Sustainable Delay Minimization Strategy for Mobile Edge Computing Offloading under Different Network Scenarios
Abstract
:1. Introduction
- A MEC-NOMA network is developed and simulated based on two considered network traffic offloading scenarios. The first scenario is related to full offloading, where users offload their entire computation tasks to the MEC server. The second scenario is related to partial offloading, where users are able to execute a part of their processing tasks locally, while the rest is offloaded to the MEC server.
- A two-user NOMA network is assumed to reduce the system’s complexity, especially the complexity in the SIC technique. The optimization problem for the two offloading scenarios is developed and validated based on three networks: OMA, P-NOMA, and H-NOMA. The Lagrangian approach is used to solve the optimization problems with Karush–Kuhn–Tucker (KKT) conditions.
- A closed-form solution for the partial task factor has been derived to simplify the optimization problem in the case of partial network offloading to formulate an extensive numerical solution to minimize task delay for different networks.
2. Related Works
3. System Model
- Full offloading: users offload entire computation tasks to the MEC server, such as tasks related to augmented reality (AR)/virtual reality (VR) applications.
- Partial offloading: the user is able to execute a part of their processing tasks locally, while the rest is offloaded to the MEC server, such as drone flight control applications.
4. Problem Formulation for Delay Minimization
4.1. Full Offloading
- By , we can calculate .
- By , we can calculate .
4.2. Partial Offloading
5. Discussion and Numerical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jameel, F.; Haider, M.; Butt, A. Massive MIMO: A survey of recent advances, research issues and future directions. In Proceedings of the 2017 International Symposium on Recent Advances in Electrical Engineering (RAEE), Islamabad, Pakistan, 24–26 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Xin, Y.; Wang, D.; Li, J.; Zhu, H.; Wang, J.; You, X. Area spectral efficiency and area energy efficiency of massive MIMO cellular systems. IEEE Trans. Veh. Technol. 2016, 65, 3243–3254. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Nordin, R.; Ismail, M. Intelligent cooperation management of multi-radio access technology towards the green cellular networks for the twenty-twenty information society. Telecommun. Syst. 2017, 65, 497–510. [Google Scholar] [CrossRef]
- Andrawes, A.; Nordin, R.; Abdullah, N.F. Energy-Efficient Downlink for Non-Orthogonal Multiple Access with SWIPT under Constrained Throughput. Energies 2020, 13, 107. [Google Scholar] [CrossRef] [Green Version]
- Andrawes, A.; Nordin, R.; Ismail, M. Wireless Energy Harvesting with Cooperative Relaying under the Best Relay Selection Scheme. Energies 2019, 12, 892. [Google Scholar] [CrossRef] [Green Version]
- Cicirelli, F.; Guerrieri, A.; Spezzano, G.; Vinci, A.; Briante, O.; Iera, A.; Ruggeri, G. Edge computing and social Internet of Things for large-scale smart environments development. IEEE Internet Things J. 2018, 5, 2557–2571. [Google Scholar] [CrossRef]
- Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile edge computing: A survey. IEEE Internet Things J. 2018, 5, 450–465. [Google Scholar] [CrossRef] [Green Version]
- Andrawes, A.; Nordin, R.; Ismail, M. Wireless Energy Harvesting with Amplify-andForward Relaying and Link Adaptation under Imperfect Feedback Channel. J. Telecommun. Electron. Comput. Eng. 2018, 10, 83–90. [Google Scholar]
- Andrawes, A.; Nordin, R.; Ismail, M. Energy Harvesting with Link Adaptation under Different Wireless Relaying Schemes. J. Commun. 2018, 13, 1–6. [Google Scholar] [CrossRef]
- Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE Commun. Surveys Tuts. 2017, 19, 2322–2358. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Abolfazli, S.; Sanaei, Z.; Ahmed, E.; Gani, A.; Buyya, R. Cloudbased augmentation for mobile devices: Motivation, taxonomies, and open challenges. IEEE Commun. Surveys Tuts. 2014, 16, 337–368. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Qiu, Y.; Chu, X.; Long, K.; Leung, V.C.M. Fog radio access networks: Mobility management, interference mitigation, and resource optimization. IEEE Trans. Wireless Commun. 2017, 24, 120–127. [Google Scholar] [CrossRef] [Green Version]
- You, C.; Huang, K.; Chae, H.; Kim, B. Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans. Wireless Commun. 2017, 16, 1397–1411. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A survey of non-orthogonal multiple access for 5G. IEEE Commun. Surveys Tuts. 2018, 20, 2294–2323. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Ng, D.W.K.; Ding, Z.; Schober, R. Optimal joint power and subcarrier allocation for full-duplex multicarrier non-orthogonal multiple access systems. IEEE Trans. Commun. 2017, 65, 1077–1091. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Zhang, H.; Cheng, J.; Roy, S.; Leung, V.C.M. Joint user scheduling and power allocation optimization for energy-efficient NOMA systems with imperfect CSI. IEEE J. Sel. Areas Commun. 2017, 35, 2874–2885. [Google Scholar] [CrossRef]
- Kiani, A.; Ansari, N. Edge computing aware NOMA for 5G networks. IEEE Internet Things 2018, 5, 1299–1306. [Google Scholar] [CrossRef]
- Ding, Z.; Fan, P.; Poor, H.V. Impact of non-orthogonal multiple access on the offloading of mobile edge computing. IEEE Trans. Commun. 2019, 67, 375–390. [Google Scholar] [CrossRef] [Green Version]
- Fadhil, M.; Abdullah, N.F.; Ismail, M.; Nordin, R.; Saif, A.; Al-Obaidi, M. Power Allocation in Cooperative NOMA MU-MIMO Beamforming Based on Maximal SLR Precoding for 5G. J. Commun. 2019, 14, 676–683. [Google Scholar] [CrossRef]
- Shayea, I.; Ergen, M.; Azmi, M.H.; Aldirmaz-Colak, S.; Nordin, R.; Daradkeh, Y.I. Key Challenges, Drivers and Solutions for Mobility Management in 5G Networks: A Survey. IEEE Access Spec. Sect. Complex Netw. Anal. Eng. 5G 6G 2020, 8, 172534–172552. [Google Scholar]
- Fettweis, G.P. The Tactile Internet: Applications and Challenges. IEEE Veh. Technol. Mag. 2014, 9, 64–70. [Google Scholar] [CrossRef]
- Ali, S.S.D.; Zhao, P.H.; Kim, H. Mobile Edge Computing: A Promising Paradigm for Future Communication Systems. In Proceedings of the TENCON 2018—2018 IEEE Region 10 Conference, Jeju, Korea, 28–31 October 2018; pp. 1183–1187. [Google Scholar] [CrossRef]
- Ding, Z.; Ng, D.W.K.; Schober, R.; Poor, H.V. Delay minimization for NOMA-MEC offloading. IEEE Signal Process. Lett. 2018, 25, 1875–1879. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Qian, L.P.; Ni, K.; Zhang, C.; Shen, X. Delay-minimization nonorthogonal multiple access enabled multi-user mobile edge computation offloading. IEEE J. Sel. Signal Process. 2019, 13, 392–407. [Google Scholar] [CrossRef]
- Qian, L.P.; Feng, A.; Huang, Y.; Wu, Y.; Ji, B.; Shi, Z. Optimal SIC ordering and computation resource allocation in MEC-aware NOMA NB-IoT networks. IEEE Internet Things 2019, 6, 2806–2816. [Google Scholar] [CrossRef]
- Fang, F.; Xu, Y.; Ding, Z.; Shen, C.; Peng, M.; Karagiannidis, G.K. Optimal task partition and power allocation for mobile edge computing with NOMA. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw. 2016, 24, 2795–2808. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Xu, J.; Wang, X.; Cui, S. Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans. Wireless Commun. 2018, 17, 1784–1797. [Google Scholar] [CrossRef]
- Bi, S.; Zhang, Y.-J.A. Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans. Wireless Commun. 2018, 17, 4177–4190. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Xu, J.; Ding, Z. Multi-antenna NOMA for computation offloading in multiuser mobile edge computing systems. IEEE Trans. Commun. 2019, 67, 2450–2463. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-C.; Yan, K.-Q.; Liao, W.-P.; Wang, S.-S. Towards a Load Balancing in a Three-Level Cloud Computing Network. In Proceedings of the 2010 3rd International Conference on Computer Science and Information Technology, Chengdu, China, 9–11 July 2010; Volume 1, pp. 108–113. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, M.; Yang, Z.; Huang, N.; Shikh-Bahaei, M. Energy efficient NOMA-based mobile edge computing offloading. IEEE Commun. Lett. 2019, 23, 310–313. [Google Scholar] [CrossRef]
- Cao, X.; Wang, F.; Xu, J.; Zhang, R.; Cui, S. Joint computation and communication cooperation for energy-efficient mobile edge computing. IEEE Internet Things 2019, 6, 4188–4200. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Ni, Q.; Yu, W.; Pervaiz, H. Optimizing Computation Efficiency for NOMA-Assisted Mobile Edge Computing with User Cooperation. IEEE Trans. Green Commun. Netw. 2021, 5, 858–867. [Google Scholar] [CrossRef]
- Ding, Z.; Xu, J.; Dobre, O.A.; Poor, V. Joint power and time allocation for NOMA-MEC offloading. IEEE Trans. Veh. Technol. 2019, 68, 6207–6211. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhao, N.; Yin, H. Integrated networking caching and computing for connected vehicles: A deep reinforcement learning approach. IEEE Trans. Veh. Technol. 2018, 67, 44–55. [Google Scholar] [CrossRef]
- Abataineh, Z. Blind Decoding of Massive MIMO Uplink Systems Based on the Higher Order Cumulants. Wireless Pers. Commun. 2018, 103, 1835–1847. [Google Scholar] [CrossRef]
- Cheng, N.; Xu, W.; Shi, W.; Zhou, Y.; Lu, N.; Zhou, H.; Shen, X. Air-ground integrated mobile edge networks: Architecture, challenges, and opportunities. IEEE Commun. Mag. 2018, 56, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Sheng, M.; Liu, L.; Li, J. Interference management in ultra dense networks: Challenges and approaches. IEEE Netw. 2017, 31, 70–77. [Google Scholar] [CrossRef]
- Javaid, N.; Sher, A.; Nasir, H.; Guizani, N. Intelligence in IoT-based 5G networks: Opportunities and challenges. IEEE Commun. Mag. 2018, 56, 94–100. [Google Scholar] [CrossRef]
- Kucur, O.; Kurt, G.K.; Shakir, M.Z.; Ansari, I.S. Nonorthogonal multiple access for 5G and beyond. Wireless Commun. Mobile Comput. 2018, 2018, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Zhou, N.; Zhao, Z. Analytical Modeling of NOMA-Based Mobile Edge Computing Systems With Randomly Located Users. IEEE Commun. Lett. 2020, 24, 2965–2968. [Google Scholar] [CrossRef]
- Song, Z.; Liu, Y.; Sun, X. Joint radio and computational resource allocation for NOMA-based mobile edge computing in heterogeneous networks. IEEE Commun. Lett. 2018, 22, 2559–2562. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, L.; Li, Y.; Feng, D.; Cao, W. Intelligent offloading in multi-access edge computing: A state-of-the-art review and framework. IEEE Commun. Mag. 2019, 57, 5662. [Google Scholar] [CrossRef]
- Gu, Q.; Wang, G.; Liu, J.; Fan, R.; Fan, D.; Zhong, Z. Optimal offloading with non-orthogonal multiple access in mobile edge computing. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–5. [Google Scholar]
- Chen, M.; Hao, Y. Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Sel. Area. Commun. 2018, 36, 587597. [Google Scholar] [CrossRef]
- Wang, P.; Yao, C.; Zheng, Z.; Sun, G.; Song, L. Joint task assignment, transmission, and computing resource allocation in multilayer mobile edge computing systems. IEEE Internet Things J. 2019, 6, 28722884. [Google Scholar] [CrossRef]
- Wu, Y.; Ni, K.; Zhang, C.; Qian, L.P.; Tsang, D.H.K. NOMA-assisted multi-access mobile edge computing: A joint optimization of computation offloading and time allocation. IEEE Trans. Veh. Technol. 2018, 67, 1224412258. [Google Scholar] [CrossRef]
- Vaezi, M.; Amarasuriya, G.; Liu, Y.; Arafa, A.; Fang, F.; Ding, Z. Interplay between NOMA and Other Emerging Technologies: A Survey. arXiv 2019, arXiv:1903.10489. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Xiao, Z.; Xia, X.; Wu, D.O. Millimeter-wave communications with non-orthogonal multiple access for B5G/6G. IEEE Access 2019, 7, 116123–116132. [Google Scholar] [CrossRef]
- Tariq, F.; Khandaker, M.; Wong, K.-K.; Imran, M.; Bennis, M.; Debbah, M. A Speculative Study on 6G. arXiv 2019, arXiv:1902.06700. [Google Scholar]
- Liu, Y.; Qin, Z.; Elkashlan, M.; Ding, Z.; Nallanathan, A.; Hanzo, L. Non-orthogonal multiple access for 5G and beyond. Proc. IEEE 2017, 105, 2347–2381. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Lei, X.; Karagiannidis, G.K.; Schober, R.; Yuan, J.; Bhargava, V.K. A survey non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE J. Sel. Area. Commun. 2017, 35, 21812195. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Ding, Z.; Liang, W.; Zhang, H. Optimal energy efficient power allocation with user fairness for uplink MC-NOMA systems. IEEE Wireless Commun. Lett. 2019, 8, 1133–1136. [Google Scholar] [CrossRef]
- Qian, L.; Wu, Y.; Ouyang, J.; Shi, Z.; Lin, B.; Jia, W. Latency Optimization for Cellular Assisted Mobile Edge Computing via Non-Orthogonal Multiple Access. IEEE Trans. Veh. Technol. 2020, 69, 5494–5507. [Google Scholar] [CrossRef]
- Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutorials 2017, 19, 1628–1656. [Google Scholar] [CrossRef] [Green Version]
- Huynh, L.; Pham, Q.; Nguyen, T.; Hossain, M.; Shin, Y.; Huh, E. Joint Computational Offloading and Data-Content Caching in NOMA-MEC Networks. IEEE Access 2021, 9, 12943–12954. [Google Scholar] [CrossRef]
- Zeng, M.; Nguyen, N.-P.; Dobre, O.A.; Poor, H.V. Delay Minimization for NOMA-Assisted MEC under Power and Energy Constraints. IEEE Wirel. Commun. Lett. 2019, 8, 1657–1661. [Google Scholar] [CrossRef]
- Mollanoori, M.; Ghaderi, M. Uplink scheduling in wireless networks with successive interference cancellation. IEEE Trans. Mobile Comput. 2014, 13, 1132–1144. [Google Scholar] [CrossRef]
- Fang, F.; Wang, K.; Ding, Z. Optimal Task Assignment and Power Allocation for Downlink NOMA MEC Networks. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Albataineh, Z.; Hayajneh, K.; Bany Salameh, H.; Dang, C.; Dagmseh, A. Robust Massive MIMO Channel Estimation for 5G Networks Using Compressive Sensing Technique. Int. J. Electron. Commun. 2020, 120, 153197. [Google Scholar] [CrossRef]
- Wang, F.; Xu, J.; Ding, Z. Optimized Multiuser Computation Offloading with Multi-Antenna NOMA. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017. [Google Scholar] [CrossRef]
- Diao, X.; Zheng, J.; Wu, Y.; Cai, Y. Joint computing resource, power, and channel allocations for d2d-assisted and noma-based mobile edge computing. IEEE Access 2019, 7, 92439257. [Google Scholar] [CrossRef]
- Li, Y.; Xia, S.; Zheng, M.; Cao, B.; Liu, Q. Lyapunov optimization based trade-off policy for mobile cloud offloading in heterogeneous wireless networks. IEEE Trans. Cloud Comput 2019. [Google Scholar] [CrossRef]
- Albataineh, Z. Low-Complexity Near-Optimal Iterative Signal Detection Based on MSD-CG Method for Uplink Massive MIMO Systems. Wireless Pers. Commun. 2021, 116, 2549–2563. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Mao, Y.; Zhang, J.; Song, S.; Letaief, K. Stochastic joint radio and computational resource management for multi-user mobile edge computing systems. IEEE Trans. Wireless Commun. 2017, 16, 5994–6009. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, S.; Wang, Q.; Cao, B.; Feng, G.; Hu, J. iraf, A deep reinforcement learning approach for collaborative mobile edge computing networks. IEEE Internet Things J. 2019, 6, 70117024. [Google Scholar] [CrossRef]
- Fang, F.; Xu, Y.; Ding, Z.; Shen, C.; Peng, M.; Karagiannidis, G.K. Optimal Resource Allocation for Delay Minimization in NOMA-MEC Networks. IEEE Trans. Commun. 2020, 68, 7867–7881. [Google Scholar] [CrossRef]
- Xu, L.; Yu, X.; Gulliver, T.A. Intelligent Outage Probability Prediction for Mobile IoT Networks Based on an IGWO-Elman Neural Network. IEEE Trans. Veh. Technol. 2021, 70, 1365–1375. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
AWGN spectral density | dBm/Hz | |
max energy | J | |
number of bits per task | ||
CPU frequency | ||
number of CPU cycles | ||
B | bandwidth | 1 MHz |
capacitance coefficient for each CPU cycle | ||
fading channel for user m | ||
fading channel for user n |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrawes, A.; Nordin, R.; Albataineh, Z.; Alsharif, M.H. Sustainable Delay Minimization Strategy for Mobile Edge Computing Offloading under Different Network Scenarios. Sustainability 2021, 13, 12112. https://doi.org/10.3390/su132112112
Andrawes A, Nordin R, Albataineh Z, Alsharif MH. Sustainable Delay Minimization Strategy for Mobile Edge Computing Offloading under Different Network Scenarios. Sustainability. 2021; 13(21):12112. https://doi.org/10.3390/su132112112
Chicago/Turabian StyleAndrawes, Admoon, Rosdiadee Nordin, Zaid Albataineh, and Mohammed H. Alsharif. 2021. "Sustainable Delay Minimization Strategy for Mobile Edge Computing Offloading under Different Network Scenarios" Sustainability 13, no. 21: 12112. https://doi.org/10.3390/su132112112
APA StyleAndrawes, A., Nordin, R., Albataineh, Z., & Alsharif, M. H. (2021). Sustainable Delay Minimization Strategy for Mobile Edge Computing Offloading under Different Network Scenarios. Sustainability, 13(21), 12112. https://doi.org/10.3390/su132112112