Management Strategies and Stakeholders Analysis to Strengthen the Management and Use of Biosolids in a Colombian Municipality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Characteristics of the WWTP
2.2. SWOT Analysis
2.3. Stakeholder Analysis
Public, Private, and Community Entities
2.4. Surveys
2.5. Data Analysis
3. Results
3.1. SWOT and TOWS Strategies
3.2. Stakeholder Surveys
3.2.1. Community
3.2.2. Public and Private Entities
3.3. Stakeholder Power and Influence
4. Discussion
4.1. SWOT and TOWS Strategies
4.2. Public Surveys and Surveys of Public and Private Entities
4.3. Stakeholder Analysis, Weighting
4.4. Analysis of the Evaluation Methods Used and Identified Stakeholders
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Stakeholders (n = 28) | Operating Level | Associated Functions |
---|---|---|
DNP (n = 1) [118] | N | “To design, guide and evaluate Colombian public policies, the management and allocation of public investment and the implementation of these in plans, programs and projects of the government in the social, economic and environmental fields.” |
MinAmb [119] | N | “To design and regulate public policies and general conditions for environmental sanitation..... to prevent, repress, eliminate or mitigate the impact of polluting, deteriorating or destructive activities on the environment or natural heritage, in all economic and productive sectors.” |
MinVivienda [120] | N | “Define feasibility and eligibility criteria for water, sewerage and sanitation projects and approve them, and provide technical assistance to territorial entities, environmental authorities and public utility service providers.” |
CAR (n = 1) [121] | N | “Maximum environmental authority in accordance with the criteria and guidelines established by the Ministry of Environment and sustainable development.” “Promote and develop community participation in activities and programs for environmental protection, sustainable development and adequate management of renewable natural resources.” |
ICA (n = 1) [122] | N | “ Exercise technical control over the production, importation and commercialization of agricultural inputs to prevent risks that may affect agricultural health.“ |
WWTPs (n = 12) | CM | “Guarantee to the community the treatment of wastewater in the coverage area to reduce the environmental impact, through the correct operation of the WWTP and maintenance of its components.” |
Waste-Manag (n = 2) | N | Collect organic waste to be treated or disposed of correctly. |
Agro-Industry (n = 2) | N | To provide economic income and support to the farmers. Reduce post-harvest losses in agricultural production. Develop new forms of production. |
F/A (n = 4) | N | Maintain agricultural activities and the development of the national and local economy. |
Academia (n = 2) | CM | Integrate research, academia, and social projection from teaching, education, and service. |
WWTP-EM (n = 2) [123] | M | “Establish and implement actions aimed at directing the environmental management of the company operating the WWTP; ensure compliance with environmental standards; promote cleaner production practices and the rational use of natural resources.” |
DEyA (n = 1) [124] | M | “Define programs for entrepreneurship and agricultural development, providing technical assistance to all the agents involved, adopting and directing the plans that the municipality needs to advance for the development of this sector, especially the farming sector.” “Promote community participation and the social improvement of the agricultural activity of the residents of the municipality, taking into account the mechanisms of citizen participation and the needs of the community.” |
ESPB [125] | D | “ Manage the provision and strengthening of public services in the department of Boyacá, providing support, advice and technical assistance at the municipal and regional levels. ” |
SSPD [126] | N | “To monitor, inspect and control compliance by the supervised parties with the provisions that regulate the proper rendering of residential public utilities and the protection of users.” |
References
- Jones, E.R.; van Vliet, M.T.H.; Qadir, M.; Bierkens, M.F.P. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data 2021, 13, 237–254. [Google Scholar] [CrossRef]
- SSPD. Estudio Sectorial de los Servicios Públicos Domiciliarios de Acueducto y Alcantarillado–2019; Superintendencia de Servicios Públicos Domiciliarios: Bogotá, Colombia, 2020; pp. 1–64. [Google Scholar]
- DNP. Estrategia Para la Implementación de los Objetivos de Desarrollo Sostenible (ODS) en Colombia, CONPES 3918; Departamento Nacional de Planeación: Bogotá, Colombia, 2018; pp. 1–74. [Google Scholar]
- SSPD. Estudio Sectorial de los Servicios Públicos Domiciliarios de Acueducto y Alcantarillado 2014–2017; Superintendencia de Servicios Públicos Domiciliarios: Bogotá, Colombia, 2018; pp. 1–88. [Google Scholar]
- Wiśniowska, E.; Grobelak, A.; Kokot, P.; Kacprzak, M. Sludge legislation-comparison between different countries. In Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 201–224. ISBN 9780128159071. [Google Scholar]
- Margot, J.; Rossi, L.; Barry, D.A.; Holliger, C. A review of the fate of micropollutants in wastewater treatment plants. Wiley Interdiscip. Rev. Water 2015, 2, 457–487. [Google Scholar] [CrossRef] [Green Version]
- Chávez Porras, Á.; Velásquez Castiblanco, Y.L.; Casallas Ortega, N.D. Características físico-químicas de humus obtenido de biosólidos provenientes de procesos de tratamiento de aguas residuales. Inf. Tec. 2017, 81, 122. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, E.; Christensen, N.; Ejbye Schmidt, J.; Ledin, A. Potential priority pollutants in sewage sludge. Desalination 2008, 226, 371–388. [Google Scholar] [CrossRef]
- Viau, E.; Bibby, K.; Paez-Rubio, T.; Peccia, J. Toward a consensus view on the infectious risks associated with land application of sewage sludge. Environ. Sci. Technol. 2011, 45, 5459–5469. [Google Scholar] [CrossRef] [PubMed]
- Mihelcic, J.R. Sludge management: Biosolids and fecal sludge. In Water and Sanitation for the 21st Century: Health and Microbiological Aspects of Excreta and Wastewater Management (Global Water Pathogen Project); Mihelcic, J.R., Ed.; UNESCO: Paris, France, 2018. [Google Scholar]
- Basic Information about Biosolids. Available online: https://www.epa.gov/biosolids/basic-information-about-biosolids (accessed on 24 February 2021).
- Collivignarelli, M.; Abbà, A.; Frattarola, A.; Carnevale Miino, M.; Padovani, S.; Katsoyiannis, I.; Torretta, V. Legislation for the reuse of biosolids on agricultural land in Europe: Overview. Sustainability 2019, 11, 6015. [Google Scholar] [CrossRef] [Green Version]
- Pepper, I.L.; Zerzghi, H.; Brooks, J.P.; Gerba, C.P. Sustainability of land application of class B biosolids. J. Environ. Qual. 2008, 37, S58–S67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eurostat Sewage Sludge Production and Disposal from Urban Wastewater. Available online: https://ec.europa.eu/eurostat/web/environment/water (accessed on 14 November 2020).
- Zhang, W.; Alvarez-Gaitan, J.; Dastyar, W.; Saint, C.; Zhao, M.; Short, M. Value-added products derived from waste activated sludge: A biorefinery perspective. Water 2018, 10, 545. [Google Scholar] [CrossRef] [Green Version]
- Collard, M.; Teychené, B.; Lemée, L. Comparison of three different wastewater sludge and their respective drying processes: Solar, thermal and reed beds—Impact on organic matter characteristics. J. Environ. Manag. 2017, 203, 760–767. [Google Scholar] [CrossRef]
- Teoh, S.K.; Li, L.Y. Feasibility of alternative sewage sludge treatment methods from a lifecycle assessment (LCA) perspective. J. Clean. Prod. 2020, 247, 119495. [Google Scholar] [CrossRef]
- Lu, Q.; He, Z.L.; Stoffella, P.J. land application of biosolids in the USA: A review. Appl. Environ. Soil Sci. 2012, 2012, 201462. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. J. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef]
- Laura, F.; Tamara, A.; Müller, A.; Hiroshan, H.; Christina, D.; Serena, C. Selecting sustainable sewage sludge reuse options through a systematic assessment framework: Methodology and case study in Latin America. J. Clean. Prod. 2020, 242, 118389. [Google Scholar] [CrossRef]
- Wood, M.D.; Thorne, S.; Kovacs, D.; Butte, G.; Linkov, I.; Eggers, S.; Thorne, S. Conducting effective outreach with community stakeholders about biosolids: A customized strategic Risk Communications Processtm based on mental modeling. In Mental Modeling Approach; Springer: New York, NY, USA, 2017; pp. 153–177. ISBN 978-1-4939-6616-5. [Google Scholar]
- Axelrad, G.; Gershfeld, T.; Feinerman, E. Reclamation of sewage sludge for use in Israeli agriculture: Economic, environmental and organizational aspects. J. Environ. Plan. Manag. 2013, 56, 1419–1448. [Google Scholar] [CrossRef]
- Bertanza, G.; Baroni, P.; Canato, M. Ranking sewage sludge management strategies by means of decision support systems: A case study. Resour. Conserv. Recycl. 2016, 110, 1–15. [Google Scholar] [CrossRef]
- WWAP. The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource; UNESCO: Paris, France, 2017; pp. 1–180. [Google Scholar]
- Gutiérrez-Rosero, J.A.; Ramírez-Fajardo, Á.I.; Rivas, R.; Linares, B.; Paredes, D. Tratamiento de lodos generados en el proceso convencional de potabilización de agua. Revista Ingenierías Universidad de Medellín 2014, 13, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Vélez Zuluaga, J.A. Los biosólidos: ¿Una solución o un problema? Producción Mas Limpia 2007, 2, 57–71. [Google Scholar]
- Melo Cerón, A.R.; Rodríguez González, A.; González Guzmán, J.M. Manejo de biosólidos y su posible aplicación al suelo, caso Colombia y Uruguay. RIAA 2017, 8, 217–226. [Google Scholar] [CrossRef]
- Spinosa, L. Wastewater Sludge: A Global Overview of the Current Status and Future Prospects, 2nd ed.; IWA Publishing: London, UK, 2011; Volume 10, ISBN 9781780401195. [Google Scholar]
- Spinosa, L. Status and Perspectives of Sludge Management; IWA Publishing: London, UK, 2007; pp. 103–108. [Google Scholar]
- Jiménez, B.; Drechsel, P.; Koné, D.; Bahri, A.; Raschid-Sally, L.; Qadir, M. Wastewater, sludge and excreta use in developing countries: An overview. In Wastewater Irrigation and Health: Assessing and Mitigating Risk in Low-Income Countries; Bahri, A., Drechsel, P., Raschid-Sally, L., Redwood, M., Eds.; International Water Management Institute (IWMI); Earthscan; International Development Research Centre (IDRC): London, UK, 2010; pp. 3–27. ISBN 9781849774666. [Google Scholar]
- Venegas, C. Aprovechamiento de los Biosólidos para la Agricultura a través del Fortalecimiento de Estrategias de Gestión Ambiental para un Municipio de Boyacá, Colombia. Master’s Thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 2021. [Google Scholar]
- Dáguer, G.P. Gestión de biosólidos en Colombia. Rev. ACODAL 2003, 8, 1–7. [Google Scholar]
- MinVivienda. Decreto 1287. Se establecen Criterios para el Uso de los Biosólidos Generados en Plantas de Tratamiento de Aguas Residuales Municipales en el Territorio de Colombia; Ministerio de Vivienda, Ciudad y Territorio: Bogotá, Colombia, 2014; pp. 1–15. [Google Scholar]
- Hurtado, R.; Nolasco, D. Managing Wastewater as a Resource in Latin America and the Caribbean Towards a Circular Economy Approach. 2017, pp. 1–28. Available online: https://programme.worldwaterweek.org/Content/ProposalResources/allfile/managing_wastewater_as_a_resource_in_lac.pdf (accessed on 30 September 2021).
- Aguas Andinas. Reporte de Sostenibilidad Pura Vida 2013; Aguas Andinas: Santiago, Chile, 2014; pp. 1–132. [Google Scholar]
- Rosales, E.P. Aplicación benéfica de biosólidos en Chile: Desafíos, dificultades y oportunidades de mejora. Rev. AIDS Chile 2018, 14, 18–23. [Google Scholar]
- Bittencourt, S. Agricultural use of sewage sludge in Paraná State, Brazil: A decade of national regulation. Recycling 2018, 3, 53. [Google Scholar] [CrossRef] [Green Version]
- EMPAS. Empresa Pública de Alcantarillado de Santander S.A. E.S.P. In Informe de Gestión; Santander, Colombia, 2019; pp. 1–169. Available online: https://www.empas.gov.co/wp-content/uploads/2020/07/1-Informe-de-Gesti%C3%B3n-2019.pdf (accessed on 30 September 2021).
- Air and Soil Care, an EPM Contribution for the Health of the Earth. Available online: https://www.epm.com.co/site/cuidado-del-aire-y-de-los-suelos-un-aporte-de-epm-por-la-salud-de-la-tierra (accessed on 8 January 2021).
- WWTP of EPM (Medellín, Colombia); WWTPs of El Salitre (Bogotá, Colombia); WTTP of EMCALI (Cali, Colombia); WTTP of EMPAS (Santander, Colombia); WTTP of La Calera (La Calera-Cundinamarca, Colombia); WWTP of El Santuario (Pidecuestana-Santander, Colombia); WWTP of EPA (Armenia-Quindío, Colombia); WTTP of IBAL (Ibagué-Tolima, Colombia); WTTP of Guamal (Villavicencio-Meta, Colombia). Personal communication. 2021. [Google Scholar]
- Montoya, G.G.; Gómez, C.X.R. Acondicionadores de Suelo y fertilizantes a partir de biosólidos generados en plantas de tratamiento de aguas residuales de EPM. Rev. EPM 2019, 11–21. Available online: https://www.epm.com.co/site/Portals/0/PDF/Revista_EPM_No_13_2019.pdf?ver=2019-07-26-105718-273 (accessed on 30 September 2021).
- Política de Crecimiento Verde. Available online: https://www.dnp.gov.co/Crecimiento-Verde/Paginas/Politica-crecimiento-verde.aspx (accessed on 13 January 2021).
- DNP. Economía Circular en la Gestión de los Servicios de Agua Potable y Manejo de Aguas Residuales, CONPES 4004; Departamento Nacional de Planeación: Bogotáa, Colombia, 2020; pp. 1–64. [Google Scholar]
- DNP. Bases Del Plan Nacional de Desarrollo 2018–2022. Pacto por Colombia, Pacto por la Equidad; Departamento Nacional de Planeación: Bogotáa, Colombia, 2019; pp. 1–1457. [Google Scholar]
- MinAmbiente. Resolución 1207 de 2014 Por la cual se Adoptan Disposiciones Relacionadas con el Uso de Aguas Residuales Tratadas; Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia, 2014; pp. 1–9. [Google Scholar]
- Documentos Consejo Nacional de Política Económica y Social (CONPES). Available online: https://www.dnp.gov.co/CONPES/documentos-conpes/Paginas/documentos-conpes.aspx (accessed on 24 June 2021).
- Colombia: Global Leader in Agriculture. Available online: http://www.relocationsrs.com.co/colombia-world-agricultural-pantry/ (accessed on 21 February 2021).
- Troschinetz, A.M.; Mihelcic, J.R. Sustainable recycling of municipal solid waste in developing countries. J. Waste Manag. 2009, 29, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Tai, J.; Zhang, W.; Che, Y.; Feng, D. Municipal solid waste source-separated collection in China: A comparative analysis. J. Waste Manag. 2011, 31, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- di Bella, V.; Ali, M.; Vaccari, M. Constraints to healthcare waste treatment in low-income countries—A case study from Somaliland. Waste Manag. Res. 2012, 30, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Sharholy, M.; Ahmad, K.; Mahmood, G.; Trivedi, R.C. Municipal solid waste management in Indian cities—A review. J. Waste Manag. 2008, 28, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, L.A.; Maas, G.; Hogland, W. Solid waste management challenges for cities in developing countries. Waste Manag. 2013, 33, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.K.; Kulshreshtha, K.; Mohanty, C.S.; Pushpangadan, P.; Singh, A. Stakeholder-based SWOT analysis for successful municipal solid waste management in Lucknow, India. J. Waste Manag. 2005, 25, 531–537. [Google Scholar] [CrossRef]
- Rezazadeh, S.; Jahani, A.; Makhdoum, M.; Meigooni, H.G. Evaluation of the strategic factors of the management of protected areas using SWOT analysis—Case study: Bashgol Protected Area-Qazvin Province. Open J. Ecol. 2017, 07, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Weihrich, H. The TOWS matrix—A tool for situational analysis. Long Range Plann. 1982, 15, 54–66. [Google Scholar] [CrossRef]
- Anselin, A.; Meire, P.M.; Anselin, L. Multicriteria techniques in ecological evaluation: An example using the analytical hierarchy process. Biol. Conserv. 1989, 49, 215–229. [Google Scholar] [CrossRef]
- Dyson, R.G. Strategic development and SWOT analysis at the University of Warwick. Eur. J. Oper. Res. 2004, 152, 631–640. [Google Scholar] [CrossRef]
- Bernroider, E. Factors in SWOT analysis applied to micro, small-to-medium, and large software enterprises. Eur. Manag. J. 2002, 20, 562–573. [Google Scholar] [CrossRef]
- Lozano, M.; Vallés, J. An Analysis of the implementation of an environmental management system in a local public administration. J. Environ. Manag. 2007, 82, 495–511. [Google Scholar] [CrossRef] [PubMed]
- Panagiotou, G.; van Wijnen, R. The “Telescopic Observations” framework: An attainable strategic tool. Mark. Intell. Plan. 2005, 23, 155–171. [Google Scholar] [CrossRef]
- Brugha, R. Stakeholder analysis: A review. Health Policy Plan. 2000, 15, 239–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurbrügg, C.; Caniato, M.; Vaccari, M. How assessment methods can support solid waste management in developing countries—A critical review. Sustainability 2014, 6, 545–570. [Google Scholar] [CrossRef] [Green Version]
- Bryson, J.M. What to do when stakeholders matter. Public Manag. Rev. 2004, 6, 21–53. [Google Scholar] [CrossRef]
- Beecher, N.; Connell, B.; Epstein, E.; Filtz, J.; Goldstein, N.; Lono, M. Public Perception of Biosolids Recycling:Developing Public Participation and Earning Trust; IWA Publishing: London, UK, 2004. [Google Scholar]
- Lindsay, B.E.; Zhou, H.; Halstead, J.M. Factors influencing resident attitudes regarding the land application of biosolids. Am. J. Altern. Agric. 2000, 15, 88–95. [Google Scholar] [CrossRef]
- Krogmann, U.; Gibson, V.; Chess, C. Land application of sewage sludge: Perceptions of New Jersey vegetable farmers. Waste Manag. Res. 2001, 19, 115–125. [Google Scholar] [CrossRef]
- Caniato, M.; Vaccari, M.; Visvanathan, C.; Zurbrügg, C. Using social network and stakeholder analysis to help evaluate infectious waste management: A step towards a holistic assessment. Waste Manag. 2014, 34, 938–951. [Google Scholar] [CrossRef]
- Bryson, J.M.; Patton, M.Q.; Bowman, R.A. Working with evaluation stakeholders: A rationale, step-wise approach and toolkit. Eval. Program. Plann. 2011, 34, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Eden, C.; Ackermann, F. Making Strategy: The Journey of Strategic Management; SAGE Publications Ltd.: London, UK, 1998. [Google Scholar]
- Prell, C.; Hubacek, K.; Reed, M. Stakeholder analysis and social network analysis in natural resource management. Soc. Nat. Resour. 2009, 22, 501–518. [Google Scholar] [CrossRef]
- Reed, M.S.; Graves, A.; Dandy, N.; Posthumus, H.; Hubacek, K.; Morris, J.; Prell, C.; Quinn, C.H.; Stringer, L.C. Who’s in and why? A typology of stakeholder analysis methods for natural resource management. J. Environ. Manag. 2009, 90, 1933–1949. [Google Scholar] [CrossRef]
- Savage, G.T.; Nix, T.W.; Whitehead, C.J.; Blair, J.D. Strategies for assessing and managing organizational stakeholders. Acad. Manag. Perspect. 1991, 5, 61–75. [Google Scholar] [CrossRef]
- Mendelow, A.L. Environmental scanning: The impact of the stakeholder concept. In Proceedings of the 2nd International Conference on Information Systems (ICIS), Cambridge, MA, USA, 1981; pp. 407–417. Available online: https://aisel.aisnet.org/icis1981/20/ (accessed on 30 September 2021).
- Le, N.; Nguyen, T.; Zhu, D. Understanding the stakeholders’ involvement in utilizing municipal solid waste in agriculture through composting: A case study of Hanoi, Vietnam. Sustainability 2018, 10, 2314. [Google Scholar] [CrossRef] [Green Version]
- Caniato, M.; Tudor, T.; Vaccari, M. Understanding the perceptions, roles and interactions of stakeholder networks managing health-care waste: A case study of the Gaza Strip. J. Waste Manag. 2015, 35, 255–264. [Google Scholar] [CrossRef]
- dos Muchangos, L.S.; Tokai, A.; Hanashima, A. Stakeholder analysis and social network analysis to evaluate the stakeholders of a MSWM system—A pilot study of Maputo City. Environ. Dev. 2017, 24, 124–135. [Google Scholar] [CrossRef]
- Methods of Prospective: Mactor. Available online: http://en.laprospective.fr/methods-of-prospective/softwares---cloud-version/22-mactor.html (accessed on 8 August 2021).
- Bourne, L.; Weaver, P. Mapping stakeholders. In Construction Stakeholder Management; Wiley-Blackwell: Oxford, UK, 2009; pp. 99–120. [Google Scholar]
- Johnson, G.; Scholes, K. Exploring Corporate Strategy, 5th ed.; Prentice Hall Europe: London, UK, 1999. [Google Scholar]
- Venegas, C.; Sánchez-Alfonso, A.C.; Celis Zambrano, C.; González Mendez, M.; Vesga, F.-J. E. coli CB390 as an indicator of total coliphages for microbiological assessment of lime and drying bed treated sludge. Water 2021, 13, 1833. [Google Scholar] [CrossRef]
- MinVivienda. Resolución N° 0330 Por la cual se Adopta El Reglamento Técnico para el Sector Agua Potable y Saneamiento Básico—RAS; Ministerio de Vivienda, Ciudad y Territorio: Bogotá, Colombia, 2017; pp. 1–182. [Google Scholar]
- MinVivienda. Resolución N° 0844 Se Establecen Los Requisitos Técnicos para los Proyectos de Agua y Saneamiento Básico de Zonas Rurales que se Adelanten Bajo los Esquemas Diferenciales; Ministerio de Vivienda, Ciudad y Territorio: Bogotá, Colombia, 2018; pp. 1–44. [Google Scholar]
- MinVivienda; CRA. Resolución CRA 865 DE 2018 Se Definen los Criterios, Metodologías, Indicadores, Parámetros y Modelos de Carácter Obligatorio para Evaluar la Gestión y Resultados de las Personas Prestadoras de los Servicios Públicos Domiciliarios de Acueducto y/o Alcantarillado; Ministerio de Vivienda, Ciudad y Territorio, Comisión de Regulación de Agua Potable y Saneamiento Básico: Bogotá, Colombia, 2018; pp. 1–105. [Google Scholar]
- SSPD. Estudio Sectorial de los Servicios Públicos Domiciliarios de Acueducto y Alcantarillado—2018; Superintendencia de Servicios Públicos Domiciliarios: Bogotá, Colombia, 2019; pp. 1–116. [Google Scholar]
- CAR. Permiso de Vertimiento y Ocupación del Cauce, Resolución CAR 783; Corporación Autónoma Regional de Cundinamarca: Bogotá, Colombia, 2015; pp. 1–55. [Google Scholar]
- PTAR. Planta de Tratamiento de Aguas Residuales domésticas, sitio de estudio. In Informe Semestral de Operaciones PTAR 2019–2020; PTAR: Bogotá, Columbia, 2021; pp. 1–80. [Google Scholar]
- CAR. Dirección Operativa y de Infraestructura Ficha Seguimiento Planta de Tratamiento de Aguas Residuales (PTAR) Jurisdicción CAR, Respuesta al Radicado N° 20211022572: Información PTAR; Corporación Autónoma Regional de Cundinamarca: Cundinamarca, Colombia, 2019; pp. 1–125. [Google Scholar]
- Ginige, K.; Amaratunga, D.; Haigh, R. Mapping stakeholders associated with societal challenges: A methodological framework. Procedia Eng. 2018, 212, 1195–1202. [Google Scholar] [CrossRef]
- 40 CFR Part 503—Standards for the Use or Disposal of Sewage Sludge. Available online: https://www.law.cornell.edu/cfr/text/40/part-503 (accessed on 14 November 2020).
- Salazar Espitia, J. Guía Metodológica para El Manejo y Aprovechamiento de Biosólidos en Colombia. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2019. [Google Scholar]
- Vivienda. Reglamento para El Reaprovechamiento de los Lodos Generados en las Plantas de Tratamiento de Aguas Residuales. Decreto Supremo N° 015-2017; Ministerio del Ambiente: Magdalena del Mar, Perú, 2017; pp. 1–9. [Google Scholar]
- Vivienda. Protocolo de Monitoreo de Biosólidos—Resolución Ministerial No 093-2018; Ministro de Vivienda, Construcción y Saneamiento: Lima, Perú, 2018; pp. 1–72. [Google Scholar]
- MAyDS. Norma Técnica Para El Manejo Sustentable de Barros y Biosólidos Generados En Plantas Depuradoras de Efluentes Líquidos Cloacales y Mixtos Cloacales-Industriales en Argentina, Resolución 410/2018; Ministerio de Ambiente y Desarrollo Sostenible: Buenos Aires, Argentina, 2018; pp. 1–15. [Google Scholar]
- Conama. Define Critérios e Procedimentos, para o uso Agrícola de Lodos de Esgoto Gerados Em Estações de Tratamento de Esgoto Sanitário e Seus Produtos Derivados, e Dá Outras Providências, Resolução No 375; Conselho Nacional Do Meio Ambiente: Brasilia, Brasil, 2006; pp. 1–32. [Google Scholar]
- Conama. Define Critérios e Procedimentos para Produção e Aplicação de Biossólido em solos, e dá outras Providências, Resolução No 498/2020; Ministério Do Meio Ambiente: Brasilia, Brasil, 2020; pp. 1–21. [Google Scholar]
- Gianico, A.; Braguglia, C.M.; Gallipoli, A.; Montecchio, D.; Mininni, G. Land application of biosolids in europe: Possibilities, con-straints and future perspectives. Water 2021, 13, 103. [Google Scholar] [CrossRef]
- Paes, L.A.B.; Bezerra, B.S.; Deus, R.M.; Jugend, D.; Battistelle, R.A.G. Organic solid waste management in a circular economy perspective—A systematic review and SWOT analysis. J. Clean. Prod. 2019, 239, 118086. [Google Scholar] [CrossRef]
- Borgheipour, H.; Moghaddas, Z.; Abbasi, M.; Abbaszadeh Tehrani, N. Application of DEA technique in SWOT analysis of oily sludge management using fuzzy data. Glob. J. Environ. Sci. Manag. 2018, 4, 183–194. [Google Scholar] [CrossRef]
- Frise, F.; Ringström, A. SWOT-Analysis of the Introduction and Usage of Faecal Sludge as Fertiliser in Agriculture in the Western Cape Province, South Africa. Bachelor’s Thesis, KTH, School of Architecture and the Built Environment (ABE), Sustainable Development, Environmental Science and Engineering, Industrial Ecology, Stockholm, Sweden, 2017. [Google Scholar]
- Kantza, E. Evaluation of Methods for Sewage Sludge Utilization: The Greek Perspective. Master’s Thesis, Thesis in Energy Systems, School of Science & Technology, International Hellenic University, Thessaloniki, Greece, 2011. [Google Scholar]
- Drechsel, P.; Hanjra, M.A. Wastewater and biosolids for fruit trees (Tunisia)—Case study. In Resource Recovery from Waste: Business Models for Energy, Nutrient and Water Reuse in Low- and Middle-Income Countries; Otoo, M., Drechsel, P., Eds.; Routledge–Earthscan: Oxon, UK, 2018; pp. 569–583. [Google Scholar]
- Răducanu, D.; Goldan, E.; Rati, I.V.; Steve Henri Voundi Olugu, I.L. The use of sewage sludge in agriculture: A swot analysis. Studii şi Cercetări. Biologie. Universitatea”Vasile Alecsandri” din Bacău 2015, 24, 18–26. [Google Scholar]
- Wójcik, M.; Stachowicz, F.; Masłoń, A. Ecological and economic aspects of the application of sewage sludge in energetic plant plantations—A swot analysis. Civ. Environ. Eng. Rep. 2017, 27, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Nikolaou, I.E.; Evangelinos, K.I. A SWOT analysis of environmental management practices in Greek mining and mineral industry. Resour. Policy 2010, 35, 226–234. [Google Scholar] [CrossRef]
- Goven, J.; Langer, E.R.; Baker, V.; Ataria, J.; Leckie, A. Community engagement in the management of biosolids: Lessons from four New Zealand studies. J. Environ. Manag. 2012, 103, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.S.; Norberg, L. Building Executive Alignment, Buy-In, and Focus with the Balanced Scorecard SWOT; Harvard Business School Publishing: Boston, MA, USA, 2001; pp. 1–5. [Google Scholar]
- Baudino, C.; Giuggioli, N.R.; Briano, R.; Massaglia, S.; Peano, C. Integrated methodologies (SWOT, TOWS, LCA) for improving production chains and environmental sustainability of kiwifruit and baby kiwi in Italy. Sustainability 2017, 9, 1621. [Google Scholar] [CrossRef] [Green Version]
- Korableva, O.N.; Kalimullina, O.V. Strategic approach to the optimization of organization based on BSC-SWOT matrix. In Proceedings of the 3rd International Conference on Knowledge Engineering and Applications (ICKEA 2016), Singapore, 28–30 September 2016; pp. 212–215. [Google Scholar]
- Cossio, C.; Norrman, J.; McConville, J.; Mercado, A.; Rauch, S. Indicators for sustainability assessment of small-scale wastewater treatment plants in low and lower-middle income countries. Environ. Sustain. Indic. 2020, 6, 100028. [Google Scholar] [CrossRef]
- Yudiatmaja, W.E.; Samnuzulsari, T.; Suyito, Y. Transforming institutional design in addressing sludge oil in bintan seawater, Kepulauan Riau, Indonesia. In Proceedings of the The 4th International Conference on Climate Change 2019 (The 4th ICCC 2019), Yogyakarta, Indonesia, 18–19 November 2019; Volume 423, p. 012059. [Google Scholar] [CrossRef]
- Robinson, K.G.; Robinson, C.H.; Raup, L.A.; Markum, T.R. Public attitudes and risk perception toward land application of biosolids within the South-Eastern United States. J. Environ. Manag. 2012, 98, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Novanda, R.R.; Yunita, E.; Amiruddin, A. factors that influence the intention of consuming vegetables from fertilizing biosolids (human faeces fertilizer). In Proceedings of the International Conference on Environmental Ecology of Food Security, South Sulawesi, Indonesia, 30 March 2020; Volume 681, p. 012040. [Google Scholar] [CrossRef]
- El-Hiary, M.; Dhehibi, B.; Awaideh, A.; Omamah Taysir Taher, H.; Mira, H.S.S. Farmers’ attitudes towards treated sludge (biosolids) use in agriculture: Evidence from Jordanian badia. Natl. Agric. Res. Cent. 2021, 1–50. Available online: https://repo.mel.cgiar.org/handle/20.500.11766/12537 (accessed on 30 September 2021).
- Ackermann, F.; Eden, C. Strategic management of stakeholders: Theory and practice. Long Range Plann. 2011, 44, 179–196. [Google Scholar] [CrossRef]
- Ponce Talancón, H. La matriz FODA: Alternativa de diagnóstico y determinación de estrategias de intervención en diversas organizaciones. CNEIP 2007, 12, 113–130. [Google Scholar]
- Cely, B.; Alexandra, V. Metodología de los escenarios para estudios prospectivos. Ing. Inv. 1999, 26–35. [Google Scholar] [CrossRef]
- Godet, M.; Durance, P. Strategic Foresight La Prospective Problems and Methods; Godet, M., Pesqueux, Y., Eds.; Cuadernos de LIPSOR: Paris, France, 2006; Volume 20, pp. 1–143. [Google Scholar]
- Funciones del Departamento Nacional de Planeación (DNP). Available online: https://www.dnp.gov.co/DNPN/la-entidad/funciones-dnp (accessed on 23 April 2021).
- Objetivos y Funciones MinAmbiente. Available online: https://www.minambiente.gov.co/index.php/ministerio/objetivos-y-funciones (accessed on 10 May 2021).
- Funciones MinVivienda. Available online: https://minvivienda.gov.co/ministerio (accessed on 10 July 2021).
- Objetivos y Funciones de la Corporación Autónoma Regional de Cundinamarca (CAR). Available online: https://www.car.gov.co/vercontenido/5 (accessed on 23 April 2021).
- Funciones del Instituto Colombiano Agropecuario (ICA). Available online: https://www.ica.gov.co/el-ica/funciones (accessed on 23 April 2021).
- PTAR. Funciones y Deberes de PTAR de La Zona de Estudio (Boyacá, Colombia). Unpublished work. 2021. [Google Scholar]
- DEyA. Área de Desarrollo Económico y Agropecuario (Boyacá, Colombia). Unpublished work. 2021. [Google Scholar]
- ¿Quiénes Somos?—Empresa Departamental de Servicio Boyacá (ESPB). Available online: https://espb.gov.co/ (accessed on 23 April 2021).
- Funciones de La Superintendencia de Servicios Públicos Domiciliarios (SSPD). Available online: https://www.superservicios.gov.co/nuestra-entidad/quienes-somos/funciones (accessed on 23 April 2021).
Treatment/Flow Treatment | Population Served | Water Line | Sludge Treatment | Type of Sludge Stabilization | Time of Treatment or Stabilization | Quantity of Treated Sludge Generated |
---|---|---|---|---|---|---|
SBR, AS/ 240 to 252 lps | ~72.770 people | Pretreatment, primary, secondary, tertiary (UV light) treatment | Thickeners (polymers) and dewatering | Lime-treated | ~1 month | ~480 tons/year |
POWER | High | Subjects/Maintain satisfied (HP/LI) | Players/Maintain close (HP/HI) |
Low | Crowd/ Monitor (LP/LI) | Context Setters/Maintain informed (LP/HI) | |
Low | High | ||
INFLUENCE |
N | STRENGTHS (S) | N | WEAKNESSES (W) |
S1 | Decree 1287 of 2014 [33] is based on technical aspects of EPA 503 [89]. | W1 | The biosolids regulation does not contemplate the detection of organic and emerging compounds. |
S2 | Establishes the evaluation and determination of alternative indicators (somatic coliphages.) | ||
S3 | Contemplates environmental indicators for biosolids management by WWTPs. | W2 | Most national regulations do not include efficiency indicators for sanitation or biosolids utilization. |
S4 | It establishes that biosolids generators must report to or inform the Unified Information System (UIS) of the SSPD about the amounts generated and the corresponding characteristics. | ||
S5 | Analysis of biosolids must be performed by certified laboratories. | W3 | The information requested from WWTPs by public control entities regarding sludge and biosolids is limited. |
S6 | Inclusion of by-products generated from wastewater treatment within the circular economy model. | ||
N | OPPORTUNITIES (O) | N | THREATS (T) |
O1 | It is proposed to analyze the costs of sludge and biosolids generation and treatment. | T1 | There is no certified laboratory in the country that performs the detection of enteric viruses or somatic coliphages in sludge and biosolids. |
O2 | The national government plans to strengthen the existing WWTP infrastructure by 2022. | T2 | Lack of greater coordination and communication between the different entities for management and control |
T3 | In most cases, WWTPs are unaware or only partially aware of the type of sludge they generate. | ||
T4 | Lack of incentives for WWTPs to produce biosolids that comply with regulations. | ||
O3 | Updating of guidelines (technical, financial, and environmental requirements) for biosolids use. | T5 | There is no technical guide for the management, treatment, and use of biosolids. |
O4 | Proposals to strengthen the institutional framework, information management, and governance of water and sewerage services. | T6 | Little or no information on biosolids is available on publicly accessible platforms. |
T7 | Presence of organic contaminants and emergent substances | ||
O5 | There is a proposal [90] to strengthen Decree 1287 of 2014. | T8 | Failure or delay in the adoption of new technologies for the treatment and use of biosolids. |
T9 | Neglect or inadequate operation of WWTPs |
N | STRENGTHS (S) | N | WEAKNESSES (W) |
S1 | The WWTP under study is working on the improvement of stabilization processes for dehydrated sludge. | W1 | The type of biosolids generated is unknown. |
S2 | Preventive and corrective maintenance is performed on the equipment and infrastructure of the WWTP. | W2 | Little information on current sludge management, limiting control, monitoring, and improvement. |
W3 | The WWTP has some equipment that has been out of service for several months. | ||
S3 | Periodic training is provided to the WWTP operating personnel. | W4 | No document and variables for sludge stabilization have been established. |
W5 | No information is reported to the Unified Information System (UIS). | ||
S4 | Between 2016 and 2019, awareness-raising sessions were held for the community in relation to environmental education. | W6 | Lime-stabilized sludge does not generate a product close to a Class B biosolid. |
W7 | No biosolids management and utilization policy was identified by the company operating the WWTP. | ||
N | OPPORTUNITIES (O) | N | THREATS (T) |
O1 | To have the technical support and experience of control entities (e.g., CAR) in the management and treatment of sludge and biosolids. | T1 | Costs or increments related to improved sludge treatment, addition of methods, or operations to improve stabilization. |
O2 | The institutions or academic institutions have personnel trained in sludge treatment. | T2 | Inadequate process execution and sludge stabilization time |
O3 | Increased dissemination and publication of information for biosolids management. | T3 | Complaints and disagreements from the community due to possible odors, risks and environmental impacts derived from sludge treatment. |
O4 | Generate interest and community involvement in the management of the WWTP. | T4 | Costs and low supply of laboratory analyses for waste characterization |
O5 | It is proposed to analyze the economic impacts of sludge/biosolids treatment. | ||
O6 | Promote the interest of organic fertilizer manufacturers to produce and market organic fertilizers. |
SO | WO |
|
|
|
|
|
|
|
|
| |
ST | WT |
|
|
|
|
|
|
|
SO | WO |
|
|
| |
|
|
| |
|
|
| |
ST | WT |
|
|
|
|
|
|
| ||
Yes | 44.1% | Yes | 43.0% |
No | 34.7% | No | 38.6% |
More or less | 21.2% | More or less | 18.4% |
|
| ||
High | 11.8% | High | 0.0% |
Medium | 24.5% | Medium | 10.0% |
Low | 25.5% | Low | 25.0% |
None | 38.2% | None | 65.0% |
|
| ||
Yes | 14.5% | Yes | 11.8% |
No | 72.7% | No | 55.5% |
More or less | 12.8% | More or less | 27.3% |
No opinion | 0.0% | No opinion | 5.4% |
|
| ||
Very positive | 62.7% | Yes, there is some risk | 27.3% |
Positive | 30.9% | There is no risk whatsoever | 13.6% |
Neutral | 5.5% | I do not know if there is a risk | 27.3% |
Negative | 0.9% | Need more information | 31.8% |
Strongly negative | 0.0% | ||
| |||
As a fertilizer or compost | 79.1% | As a product for use in gardens, ornamental plants, arborization, etc. | 39.1% |
Direct use in agriculture or soil | 78.2% | In energy recovery processes | 32.7% |
In forest plantations | 47.3% | As an input in the manufacture of construction materials | 21.8% |
Vegetation (green roof) recovery, revegetation, landfill landscaping, and quarry restoration activities. | 41.8% | In none of | 0% |
In green areas of graveyards, road dividers, golf courses, and vacant lots | 40.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venegas, C.; Sánchez-Alfonso, A.C.; Celis, C.; Vesga, F.-J.; Mendez, M.G. Management Strategies and Stakeholders Analysis to Strengthen the Management and Use of Biosolids in a Colombian Municipality. Sustainability 2021, 13, 12180. https://doi.org/10.3390/su132112180
Venegas C, Sánchez-Alfonso AC, Celis C, Vesga F-J, Mendez MG. Management Strategies and Stakeholders Analysis to Strengthen the Management and Use of Biosolids in a Colombian Municipality. Sustainability. 2021; 13(21):12180. https://doi.org/10.3390/su132112180
Chicago/Turabian StyleVenegas, Camilo, Andrea C. Sánchez-Alfonso, Crispín Celis, Fidson-Juarismy Vesga, and Mauricio González Mendez. 2021. "Management Strategies and Stakeholders Analysis to Strengthen the Management and Use of Biosolids in a Colombian Municipality" Sustainability 13, no. 21: 12180. https://doi.org/10.3390/su132112180
APA StyleVenegas, C., Sánchez-Alfonso, A. C., Celis, C., Vesga, F. -J., & Mendez, M. G. (2021). Management Strategies and Stakeholders Analysis to Strengthen the Management and Use of Biosolids in a Colombian Municipality. Sustainability, 13(21), 12180. https://doi.org/10.3390/su132112180