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Abstract: A precise microclimate control for dynamic climate changes in greenhouses allows the
industry and researchers to develop a simple, robust, reliable, and intelligent model. Accordingly,
the objective of this investigation was to develop a method that can accurately define the most
suitable environment in the greenhouse for an optimal yield of roses. Herein, an optimal and highly
accurate BO-DNN surrogate model was developed (based on 300 experimental data points) for a
quick and reliable classification of the rose yield environment considering some of the most influential
variables including soil humidity, temperature and humidity of air, CO2 concentration, and light
intensity (lux) into its architecture. Initially, two BO techniques (GP and GBRT) are used for the
tuning process of the hyper-parameters (such as learning rate, batch size, number of dense nodes,
number of dense neurons, number of input nodes, activation function, etc.). After that, an optimal
and simple combination of the hyper-parameters was selected to develop a DNN algorithm based
on 300 data points, which was further used to classify the rose yield environment (the rose yield
environments were classified into four classes such as soil without water, correct environment, too
hot, and very cold environments). The very high accuracy of the proposed surrogate model (0.98)
originated from the introduction of the most vital soil and meteorological parameters as the inputs of
the model. The proposed method can help in identifying intelligent greenhouse environments for
efficient crop yields.

Keywords: greenhouse; microclimate; Bayesian optimization; deep neural network; roses yield;
Gaussian process; gradient boosting

1. Introduction and Motivation
1.1. Introduction

Climate change throughout the globe is affecting agricultural production due to
increasing temperatures, fluctuating precipitation patterns, and rising corban dioxide
concentrations in the atmosphere. In these changing environmental conditions, greenhouse
crop cultivation is preferred compared with open field growing. The cultivation of crops in
the greenhouse prolongs the agricultural growing season, protect yields against weather
variations, offers a reliable growing ecosystem, and thus maximizes productivity. Thus,
it is essential to adopt precision agriculture techniques in order to maintain the ideal
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environmental parameters such as humidity, carbon dioxide, and temperature along with
soil moisture and nutrients in accordance with the crop growth cycle [1,2]. Exposure to
uneven environmental factors produces stress, disease, or even a fall in the crops, resulting
in substantial financial losses to growers [3]. Greenhouse weather control mechanisms
need to consider multivariate and non-linear systems with variables greatly dependent
on the external environment and the design of the greenhouse [4,5], even though the
greenhouse cannot be independently controlled. Thus, developing a precise climate model
in a greenhouse is an essential approach to control these dynamic climate changes and
attain proficient climate management.

Greenhouse environment models can be developed on either the physical laws driving
ecological cycles, or the interpretation of data obtained from such processes. With the
development of high-performance computational systems, several analytical models [6–8]
have been developed. Yet, this methodology may produce inconsistent outcomes when
applied to true environmental conditions due to the complexity of these models and
the frequent need for calculation and the approximation of unmeasurable parameters,
for example, water vapor pressure, biological factors, rate of photosynthesis, soil heat
flux density, and other factors [9]. On the contrary, due to the advancement of existing
computational strategies, deep leaning prediction models based on big data [10] are being
progressively applied to several fields. ANN models are incredible predicting tools [11,12]
because of their capabilities to model systems without making assumptions [13] and
to evaluate nonlinear systems. The most significant benefits of deep learning models
over several classes of nonlinear models is that ANN models can approximate a vast
group of functions with a high level of precision [14]. This approach delivers swift and
reliable results for precision agriculture applications, namely, the climate estimation of
greenhouses [15], the growth of plants, and the detection of stress compared to existing
physical models [6,7].

For the generation and collection of data, smart greenhouses are equipped with IoTs,
wireless sensor networks (WSNs), and actuators [16]. Sensors sense the atmosphere in
the greenhouse and measure temperature, light intensity, humidity, CO2 levels, pressure,
etc. If any irregularity is detected in the environmental conditions of the greenhouse,
the ANN-based central control station directs actuators to execute required actions such
as watering the crops, increasing or decreasing the light intensity, opening and closing
windows, etc.

Besides, an appropriate comprehension of the variations of different parameters
in the greenhouse climate related to the requirements of the particular crop at various
development phases needs more consideration. As rose plants are susceptible to large
variations in temperature, light, and humidity, the cultivation of greenhouse roses in
geographical areas with environmental conditions that are not satisfactorily near the
base prerequisites will encompass added risks and costs of production [17]. Exclusively
relying upon the parameter measurement data from sensors is insufficient to obtain solid
harvests in the greenhouse. Having a profound learning model for forecasting the future
air parameters will assist in keeping up with the climate [18]. For instance, having the
predicted values of temperature, CO2, and humidity assist in maintaining the flower
size and a high yield, and can prevent the growth of pests that harm the rose plants.
Additionally, predicting greenhouse climate changes will help in the event of sensor
breakdown and will reduce the energy utilization in the greenhouse [3].

1.2. Aims and Motivation

Roses are amongst some of the most highly marketed flowers globally and have
ruled the flower market since the 1990s owing to their year-long availability and the
ever-increasing demand in beauty products and from the decoration industry. Roses are a
functional food product similar to barley and other crops [19]. Natural environmental condi-
tions are not always optimum to achieve the growing demand of crop requirements [20,21].
Extreme weather conditions such as exposure to direct sun, hail, biotic, and abiotic stresses
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can critically damage the product quality and yield [22]. Therefore, greenhouses are in-
creasingly being used, since they can adjust the interior environmental parameters through
artificial lights, aeration, and heating and ventilation systems [23]. Thus, crop growing
cycles can be designed based on market demands. The environmental parameters required
for the appropriate growth of roses are relative humidity, CO2 concentration, soil humidity,
air temperature, light intensity, and the electrical conductivity of soil (see Figure 1).
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There are several analytical models for the interpretation of the data collected from
wireless sensor networks or IoTs, but these models may produce inconsistent outcomes
when applied to true environmental conditions due to the high complexity of these models
and the frequent need for calculation and the approximation of unmeasurable parameters.
Based on the aforementioned discussion, it is extremely crucial to develop a method partic-
ularly for AI-based methods [24] that can accurately define the most suitable environment
in the greenhouses for rose yield production. This is because the AI-based methods have
gained lot of success in agriculture during recent years in relation to crop yield production,
detection, precision agriculture, and so on [25–29].

To the best of the authors’ knowledge, only a single study is available in the literature
regarding the use of AI in the rose’s greenhouse environment. This study presents the ANN
and ANFIS methods to forecast the risk level for pests in the rose greenhouse [30]. Other
than this, no study is available in the literature on this subject. The present study is the
first of its kind in classifying the greenhouse environment for rose crops based on AI-based
surrogate models. The proposed models are deep neural networks based on the optimal
set of hyper-parameters defined by the Bayesian optimization scheme. AI-based surrogate
models can be a reliable, simple, and robust solution. For instance, Bayesian optimization
(BO) techniques such as the Gaussian process (GP) and Gradient boosting (GBRT) can be
employed to provide optimal hyper-parameters to be integrated with deep neural networks
(DNN). In line with this, the objective of this study was to develop an optimal and highly
accurate BO-DNN surrogate model (based on 300 experimental data points) for a quick and
reliable classification of the rose yield environment considering some of the most influential
variables including soil humidity, the temperature and humidity of air, CO2 concentration,
and light intensity (lux) into its architecture. The rose yield environments (outputs) are
classified into four classes such as soil without water, correct environment, too hot, and
very cold environments. Initially, two BO techniques (GP and GBRT) were used for the
tuning process of the hyper-parameters (such as learning rate, batch size, number of dense
nodes, number of dense neurons, number of input nodes, activation function, etc.). The
most accurate set of hyper-parameters was selected to build the DNN model based on
300 data points, which was further used to classify the rose yield environment. The very
high accuracy of the proposed surrogate model originates from the introduction of the
most vital soil and meteorological parameters as the inputs of the model.
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2. Materials and Methods
2.1. Data Collection

A total of 300 experimental data points from various sensors regarding soil humidity,
light intensity, temperature, air humidity, and CO2 concentration for 04 different classes
of greenhouse rose yield environments were taken from the open literature [31]. The data
were acquired by an autonomous robot integrating the sensors including soil humidity,
light intensity, temperature, air humidity, and CO2 concentration. Table 1 shows that a
wide range of experimental data have been included in this study to discuss greenhouse
rose yield environments.

Table 1. Investigated parameters and their data range.

Parameter Data Range

Soil humidity (kPa) 124–821
Light intensity (lux) 0–54612.5
Temperature (◦C) 15.9–40.2
Air humidity (%) 39.2–96.9
CO2 concentration (ppm) 34–243
Environment Class 0, 1, 2, and 3

2.2. Data Visualization

The experimental data have been visualized in terms of heat maps, correlation charts,
pairs, and violin plots. The heat map and correlation chart represent the relationship
between input and output features while the data distribution has been visualized by
pairs, violins, and distplot. In addition, the data density for each class has been shown. A
heat map showing the correlation between the input and output variables Figure 2. The
dependency of the various input variables on the output parameters can be visualized by
using a correlation chart as provided Figure 3. The data distribution of the input and output
parameters including the soil humidity, air temperature and humidity, CO2 concentration,
lux (light intensity), and class (output) is represented by a pair plot (see Figure 4). A clearer
picture of the experimental data distribution of various input features with respect to the
only output parameter, class, is highlighted in the violin plots (see Figure 5).
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Herein, the experimental data were distributed into 04 different classes (namely class
0, class 1, class 2, and class 3). The total number of data points for each class is illustrated
in Figure 6.

The density of each input parameter’s acquired data is presented bydistplot (see
Figure 7). The distplot illustrates the data distribution of each parameter in terms of density
distribution.

2.3. Bayesian Optimization Integrated with a Deep Neural Network Algorithm

Algorithms of two different Bayesian optimization schemes, namely, Gaussian process
regression (GPR) and Gradient boosting regression trees (GBRT) integrated with the deep
neural network are illustrated in Figure 8.
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3. Results and Discussion

In this section, the range of the considered hyper-parameters is first provided followed
by the tuning processes of two different Bayesian optimization schemes (GP and GBRT).
Furthermore, the way that the maximum convergence was achieved is explained. In ad-
dition, the optimal combination of the hyper parameters is chosen. The chosen optimal
hyper-parameters are then employed to develop a deep neural network model, which is
then used to classify the greenhouse environments for rose yields. Moreover, the classifica-
tion accuracy of the developed model in terms of a confusion matrix and an accuracy table
is presented. The details of the input features and their impact on the model’s classification
accuracy is evaluated in the sensitivity analysis section. Other than that, individual impact
of each input variable on the model’s classification accuracy is evaluated. More discussions
are presented in the subsequent sections.

3.1. Optimization of the Hyper-Parameters

The considered hyper-parameters were tuned by using two different Bayesian optimiza-
tion schemes (GP and GBRT). The selected hyper-parameters include the learning rate, Adam
decay, input nodes, dense layers, dense nodes, batch size, and activation function. The range
of all the investigated hyper-parameters for the tuning process is given in Table 2.

Table 2. Range of hyper parameters.

Hyper Parameter Investigated Range

Learning rate 0.0001–0.1
Adam decay 0.000001–0.01
Input nodes 1–5
Dense layers 1–10
Dense nodes 1–500
Batch size 1–100
Activation function Softmax, Sigmoid, ReLU, tanh

The range of the considered hyper-parameters along with the hyper-parameter tuning
process by the GBRT and GPR algorithms is depicted in Figures 9 and 10, respectively.
It is worth mentioning that the blue and orange regions represent the strong and weak
dependence of the variable, respectively, while the asterisk sign points towards the optimal
point. For further analysis, the GPR algorithm was considered. Detailed information on the
finally selected architecture of the optimal model (GPR) is tabulated in Table 3. From the
Figure 10, it can be observed that the ‘tanh’ activation function provided optimal results
compared to the Softmax, sigmoid, and ReLU. A comparison between the suitability of
these activation functions is provided in Figure 11.

Table 3. Selected architecture of the optimal model.

Optimization Method Gaussian Process

Learning rate 0.000416
No. of hidden layers 10
No. of neurons in input layer 5
No. of neurons in each hidden layer 265
Activation function tanh
Batch size 36
Adam decay 0.007963
No. of neurons in output layer 4
No. of iterations 80
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Convergence plots for both optimization schemes such as GP and GBRT provide a
clear picture of the way the error was minimized. The initial convergence was reached
very fast because the number of input parameters and the amount of training data affected
the convergence rate, and in this study the model was evaluated for 300 experimental data
points containing five input parameters. For instance, in Figure 12, it can be clearly noticed
that the convergence error for both the GP and GBRT algorithms was minimized at the
fourth call.
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3.2. Training and Developing the Deep Neural Network

The experimental data were distributed into training (80%) and testing (20%) datasets.
The training and validation losses of the developed model are depicted in Figure 13. The
total number of iterations was kept up to 80. Apparently, both of the losses were minimized
until the 36th iteration, so the training process was stopped. This shows that the training
process was computationally economical and quick.
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Figure 14 illustrates the classification performance of the developed model for each
class of the environment. Apparently, the developed model was able to accurately classify
59 out of 60 environments for various classes. This explains how well the model performs
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for different greenhouse environments within the tested range. The classification accuracy
of the selected surrogate model is presented in Table 4.
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Table 4. Classification accuracy description of the selected surrogate model.

Precision Recall F1-Score

0 1.00 1.00 1.00
1 0.80 1.00 0.89
2 1.00 1.00 1.00
3 1.00 0.94 0.97
Accuracy 0.98
Macro Avg. 0.95 0.98 0.96
Weighted Avg. 0.99 0.98 0.98

The performance of the developed model is highlighted in terms of precision, recall,
and F1-score. Precision and recall are the fraction of the relevant instances among the
retrieved instances and the fraction of the relevant instances that were retrieved. Both
precision and recall are therefore based on relevance. The values of precision and recall
from Table 4 show that the proposed model had a high classification efficiency for the rose’s
greenhouse environment. The F1-score from Table 4 also indicates the perfect precision
and recall of the optimal surrogate model. In addition, the overall accuracy of the model
along with the macro and weighted averages are described as well. The final model could
perform the classification task with an overall accuracy of 0.98.

3.3. Sensitivity Analysis

The individual impact of each input variable on the model’s output (i.e., classification
of the greenhouse rose yield environments) is portrayed using the SHAP library. More
particularly, the ways in which the various input features such as soil humidity, tempera-
ture, air humidity, light intensity, and CO2 concentration affected the model’s classification
accuracy are shown in Figure 15. It can be clearly seen that the sensitivity of the different
features was not the same for various classes. However, some of the factors were sensitive
for all the classes. For example, the most influential factor for each class was the soil humid-
ity followed by the temperature. Regarding class 1 (correct environment), the feature with
the most impact was air humidity followed by soil humidity, temperature, light intensity,
and CO2 concentration.
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4. Conclusions

In the current study, surrogate models were developed that can accurately define
the most suitable environment in greenhouses for rose yield production. In this regard,
Bayesian optimization (BO) techniques such as the Gaussian process (GP) and Gradient
boosting (GBRT) were employed to provide optimal hyper-parameters to be integrated
with deep neural networks (DNN).

- The optimal set of hyper-parameters includes the learning rate (0.000416), the number
of hidden layers (10), the number of neurons in each hidden layer (265), the activation
function (tanh), batch size (36), Adam decay (0.007963), and number of iterations (80).

- An optimal and highly accurate BO-DNN surrogate model (based on 300 experi-
mental data points) was developed for a quick and reliable classification of the rose
yield environment considering the most influential variables including soil humidity,
temperature and humidity of air, CO2 concentration, and light intensity (lux) into its
architecture.

- The proposed surrogate models can accurately classify the rose yield environments
(classified into four classes such as soil without water, correct environment, too hot,
and very cold environments).

- The developed model can classify different roses yield environments with an overall
accuracy of 0.98. The very high accuracy of the proposed surrogate models originates
from the inclusion of the most influential parameters as the inputs of the model.

- This study provides an easy, quick, reliable, and intelligent method to identify and
perform corrective measures to improve the quality of the roses. With the proposed
method, greenhouse environments can be evaluated and selected for an efficient crop
yield of roses and other vegetables and fruits.
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