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Abstract: Rock blasting during tunneling has shown that the rock failure in high in situ stress
environments is different from that in low in situ stress conditions or with a shallow rock mass. In
particular, the propagation direction of the main crack induced by blasting is greatly affected by
the in situ stresses. In order to study the law of crack propagation in rock during blasting under
the conditions of an initial in situ stress, a transparent material that conformed to the mechanical
properties of hard rock was used to carry out a similar model rock blasting test, under a unidirectional
load. The results show that initial stress has a great influence on the propagation number, length, and
direction of the main radial cracks. The specific performances were as follows: under the action of an
equal confining pressure load, the longest main radial crack in the model specimen propagated along
the diagonal direction, and the number and length of the main radial cracks propagated decreased
with the gradual increase of confining pressure stress; in addition, the diameter of the circumferential
cracks also decreased with the increase of stress, and there was a negative correlation between them.
In view of the phenomenon where the longest main radial crack propagated along the diagonal
direction in the model test, a mechanical model was established in this study to explain this process.
This is of practical significance for understanding the mechanism of rock fracture when blasting with
high in situ stresses.

Keywords: in situ stress; rock blasting; crack propagation; model test

1. Introduction

With the increasing demand for natural resources, surface and subsurface mines are
becoming depleted and underground mines continue to progress to deeper levels. The
depths of many mines around the world are more than 1000 m below the surface, and the
gold mine in Vaal Reefs, South Africa has reached the world’s greatest mining depth, of
4800 m. This increasing mining depth leads to increasing in situ stress in the surrounding
rock of roadways, which brings a series of new problems for roadway excavation and
support [1,2].

Engineering evaluations of blasting operations carried out in a deep rock mass showed
that the fracture failure in deep rock was different from that in a shallow rock mass. How-
ever, the influence of in situ stress was not taken into account in the design of the existing
blasting parameters for roadway excavation, which resulted in low blasting efficiencies for
the roadway, thus affecting the speed and efficiency of roadway construction [3]. In addi-
tion, in the process of the blasting construction of a cavern for a underground hydropower
station, it was found that the in situ rock stress field in the stratum had an obvious influence
on the design of the blasting parameters [4–6]. Under a condition of low in situ stress
(horizontal in situ stress < 10 MPa), whether using smooth blasting or pre-splitting blasting,
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an ideal blasting effect can be obtained. However, in areas of high in situ stress (horizontal
in situ stress > 10 MPa), the appropriate blasting technology (pre-splitting blasting or
smooth blasting) and sequence need to be considered comprehensively, according to the
actual situation [7]. Thus, it can be seen that the effects of in situ stress on rock blasting
cannot be ignored [8–14], and failures in deep rock mass are the result of the joint action
of high in situ stress and as explosive impact load; that is, the superposition action of the
initial static stress field and the explosive dynamic load.

Gao et al. [15] investigated the mechanism of controlled blasting under high in situ
stress by using a dynamic photo-elastic experimental system with initial stress loading.
It was concluded from their research results that (1) the direction without initial stress or
with a small initial stress is the best direction for blasting deformation and compressive
energy release; (2) the stress field superposed by the initial static stress field and the
explosive dynamic load produces tensile stress, initially in the direction of the smaller static
stress; (3) the stress boundary restrains the occurrence and development of reflected tensile
waves to a certain extent, and the failure of the medium is mainly caused by extrusion
and compression shear, which indicates that a blasting mechanism based on free surface
reflection tension is not suitable for controlled blasting under high in situ conditions.

Existing studies have shown that the initial in situ stress has an obvious “suppres-
sion” effect on the development of blast-induced cracks and that the blast-induced cracks
preferentially propagate in the direction of the maximum principal stress in a static stress
field [16]. When the direction of cracks is perpendicular to the direction of the static
compressive stress, the static compressive stress field hinders the propagation of cracks.
However, when the cracks deflect towards or coincide with the direction of the static stress
field, the hindrance of the static compressive stress field on the crack growth is greatly
reduced [17]. According to research by Yang [18], this is because the initial compressive
stress field reduces the stress concentration at the crack tip, hinders the crack growth, and
thus shortens the propagation distance of the main blast-induced crack, which appears to
have a ‘suppression’ effect on the crack.

In experiments and production practice, it is found that hole blasting in a medium
with dynamic and static stress fields presents various phenomena of preferential crack
initiation, good blasting effects, and low explosive consumption, which was described as
a ‘waveguide effect’ by Zhang [19]. He suggested that the dynamic response of a rock
mass must be changed due to the existence of complex in situ stress in the rock mass, and
the superposition of a blasting stress wave and in situ stress conforms to the law of phase
strength and phase weakness; that is, being strong in the same phase and weak in the
contrary phase. In this regard, Xiao [20] proposed a principle, whereby the initial stress
field has a ‘guiding effect’ on the propagation of cracks. According to this theory, the huge
pressure generated by an explosion initially causes compressive stress waves in the rock.
Then, the stress state in the hole wall propagates outward in the form of a cylindrical wave
and at the same time produces tensile stress in the direction tangential to the hole wall.
When the in situ stress is large enough, and the direction of principal stress is consistent
with that of explosion stress wave, the explosion stress wave will collide with, and be
superimposed on, the in situ stress, and tensile stress will be generated in the direction
tangential to the collision. When the resultant tensile stress exceeds the tensile strength of
the rock, the rock will crack along the direction of the principal stress.

In summary, existing studies only employed a qualitative analysis of the propagation
direction of a blast-induced main crack in rock with an initial stress, which leads to their
limited guidance value for actual blasting engineering in deep rock masses. In addition,
there are few studies on the effect of in situ stress on the circumferential fractured zone in
the central blasting area. To this end, blasting model tests of transparent rock under the
action of confining pressure were carried out in this study, to study the mechanism of in
situ stress in crack propagation by blasting and reveal the law of the effects of in situ stress
on the direction and length of crack propagation when blasting, as well as the diameter of
the circumferential fractured zone in the central blasting area.
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2. Materials and Methods
2.1. Test Device

A self-developed test device with a plane stress loading system, data measurement
system, and high-speed photography system was used to simulate the in situ stress con-
straint in a deep rock mass. The device includes a stress loading platform, oil pressure
station, high-speed camera suspension, etc., as shown in Figure 1.
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Figure 1. Device for plane stress loading of a model specimen.

The maximum size of model specimen applied to the stress loading platform was
500 ×500 × 100 mm (length × width × height). The rated power and extreme power of
the oil pressure station used for the loading platform were 5 MPa and 7 MPa, respectively,
and the piston area of a single oil cylinder was 7.065 cm2. If the device is used to load
a model specimen with a size of 300 × 300 × 20 mm, the rated load concentration and
ultimate load concentration that can be reached inside the specimen are 1.18 Mpa and
1.65 Mpa, respectively, which basically satisfies the uniform conditions of the stress field in
the model.

2.2. Similarity Coefficient

The deep roadway project of the Dingji Coal Mine, in the Huainan mining area, was
used as the prototype for the model test. The in situ stress field in this mining area is mainly
dominated by horizontal tectonic stress [21]. The cross-sectional shape of the roadway is
a semicircular arch, and the cross-section size is 5000 × 3880 mm, while the depth of the
roadway is 910 m. The roadway is mainly located in a stratum of medium sandstone and
siltstone, and the physical and mechanical parameters of the protolith are shown in Table 1.

Table 1. Physicomechanical parameters of the prototype rock.

Material Type γ
KN·m−3

E
GPa

C
MPa

ϕ
(◦) ν σc

MPa
σt

MPa

Sandstone 27 12.97 10.00 43 0.27 135 21.5
γ—Bulk density, E—Deformation modulus, C—Cohesion, ϕ—Internal friction angle/(◦), ν—Poisson’s ratio,
σc—Compressive strength, σt—Tensile strength.

At present, the material most commonly used in similarity model experiments of rock
blasting is cement mortar [22]. However, it is not transparent, which led to the problem
that, after the test, the cracks in the model made of cement mortar could not be seen.
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Therefore, a kind of transparent hard rock-like material, which could replace the existing
model material to solve the above problem, was used in this study. This transparent hard
rock-like material was made of a mixture of rosin-saturated solution (RSS), epoxy resin
(ER), and curing agent (CA), and its physical and mechanical properties have been proven,
through relevant tests, to be similar to those of hard rock [23]. The basic physical and
mechanical parameters are shown in detail in Table 2.

Table 2. Basic mechanical parameters of the transparent rock-like material.

Physical Quantities ρ C E/MPa ν σc/MPa σt/MPa

Numerical value 1230 2423 360∼1802 0.26∼0.31 3.29∼96 0.26∼7.22

ρ—Density/kg·m−3, C—Compressional wave velocity/(m/s).

In similar systems, the ratio of the similar physical quantities is called the similarity
ratio (or called similarity constant and similarity coefficient); that is, ‘prototype physical
quantity (P)/model physical quantity (M) = similarity ratio (α)’ [24,25]. According to
the balance equation, geometry equation, physical equation, stress boundary condition,
and displacement boundary condition of the prototype and model (process omitted),
the similarity relation between the various physical quantities of the model test can be
obtained as 

αν = 1, αε = 1, αϕ = 1
αδ = αL

αX = αY = αZ = αγ

ασ = αL·αγ

ασc = ασt = αE = αC = ασ

αT =
√

αL

(1)

According to the bulk density of the model material and prototype material, the
similarity coefficient for the bulk density can be calculated as αγ = 2.2. The similarity scale
of the model selected for the test was 1:16.7 in this study. Hence, it could be calculated
using the above formula as: stress similarity coefficient ασ = 36.7, elastic modulus similarity
coefficient αE = 36.7, cohesion similarity coefficient αC = 36.7, time similarity coefficient
αT = 4.15, strain similarity coefficient αε = 1, Poisson’s ratio similarity coefficient αν = 1,
and internal friction angle similarity coefficient αϕ = 1.

2.3. Blasting Charge

Many engineering works on rock blasting show that the explosion shock wave acts
directly on the hole wall of the blasthole when using a coupling charge, which forms into a
large-scale crushed zone near the blasthole in the rock mass. In the crushing circle, the rock
fragmentation absorbs most of the energy of the explosion shock wave, resulting in the
rapid attenuation of energy. However, the impact pressure of the explosion shock wave on
the hole wall is smaller when using an uncoupled charge, which makes the radius of the
crushing circle shrink. Therefore, a stress wave with a smaller attenuation can act on the
fracture circle of the rock mass for a longer time, and the effect on the production of cracks
is good. It has been shown that using an uncoupled charge in rock blasting can enlarge the
range of the fractured zone and make full use of the explosive energy [26].

The method of uncoupled charges is used in model tests of rock blasting. We designed
the diameter of the blasthole, diameter for charging, and height for charging as 4 mm, 3 mm,
and 20 mm, respectively. In view of the small amount of explosives used in the model test,
a type of relatively safe and stable small detonator was selected as the explosive in the
test, and its main component was DDNP (Table 3). According to the dynamic similarity
criterion [27], it can be concluded that the relationship between the similarity explosive and
the prototype explosive is satisfied with CρCD = 1 (Cρ is the density ratio of the prototype
explosive to the model explosive, and CD is the detonation velocity ratio of the prototype
explosive to the model explosive). The prototype explosive was a three-level permissible
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water-gel explosive for coal mining, with a density of 1.1 g/cm3 and a detonation speed of
3600 m/s. The model explosive was DDNP in bulk, with a density of about 0.7 g/cm3 and
a detonation speed of 5400 m/s. This was obtained through calculating that CρCD = 1.047,
which basically meets the principle of a ‘similar blasting energy of explosives’.

Table 3. Explosive physical parameters of the special small detonator.

Geometric Dimension/×10−3 m Main
Ingredients

Explosive
Charge/g

Density
/kg·m−3

Detonation
Velocity/m/sLength Diameter

30 3 DDNP 0.043 700 5400
DDNP-dinitrodiazophenol, molecular formula -C6H2N4O5.

The blasthole for charging was located in the center of the specimen, and the two ends
were bonded with 1 mm thick plastic discs, which were used for fixing the special small
detonator. The detailed charging structure is shown in Figure 2.
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2.4. Test Scheme

The uniaxial compressive strength (UCS) of the materials, value for the confining
pressure, and usage of explosive required by the model test were calculated according
to similarity theory. Before the formal model blasting test, a pre-blasting model test was
carried out. The test results showed that the specimens were completely broken, due to the
low UCS of the materials, which is unfavorable for studying the law of crack propagation of
a specimen after blasting. Therefore, on the basis of theoretical calculation, and combined
with the results of the pre-blasting test, the parameters of the blasting model were adjusted
appropriately; and the parameters of the model specimens are shown in Table 4. The
production method for the model specimens referred to the study by Ge [23].

Table 4. Basic physical and mechanical parameters of the model specimens.

Number Mass Ratio γ
KN·m−3

E
MPa ν σc

MPa
σt

MPa

TSG-0∼5 10:10:1 12.3 552 0.28 7.5 0.586
The mass ratio of 10:10:1 was, namely, epoxy resin: curing agent: saturated rosin solution.

It was known that Cσ = 36.7 (stress similarity coefficient), σv = γH (vertical stress),
and we also assumed that σhav = σv (average horizontal stress). Therefore, if the buried
depth of the simulated rock mass designated in the test was from 0 m to 1300 m, the
corresponding loading stress values of the simulated confining pressure of the vertical and
horizontal would be from 0 MPa to 0.955 MPa. The six groups of loading schemes used in
the actual model test are shown in Table 5.



Sustainability 2021, 13, 12093 6 of 18

Table 5. Test scheme for blasting of transparent model specimens.

Specimen Number Buried Depth/m
σv = σh

CP Design /MPa CP Loading/MPa

TSG-0 0 0 0
TSG-1 410 0.3 1.2
TSG-2 560 0.42 1.7
TSG-3 850 0.63 2.6
TSG-4 1000 0.74 3.1
TSG-5 1300 0.96 4.0

CP—confining pressure.

2.5. Production Method

Taking the plate model specimen as an example [23], the detailed production steps
were as follows:

(1) Pre-made solution. Unlike epoxy resins and curing agents, RSS cannot be pur-
chased directly and needs to be made. First, the optimal rosin blocks were broken down
into powders, which were screened through a 100-mesh screen. Then, a 100-mesh rosin
powder was melted into an appropriate amount of anhydrous alcohol solution, until the
solution reached a saturated state.

(2) Sticking film in the mold. From the exploratory test, it was found that pouring the
mixed solution directly into the mold made it difficult to disassemble the mold, so it was
necessary to pretreat the mold before pouring. First, a thin layer of Vaseline was applied to
the surface of the mold, and then an anti-stick film was applied to the surface.

(3) Pouring specimen. First, the epoxy resin, curing agent, and RSS were weighed
according to the designed experimental proportions and placed in a beaker. Then, the
epoxy resin and curing agent were heated in an oven to 50 ◦C, and the RSS was heated
in a water bath to 50 ◦C. When all the bubbles in the epoxy resin and curing agent were
removed, they were mixed and stirred evenly. At this time, bubbles inevitably appeared
again in the mixed solution, so they were heated in an oven at 50 ◦C until the bubbles were
removed. Finally, the RSS was taken out from the water bath and poured into the epoxy
resin system. After the mixture was stirred evenly, it was poured into the mold. It was
concluded after many experiments that no bubbles will appear, as long as the mixture of
three solutions is stirred slowly and uniformly when the preheated RSS is mixed with the
non-bubbled thermal epoxy resin system.

(4) Maintenance and polishing of the specimen. The mold filled with the resin mixture
solution was gently placed in a room at a constant temperature for maintenance. After
the epoxy resin had cured completely, the mold was removed and the uneven areas of the
specimen were polished with sandpaper or a small grinder.

3. Results and Analysis
3.1. Results of Blasting Model Test

The propagation of cracks in the specimens after blasting is shown in Figure 3. A
relevant supplementary explanation is made for the cracks in Figure 3, before analyzing the
law of crack propagation in the model specimen. It can be seen from Figure 3b–f that the
cracks generated in the model specimens all reached the boundary of the specimens. This
is because the cracks generated by the explosion load continued to propagate in different
directions after the static confining pressure was unloaded. In Figure 3, the main radial
cracks are marked by yellow lines, and the propagation range of circumferential cracks is
marked by blue lines.
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According to the fragmentation mechanism of rock blasting, for a certain amount
of charge, if the minimum resistance line exceeds a certain threshold (called the critical
resistance line, Wc), there will be no blasting signs on the free surface after the charge
explosion. That is, the blasting only occurs inside the rock mass and fails to reach the free
surface, which is equivalent to charge blasting in an infinite medium. This action is called
internal action. When the charge only acts internally, the explosion action zone can be
roughly divided into a crushed zone, fractured zone, and vibrated zone [28,29], as shown
in Figure 4.
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Under the action of an explosion shock wave and high temperature and pressure gas,
rock near the blasthole will be crushed and produce a large plastic deformation, forming a
crushed zone.

When the shock wave propagates to a certain distance, it becomes a compressive
stress wave, due to its energy attenuation [30]. At this time, the peak value of the radial
stress of the compressive stress wave is less than the value of the dynamic compressive
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strength of the rock, and it cannot cause the crushing failure of the rock, but instead the
radial displacement of rock. Compressive stress and compression deformation occur in
the radial direction, while tensile stress and tensile deformation occur in the tangential
direction. When the value of the tensile stress is more than that of the dynamic tensile
strength, cracks are generated along the radial direction of the blasthole. The air wedge
effect of explosive gas makes the crack expand and extend. When the stress wave and the
pressure of the explosive gas are further attenuated, the energy accumulated by the radial
compression of the rock will be released and transformed into an unloading wave towards
the source of explosion, forming radial tensile stress. This causes the rock to be pulled
apart by the radial tensile stress, forming tangential cracks. It can be concluded that the
fractured zone is mainly formed by tensile failure.

In the vibrated zone [31], the original structure of the medium is not damaged, but only
elastic deformation is produced. The vibration strength gradually weakens with the increase
of distance through the medium from the explosion center, until it completely disappears.

Figure 3a shows the crack propagation of the post-explosion model specimen under
the condition of no initial stress. It can be observed that a crushed zone, fractured zone,
and vibrated zone were formed in the post-explosion specimen, which conforms to the
fracture pattern of single-hole charge blasting in an infinite medium.

Figure 3b–f shows the crack propagation of a post-explosion model specimen under
an equal confining pressure load. Compared with without a confining pressure, the
crack propagation of the model specimens under a bi-directional equal confining pressure
changed greatly, including in the number, length, and propagation direction of the main
radial cracks in the cracked zone. If the post-explosion model specimen is divided into
several areas (Figure 5), it can be clearly seen from the test results that the longest main
radial cracks are distributed in four areas A, B, C, and D, and only a few radial cracks
developed along the directions of σv or σh.
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Figure 5. Crack distribution in transparent model specimens.

In the engineering of rock excavation by blasting, smooth blasting or presplitting
blasting technology is often used for the boundary excavation, so as to reduce the damage
from blasting to the surrounding rock and the reduction of its stability. Since the range
of the fractured zone is an important reference basis for the design of controlled blasting
parameters, this study focused on quantitatively describing the variation of crack propaga-
tion in the fractured zone of model specimens with the size of the applied load; and the
main radial cracks of the post-explosion specimens are marked, as shown in Figure 6.

As shown in Figure 6, the post-explosion specimens were divided into a compression
crushed zone (I), fractured zone (II and III), and vibrated zone (IV). With the increase of
confining stress load on the model, the range of the fractured zone decreased greatly, the
range of the vibrated zone increased, and only the range of the crushed zone did not change
significantly. This study focuses on the propagation of the fractured zone, and Part II of the
fractured zone was analyzed first.
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3.2. Crack Propagation Analysis
3.2.1. The Influence of Initial Stress on the Scope of the Circumferential Fractured Zone

As shown in Figure 3, the model specimens had the characteristics of geometric
symmetry and mechanical symmetry. In theory, the diameter of the circumferential fracture
along the direction σv is the same as that along the direction σh, and the diameters of the
circumferential fractures along the two diagonals (the angle between diagonal and σv or σh
is 45 ◦C) are also equal. The measurement results of the diameters of the circumferential
cracks in the post-explosion specimens are shown in Table 6.

Table 6. The diameters of the circumferential cracks in the model specimens.

Number
Diameter/cm

Along σv Along σh Mean Value Along Diagonal-1 Along Diagonal-2 Mean Value

TSG-1 7.4 8.2 7.8 7.2 7.0 7.1
TSG-2 7.6 7.8 7.7 6.0 6.2 6.1
TSG-3 7.0 7.2 7.1 5.8 5.8 5.8
TSG-4 6.2 6.4 6.3 5.5 5.3 5.4
TSG-5 6.0 5.8 5.9 5.3 5.3 5.3

It can be seen from Table 6 that the measured diameter of the circumferential frac-
ture along the direction σv was not equal to that along the direction σh; whereas, these
two values should be equal according to the symmetry principle. Similarly, the diameters
of circumferential fracture along the diagonal direction were also not equal. Therefore, the
average diameters were used to characterize the propagation range of the circumferential
crack in the post-explosion specimen. The relationship between the average diameters of
the circumferential crack and the stress of the confining pressure is shown in Figure 7.

As can be seen from Figure 7, the average diameters along the diagonal direction
of the circumferential cracks were significantly smaller than those along the σv and σh
directions, and both of them gradually decreased with the increase of initial stress, which
was obviously ‘constrained’ by the confining pressure stress. As the model specimens were
compressed by the initial stress, the dynamic compressive strength of medium inside the
specimens increased, resulting in the weakening of the loading and unloading effect of
compressive stress wave on the medium around the blasthole, and finally it resulted that
the diameter of the circumferential crack decreased with the increase of stress.
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Furthermore, by fitting the data points in Table 6, the relationship between the stress
of the confining pressure and the diameter of the circumferential crack can be obtained,
as follows:

D1 = 11.037− 2.451e(
Cp

1.261 )
(

R2 = 0.942, Cp ∈ (0.3, 0.96)MPa
)

(2)

D2 = 5.280 + 7.949e(
−Cp

0.1995 )
(

R2 = 0.964, Cp ∈ (0.3, 0.96)MPa
)

(3)

where D1 is the mean diameter of the circumferential crack along the horizontal and vertical
direction; D2 is the mean diameter of the circumferential crack along the direction of the
two diagonals.

3.2.2. The Influence of Initial Stress on the Propagation Length and Direction of the Main
Radial Crack

As shown in Figure 6, the number and length of the main radial cracks decreased with
the change of load applied to specimen TSG-0~5. In addition, the propagation direction of
the main radial crack also changed. In particular, the longest main radial crack propagated
along the diagonal direction (namely, the angle between the propagation direction and
horizontal or vertical direction is 45◦), which made the confining stress have a ‘guiding’
effect on the propagation direction of the main radial cracks. This is consistent with the
conclusion that many researchers have reached [32,33], but so far researchers have not
provided a convincing explanation of the mechanism of this phenomenon. In this part
of the discussion of this study, a mechanical model will be established with knowledge
of the elasticity, explosion mechanics, and stress wave theory, in order to analyze the
failure mechanism.

With a further increase of confining pressure stress applied to the model specimens,
the propagation lengths of the main radial cracks tended to be the same, which were close
to the diameters of the circumferential cracks. At the same time, the propagation direction
presented diversification; that is, the propagation direction was evenly distributed along
the vertical, horizontal, and diagonal lines, such as in the main cracks in post-specimens
TSG-4 and TSG-5.

According to the mechanism of rock fragmentation by blasting, the fractured zone
is mainly formed by tensile damage from the tensile stress wave. Then, with a further
increase of confining pressure, the tensile strength of the specimens is further improved,
resulting in it becoming difficult to produce rock tensile damage along all directions with
the tensile stress wave. Even along the diagonal direction, it is difficult to produce tensile
failure in rocks. Therefore, the ‘guiding’ effect of the confining pressure stress on the
propagation of the longest main radial crack is weakened.
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In order to study the variation law of the length of the main radial cracks with the
initial stress, a ruler was used to measure the length of the radial cracks in the post-explosion
model specimens, and the results are shown in Table 7.

Table 7. The length of the radial main cracks in the model specimens.

Number
Length of Radial Main Cracks/cm

Mean Value/cm
1# 2# 3#

TSG-0 18.7 16.8 16.5 17.33
TSG-1 8.2 10.9 8 9.03
TSG-2 10.3 8.8 4.9 8.0
TSG-3 6.8 8.6 5.8 7.06
TSG-4 5.1 4.4 4.4 4.63
TSG-5 3.6 3.4 3.1 3.37

Cracks 1#∼3# are the top three in length of the main radial cracks in the model specimens.

By taking the confining load as the X-axis and the crack length as the Y-axis, the
relationship between crack propagation and initial stress was established, as shown in
Figure 8.
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It can be seen from Figure 8 that the length of the longest main radial crack and average
length of the main radial cracks decreased gradually with the increase of initial stress.
Furthermore, by fitting the data points in Figure 8, it can be shown that the relationship
between the propagation length of the longest main radial crack and the initial stress
conformed to the following formula.

Llg = 18.598− 32.54Cp+35.893Cp
2−19.4Cp

3
(

R2 = 0.978, Cp ∈ (0.0.96)MPa
)

(4)

And the relationship between average propagation length of the main radial cracks
and the stress of confining pressure is as follows.

Lavg = 17.27− 39.66Cp+52.55Cp
2−27.68Cp

3
(

R2 = 0.988, Cp ∈ (0.0.96)MPa
)

(5)

Equations (4) and (5) indicate that the length of the main radial cracks under a bidirec-
tional confining pressure load depended on the initial stress, and there was a cubic function
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relationship between the two. In this way, this can provide a reference for the design of
controlled blasting parameters in a deep rock mass.

4. Discussion

A deep rock mass is mainly subjected to vertical and horizontal in situ stresses [34,35].
When a rock in a state of static in situ stresses is subjected to the dynamic loading of an
explosion, it will start to be damaged at a certain time. In this process, the effect of in
situ stress on the rock is usually regarded as quasi-static loading. Therefore, the stress
state of deep rock mass engineering can be simulated using a combination of dynamic and
static loading (shown in Figure 9). It is assumed that the initial stress of the rock mass in
the vertical direction is σy, the initial stress in the horizontal direction is σx, the internal
explosion load is Pd, and the compressive strength and tensile strength of the rock are σc,
σt, respectively.
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Figure 9. Force model of deep rock mass under blasting.

The fractured zone is the main area of rock failure in engineering blasting [36], and
its failure range is much larger than that of the compression crushed zone. Moreover, the
influence of the initial stress on the blast-induced compression crushed zone in rock is
relatively small; therefore, this study discussed the influence of initial in situ stress on the
crack propagation in the blast-induced fractured zone in rock. According to the stress
mode of an engineering rock mass, the influence of initial stress on the crack propagation
from rock blasting can be analyzed in different cases; that is, the rock mass is subjected to
unequal confining pressure loads and equal confining pressure loads.

It is supposed that the in situ stress applied to the model is σx = σy 6= 0. In this
case, the force model can be simplified, as shown in Figure 10a, and the explosion load is
described by P1, P2, P3, and P4 (P1 = P2 = P3 = P4). Blasting theory indicates that the blast
shock wave on the hole wall is attenuated into a stress wave when it propagates to the
middle zone (fractured zone) of the blasting. The stress wave in the model, within the
same radius of the fractured zone (the crack is still in propagation), at a certain moment
is described by P′1, P′2, P′3, and P′4 (P′1 = P′2 = P′3 = P′4), and a micro point taken from each
of the eight different directions can be denoted as A, A1, B, B1, C, C1, D, and D1. The
circumferential tensile stresses at the above eight points are described by P1

t , P2
t , P3

t , and
P4

t . Meanwhile, it is assumed that P1
t = P2

t = P3
t = P4

t . In this way, the dynamic load is also
simplified to the static load (as shown in Figure 10b). In this case, stress analysis can be
carried out according to the plane stress problem, in the theory of elastic mechanics.
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Figure 10. Force model of rock under bidirectional equal confining pressure and explosive load: (a) at
the time of explosive detonating; (b) at the time of stress wave propagating to fractured zone.

Furthermore, the force model of a rock mass under bidirectional equal confining
pressure and blasting is equivalent to the mechanical model in Figure 11 (external loading
model + internal loading model).
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loading model; (b) internal loading model.

Qian [37] suggested that the effect of an initial static load on a rock mass is to indirectly
increase the dynamic compressive or tensile strength of the rock. Based on this view, the
force of each micro element subjected to an external load in the model was calculated in
this study; first, through static equilibrium analysis, so as to facilitate a comparison of the
compressive and tensile strength of each micro element.

According to the symmetry of force model, half of the model was taken for analysis,
as shown in Figure 12a. It was assumed that the side length of model was a, then the
model can be simplified, as shown in Figure 12b, based on the relationship between stress
and load.
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Suppose σx = σy = σ, then the concentrated load on each micro element point A, B,
and C in the model can be calculated. As shown in Figure 13, σya is the concentrated load;
M is the additional bending moment generated after the translation of concentrated load,
and its magnitude is σyad, where d is the translation distance.
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It should be noted that the stress applied on the model specimens in this study
was far less than the compressive strength of rock. The translational concentrated load
inevitably produces an additional bending moment, which means that it produces shear
stress in the rock mass, but this is far from sufficient to cause damage to the rock mass.
Therefore, the shear effect caused by the additional bending moment on the rock mass is
not considered here.

As seen in Figure 13a, the micro element point A is subjected to external loads in both
the horizontal and vertical directions, and its magnitude is σa; according to Figure 13b, the
micro element point B is subjected to external loads in both the horizontal and vertical
directions, and its magnitude is σa; from Figure 13c, it can be seen that the micro element
C is subjected to external loads in both the horizontal and vertical directions, and its
magnitude is σa. In addition, it can be calculated that the magnitude of the external load
along the diagonal direction of micro element C is

√
2/2 (about 0.707) σa. It is assumed

that the tensile strength of the micro element increases by 100% in the vertical direction
under a vertical concentrated load (σa) compression, and then the tensile strength of the
model specimen in this direction becomes 2σt.

As the blasting stress wave located in the middle zone (fractured zone) of the blasting
is no longer sufficient to crush the rock mass, it is impossible for the stress wave to produce
compression failure in the vertical direction of point A. Hence, for point A, only the tensile
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stress failure in the horizontal direction needs to be discussed. Similarly, it is impossible to
produce compression failure in the horizontal direction of point B and perpendicular to the
diagonal direction of point C (as shown in the Figure 11b). Therefore, it is only necessary
to discuss the failure effect of tensile stresses on these. As seen in Figure 12b, the micro
element points A, B, and C affected by the blasting stress wave are taken for stress analysis,
as shown in Figure 14.
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The above analysis showed that the damage in the middle zone (fractured zone)
of blasting is mainly caused by tensile stress. Therefore, for micro element point A, the
strength failure criterion is, when P1

t > 2σt, tensile failure of rock mass occurs. Similarly,
for micro element points B and C, the tensile strength failure criteria are P1

t > 2σt and
P1

t > (1 +
√

2/2)σt, respectively. It was stated in the hypothesis that all the taken points
are from the fractured zone (radial cracks are propagating) and are at the same distance
from the blast center. Therefore, with the further attenuation of the stress wave, there
must be a situation where 2σt > P′t >

(
1 +
√

2/2
)

σt, and where P′t is attenuated from

P1
t = P2

t = P3
t = P4

t .
It can be concluded that the crack along CC1/DD1 direction will continue to propagate

after the propagation has stopped for the crack along AA1/BB1 direction. In other words,
the total length of the crack in the direction CC1/DD1 is greater than the total length of the
crack in the direction AA1/BB1. Hence, the angle between the propagation direction of
the longest radial crack and the direction of principal stress is 45◦, which shows that the
longest radial crack propagates along the direction at 45◦ of the macro level.

5. Conclusions

In this study, model specimens made of transparent rock-like materials were used to
carry out an experiment of a blasting model under bidirectional equally confining pressure.
Based on the analysis of the model test results, a law of blast-induced crack propagation,
affected by bi-directional equal confining pressure, was obtained, and the conclusions are
summarized as follows:

• The initial stress has the effect of ‘suppression’ of the propagation diameters of the
circumferential cracks. With the increase of confining pressure, the average diameters
of the circumferential cracks along the horizontal, vertical, and diagonal directions
gradually decrease, and the diameters of the circumferential cracks along the diagonal
directions are obviously smaller than those along the σv and σh directions;

• The initial stress also has the effect of ‘suppression’ of the number and length of
propagated main radial cracks. The greater the load applied on the specimens, the
fewer the number of main radial cracks; there is a negative correlation between
the propagation length of the main radial cracks and the initial stress. However,



Sustainability 2021, 13, 12093 16 of 18

with a further increase of confining pressure stress, the propagation lengths of the
main radial cracks tend to be the same, and their size is close to the diameter of the
circumferential crack;

• The initial stress has a ‘guiding’ effect on the crack propagation direction of the longest
main crack. Under the combined dynamic and static loads, the propagation direction
of the main radial crack of a model specimen changes from radial without initial
stress, to diagonal, and the longest main crack develops along the diagonal; with a
further increase of confining pressure, the propagation directions are diversified; that
is, the propagation directions are uniformly distributed along the diagonal, σv and σh,
directions, where the confining stress loses its ‘guiding’ effect on the propagation of
the longest main radial cracks.

Obviously, the confining pressure limits the opening of the crack surface, resulting
in a greater driving force for crack propagation; that is, more energy is required for crack
propagation per unit length. Therefore, under different initial stress conditions, there must
be a critical value of energy for crack opening. If it is lower than the critical energy required
for crack opening, the crack in the middle zone of blasting is not be able to propagate.
Compared with a condition without initial stress (the charging parameters are the same),
the ratio of energy used for crack propagation in the middle zone of blasting to the total
explosive energy is reduced. According to the principle of energy conservation, it can be
concluded that the energy loss in the far zone of blasting, the near zone of blasting, and
other areas will inevitably increase. It can be seen that a confining pressure changes the
distribution of the blasting energy.

If the energy in the far zone of blasting increases, the stress wave in the far zone of
blasting increases; that is, the vibrational intensity increases, which brings great potential
safety hazards for deep underground engineering. If the energy in the near zone of blasting
increases, the fragmentation degree of the crushed zone is higher, which has no practical
significance for blasting excavation. Therefore, it is necessary to study the distribution of
blasting energy in a future study and obtain the critical energy value required for crack
development under different confining stress conditions, so as to provide a reference for
the design of blasting parameters in practical engineering.
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Nomenclature

α Similarity ratio δ Displacement
L Length E Modulus of elasticity
ν Poisson’s ratio σ Stress
γ Bulk density σc Compressive strength
σt Tensile strength X, Y, Z Volume forces
ε Strain C Cohesion
ϕ Angle of internal friction T Time
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