soil Improvement Test
2.3. Analytical Method
2.4. Data Processing and Analysis
3. Results and Discussion
3.1. Morphological Characterization of ABC
3.2. Adsorption Isotherm of ABC for P
3.3. Effects of ABC/P on Soil Physical and Chemical Properties
3.4. Effects on Soil Phosphorus Forms
3.5. Effects on the Soil Alkaline Phosphatase Activity
3.6. Effects on Soybean Growth
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jupp, A.R.; Beijer, S.; Narain, G.C.; Schipper, W.; Slootweg, J.C. Phosphorus recovery and recycling—Closing the loop. Chem. Soc. Rev. 2021, 50, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yuan, Z.; Liu, X.; Zhang, Y.; Hua, H.; Jiang, S. Historic Trends and Future Prospects of Waste Generation and Recy-cling in China’s Phosphorus Cycle. Environ. Sci. Technol. 2020, 54, 5131–5139. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, S.; Gao, L.; Zhang, L.; Yuan, Z.; Fan, T.; Wei, K.; Huang, L. Nutrient-derived environmental impacts in Chinese agriculture during 1978–2015. J. Environ. Manag. 2018, 217, 762–774. [Google Scholar] [CrossRef]
- Lei, Y.; Geraets, E.; Saakes, M.; van der Weijden, R.D.; Buisman, C.J. Electrochemical removal of phosphate in the presence of calcium at low current density: Precipitation or adsorption? Water Res. 2020, 169, 115207. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Shan, J.; Chen, Z.; Lichtfouse, E. Efficient recovery of phosphate from simulated urine by Mg/Fe bimetallic oxide modified biochar as a potential resource. Sci. Total Environ. 2021, 784, 147546. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xiao, K.; Yang, J.; Yu, Z.; Yu, W.; Xu, Q.; Wu, Q.; Liang, S.; Hu, J.; Hou, H.; et al. Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from iron−rich sludge: A potential phosphorus fertilizer. Water Res. 2020, 174, 115629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, M.; Gao, X.; Qian, J.; Pan, B. Structural Evolution of Lanthanum Hydroxides during Long-Term Phosphate Mitigation: Effect of Nanoconfinement. Environ. Sci. Technol. 2021, 55, 665–676. [Google Scholar] [CrossRef]
- Zhou, J.; Li, D.; Zhao, Z.; Huang, Y. Phosphorus bioavailability and the diversity of microbial community in sediment in response to modified calcium peroxide ceramsite capping. Environ. Res. 2021, 195, 110682. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Lv, D.; Li, Y.; Wu, J. Nitrogen and phosphorus removal performance and bacterial communities in a multi-stage surface flow constructed wetland treating rural domestic sewage. Sci. Total Environ. 2020, 709, 136235. [Google Scholar] [CrossRef]
- Fan, W.; Qya, B.; Fg, B.; Hjhb, B. A facile manufacture of highly adsorptive aggregates using steel slag and porous expand-ed silica for phosphorus removal—ScienceDirect. Resour. Conserv. Recycl. 2020, 166, 105238. [Google Scholar]
- Gao, J.; Yang, L.; Zhong, R.; Chen, Y.; Zhang, J.; Gao, J.; Cai, M.; Zhang, J. Comparison of nitrogen and phosphorus removal efficiency between two types of baffled vertical flow constructed wetlands planted with Oenanthe Javanica. Water Sci. Technol. 2020, 81, 2023–2032. [Google Scholar] [CrossRef] [PubMed]
- Mona, S.; Malyan, S.K.; Saini, N.; Deepak, B.; Pugazhendhi, A.; Kumar, S.S. Towards sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. Chemosphere 2021, 275, 129856. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Ong, S.; Ng, W.; Lu, F.; Fan, X. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors. Water Res. 2003, 37, 3463–3471. [Google Scholar] [CrossRef]
- Malyan, S.K.; Kumar, S.S.; Fagodiya, R.K.; Ghosh, P.; Kumar, A.; Singh, R.; Singh, L. Biochar for environmental sustainability in the energy-water-agroecosystem nexus. Renew. Sustain. Energy Rev. 2021, 149, 111379. [Google Scholar] [CrossRef]
- He, Z.; Griffin, T.S.; Honeycutt, C.W. Evaluation of Soil Phosphorus Transformations by Sequential Fractionation and Phosphatase Hydrolysis. Soil Sci. 2004, 169, 515–527. [Google Scholar] [CrossRef]
- Hieltjes, A.H.M.; Lijklema, L. Fractionation of Inorganic Phosphates in Calcareous Sediments. J. Environ. Qual. 1980, 9, 405–407. [Google Scholar] [CrossRef]
- Kanazawa, S.; Yamamoto-Ikemoto, R.; Matsuura, N. Effects of Sulfates on Enhanced Biological Phosphorus Removal in Three Waste Water Treatment Plants. J. Water Environ. Technol. 2019, 17, 54–65. [Google Scholar] [CrossRef]
- Yun, C.; Rra, C.; Jh, A.; Wang, Y.; Gwa, B.; Nan, S.A.; Wh, E. A novel strategy for improving volatile fatty acid purity, phosphorus removal efficiency, and fermented sludge dewaterability during waste activated sludge fermentation. J. Waste Manag. 2021, 119, 195–201. [Google Scholar]
- Xu, Y.; Han, F.-E.; Li, D.-P.; Zhou, J.; Huang, Y. Transformation of internal sedimentary phosphorus fractions by point injection of CaO2. Chem. Eng. J. 2018, 343, 408–415. [Google Scholar] [CrossRef]
- Yuan, Z.; Jiang, S.; Sheng, H.; Liu, X.; Hua, H.; Liu, X.; Zhang, Y. Human Perturbation of the Global Phosphorus Cycle: Changes and Consequences. Environ. Sci. Technol. 2018, 52, 2438–2450. [Google Scholar] [CrossRef]
- Wu, H.; Yuan, Z.; Gao, L.; Zhang, L.; Zhang, Y. Life-cycle phosphorus management of the crop production–consumption system in China, 1980–2012. Sci. Total Environ. 2015, 502, 706–721. [Google Scholar] [CrossRef]
- Yuan, Z.; Ji, J.; Sheng, H.; Jiang, S.; Chen, T.; Liu, X.; Liu, X.; Zhuang, Y.; Zhang, L. Animal based diets and environment: Perspective from phosphorus flow quantifications of livestock and poultry raising in China. J. Environ. Manag. 2019, 244, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Tiwari, D.; Kim, D.J. Phosphate adsorption/desorption kinetics and P bioavailability of Mg-biochar from ground coffee waste. J. Water Process. Eng. 2020, 37, 101484. [Google Scholar] [CrossRef]
- Luo, Y.; Xie, K.; Feng, Y. Synthesis of a La(OH)3 nanorod/walnut shell biochar composite for reclaiming phosphate from aqueous solutions. Colloids Surf. A Physicochem. Eng. 2021, 610, 125736. [Google Scholar] [CrossRef]
- Cao, H.; Wu, X.; Syed-Hassan, S.S.A. Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell. Bioresour. Technol. 2020, 318, 124063. [Google Scholar] [CrossRef] [PubMed]
- Meili, L.; Lins, P.V.; Zanta, C.L.P.S. MgAl-LDH/Biochar composites for methylene blue removal by adsorption. Appl. Clay Sci. 2019, 168, 11–20. [Google Scholar] [CrossRef]
Test Indicators | OM/(g·kg−1) | Total N/(g·kg−1) | Total P/(g·kg−1) | Total K/(g·kg−1) |
---|---|---|---|---|
ABC | 82.35 | 13.79 | 7.28 | 25.38 |
ABC/P | 63.47 | 14.02 | 27.76 | 23.77 |
T (K) | Langmuir Isotherms | Freundlich Isotherms | ||||
---|---|---|---|---|---|---|
qmax (mg·g−1) | KL (L·mg−1) | R2 | n | Kf (mg·g−1) | R2 | |
298 | 38.17 | 0.0721 | 0.9698 | 0.33 | 7.1446 | 0.8560 |
Experimental Groups | Culture Time/d | pH | OM /(g·kg−1) | CEC /(cmol·kg−1) | Water-Holding Capacity/% | Effective P/(mg·kg−1) | Total P/(mg·kg−1) |
---|---|---|---|---|---|---|---|
Soil | 0 | 6.23 ± 0.03 | 29.76 ± 0.25 | 4.26 ± 0.17 | 28.78 ± 0.34 | 38.25 ± 1.23 | 736.78 ± 15.73 |
10 | 6.37 ± 0.05 | — | 4.13 ± 0.09 | — | 42.28 ± 1.05 | 684.38 ± 23.75 | |
20 | 6.41 ± 0.07 | — | 3.72 ± 0.15 | — | 45.12 ± 0.49 | 635.71 ± 16.93 | |
30 | 6.42 ± 0.09 | — | 3.32 ± 0.21 | — | 46.81 ± 0.56 | 584.78 ± 9.35 | |
40 | 6.52 ± 0.04 | 34.02 ± 0.41 | 3.01 ± 0.18 | — | 42.01 ± 0.34 | 544.85 ± 22.61 | |
Soil + ABC | 0 | 6.79 ± 0.04 | 34.84 ± 0.21 | 4.52 ± 0.08 | 36.35 ± 0.24 | 45.12 ± 0.33 | 784.93 ± 24.34 |
10 | 7.05 ± 0.11 | — | 4.25 ± 0.21 | — | 42.23 ± 1.05 | 728.45 ± 12.46 | |
20 | 7.12 ± 0.08 | — | 3.94 ± 0.23 | — | 47.92 ± 1.31 | 696.36 ± 16.88 | |
30 | 7.21 ± 0.04 | — | 3.72 ± 0.15 | — | 43.81 ± 0.69 | 648.21 ± 23.45 | |
40 | 7.18 ± 0.07 | 43.04 ± 0.13 | 3.25 ± 0.08 | — | 50.24 ± 0.39 | 621.55 ± 19.04 | |
Soil + ABC/P | 0 | 6.92 ± 0.03 | 35.02 ± 0.08 | 4.82 ± 0.13 | 35.03 ± 0.31 | 843.92 ± 14.82 | 2845.28 ± 23.45 |
10 | 7.43 ± 0.09 | — | 4.54 ± 0.11 | — | 736.23 ± 18.75 | 2473.23 ± 28.93 | |
20 | 7.62 ± 0.01 | — | 4.34 ± 0.16 | — | 543.98 ± 21.35 | 2234.48 ± 27.35 | |
30 | 7.54 ± 0.12 | — | 4.06 ± 0.04 | — | 431.37 ± 33.45 | 2082 ± 18.94 | |
40 | 7.49 ± 0.08 | 47.05 ± 0.14 | 3.76 ± 0.07 | — | 348.65 ± 27.34 | 1864.38 ± 22.54 |
Experimental Groups | Culture Time/d | Al-P | Fe-P | Ca2-P | Ca8-P | Ca10-P |
---|---|---|---|---|---|---|
Soil | 0 | 57.37 ± 4.25 | 97.63 ± 3.89 | 42.34 ± 1.87 | 38.78 ± 1.34 | 76.25 ± 1.23 |
10 | 44.47 ± 3.12 | 86.73 ± 3.71 | 45.28 ± 2.45 | 33.45 ± 2.01 | 80.24 ± 1.32 | |
20 | 36.41 ± 1.91 | 82.01 ± 2.45 | 40.06 ± 1.86 | 40.38 ± 1.04 | 86.12 ± 2.49 | |
30 | 38.21 ± 2.17 | 74.83 ± 1.96 | 43.32 ± 1.21 | 43.73 ± 2.05 | 86.81 ± 0.96 | |
40 | 39.45 ± 1.83 | 79.02 ± 4.92 | 43.05 ± 0.98 | 36.23 ± 1.06 | 94.05 ± 2.16 | |
Soil + ABC | 0 | 59.79 ± 1.04 | 114.89 ± 2.89 | 44.42 ± 1.28 | 36.35 ± 1.25 | 83.23 ± 5.21 |
10 | 52.05 ± 2.11 | 103.81 ± 6.27 | 44.25 ± 1.41 | 34.94 ± 2.03 | 85.38 ± 1.05 | |
20 | 47.62 ± 3.08 | 100.25 ± 4.13 | 49.94 ± 1.23 | 41.38 ± 1.38 | 87.34 ± 1.38 | |
30 | 40.25 ± 1.04 | 118.45 ± 6.37 | 53.72 ± 1.45 | 45.07 ± 2.41 | 93.81 ± 1.69 | |
40 | 42.72 ± 1.27 | 112.95 ± 3.29 | 45.34 ± 2.08 | 39.47 ± 3.05 | 104.25 ± 3.39 | |
Soil + ABC/P | 0 | 186.32 ± 10.03 | 221.34 ± 6.53 | 634.98 ± 11.14 | 335.53 ± 6.31 | 114.53 ± 2.38 |
10 | 162.43 ± 9.34 | 242.27 ± 4.43 | 484.54 ± 0.71 | 312.39 ± 3.94 | 124.25 ± 1.75 | |
20 | 183.62 ± 12.01 | 263.26 ± 11.22 | 396.37 ± 3.16 | 331.02 ± 5.21 | 137.98 ± 2.38 | |
30 | 167.33 ± 6.12 | 272.47 ± 7.04 | 340.56 ± 6.43 | 320.35 ± 10.25 | 139.33 ± 3.02 | |
40 | 175.45 ± 12.02 | 277.05 ± 10.14 | 323.56 ± 5.07 | 327.48 ± 9.27 | 148.65 ± 2.31 |
Experimental Groups | Culture Time/d | Plant Height/cm | Root Length/cm | Fresh Weight/g |
---|---|---|---|---|
Soil | 10 | 14.15 ± 5.65 | 7.15 ± 4.16 | — |
20 | 25.83 ± 6.23 | 7.48 ± 3.92 | — | |
30 | 31.48 ± 10.06 | 8.73 ± 5.01 | — | |
40 | 45.05 ± 7.82 | 9.57 ± 4.16 | 21.57 ± 5.38 | |
Soil + ABC | 10 | 20.72 ± 4.78 | 9.25 ± 1.38 | — |
20 | 31.08 ± 7.36 | 10.28 ± 4.02 | — | |
30 | 38.03 ± 8.03 | 10.83 ± 3.42 | — | |
40 | 54.27 ± 4.27 | 11.05 ± 2.74 | 30.61 ± 2.49 | |
Soil + ABC/P | 10 | 26.83 ± 6.66 | 10.03 ± 3.58 | — |
20 | 37.46 ± 5.48 | 11.88 ± 2.59 | — | |
30 | 43.12 ± 9.66 | 12.98 ± 3.12 | — | |
40 | 61.64 ± 8.25 | 14.25 ± 3.36 | 47.36 ± 3.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-N.; He, L.-Y. Effects of Alkali-Activated Algae Biochar on Soil Improvement after Phosphorus Absorption: Efficiency and Mechanism. Sustainability 2021, 13, 11973. https://doi.org/10.3390/su132111973
Liu Y-N, He L-Y. Effects of Alkali-Activated Algae Biochar on Soil Improvement after Phosphorus Absorption: Efficiency and Mechanism. Sustainability. 2021; 13(21):11973. https://doi.org/10.3390/su132111973
Chicago/Turabian StyleLiu, Yan-Ning, and Li-Yuan He. 2021. "Effects of Alkali-Activated Algae Biochar on Soil Improvement after Phosphorus Absorption: Efficiency and Mechanism" Sustainability 13, no. 21: 11973. https://doi.org/10.3390/su132111973
APA StyleLiu, Y. -N., & He, L. -Y. (2021). Effects of Alkali-Activated Algae Biochar on Soil Improvement after Phosphorus Absorption: Efficiency and Mechanism. Sustainability, 13(21), 11973. https://doi.org/10.3390/su132111973