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Abstract: Various modeling approaches have been suggested for the modeling and simulation of
gasification processes. These models allow for the prediction of gasifier performance at different
conditions and using different feedstocks from which the system parameters can be optimized to
design efficient gasifiers. Complex models require significant time and effort to develop, and they
might only be accurate for use with a specific catalyst. Hence, various simpler models have also
been developed, including thermodynamic equilibrium models and empirical models, which can
be developed and solved more quickly, allowing such models to be used for optimization. In this
study, linear and quadratic expressions in terms of the gasifier input value parameters are developed
based on linear regression. To identify significant parameters and reduce the complexity of these
expressions, a LASSO (least absolute shrinkage and selection operator) shrinkage method is applied
together with cross validation. In this way, the significant parameters are revealed and simple models
with reasonable accuracy are obtained.

Keywords: biomass gasification; machine learning; computer modeling; computer simulation;
regression; model reduction; LASSO

1. Introduction

The gasification of biomass allows for the production of syngas, consisting of hydrogen
and carbon monoxide, which can be used as fuel or converted to other products. This is
a renewable source of energy which can take various types of biomass, including wood,
straw, and various crop residues, such as shells or husks etc.

To aid the design of gasification systems, modeling can be used to avoid the cost of
expensive experiments for the prediction of output composition using different feedstocks
and under various operating conditions [1]. The review of Patra and Sheth mentions
several categories of model biomass gasifiers including more complex models based on
kinetic rate expressions or computational fluid dynamics, in addition to relatively simpler
models based on thermodynamic equilibrium assumptions and empirical models based on
artificial neural networks [1]. In addition, they mention the possibility of modeling inside a
process simulator such as Aspen Plus, which may include kinetic or equilibrium models,
for example, inside the process units or associated subroutines [1]. For example, Safarian
et al. simulated a gasification process in Aspen Plus using a Gibbs reactor to calculate the
equilibrium point minimizing the Gibbs free energy [2]. Marcantonio et al. also modeled
gasification using a Gibbs reactor inside Aspen Plus, which they compared against a more
accurate kinetic model simulated in MATLAB [3].

To avoid the complexities associated with kinetic and CFD (computational fluid dy-
namics) models, a large number of studies have focused on equilibrium models, artificial
neural networks, and other empirical or semi-empirical models which allow for the fast
simulation, sensitivity analysis, and optimization of gasification systems. However, equi-
librium models are known to have some inaccuracy because the real gasifier does not
necessarily reach equilibrium and can lead to an overestimation of the hydrogen and
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carbon monoxide content of producer gas and an underestimation of methane content [4].
To address this inaccuracy, a number of studies have proposed adding correction factors or
correlations to the equilibrium models to make the results closer to reality as detailed in
the review of Ferreira et al. [5].

Despite this progress, recent studies have shown that even with corrections added,
the equilibrium models still show some deviation from experimental values, leaving room
for improvement [6]. Alternatively, artificial neural networks can also be utilized to predict
the performance of gasifiers as shown by Baruah et al. [7]. Although they are shown
to give relatively accurate predictions, this is achieved by limiting the study to woody
biomass in small scale downdraft gasifiers [7]. Pandey et al. also show that an artificial
neural network can achieve accurate predictions, but in that case, limited to predicting the
results for gasification of municipal waste from a single lab-scale fluidized bed reactor [8].
Additionally, artificial intelligence-based machine learning has also been applied to predict
the output of a downdraft gasifier in the form of least-squares support vector machines [9].
Although these and other artificial intelligence have shown high accuracy, the resulting
models generally do not identify which parameters are important and their fitting requires
the identification and fitting of a relatively large number of parameters (e.g., weights and
bias values in the fitted equations). For example, the neural network of Baruah et al. for
predicting the hydrogen content requires 25 parameters and 41 parameters for predicting
the carbon monoxide content [7]. Although the sensitivity with respect to different inputs
is not required for building this type of model, the relative impact of different inputs is
calculated and shown in the study of Puig-Arnavat et al., for example, showing that carbon
content of the feed biomass has a big effect on CO (carbon monoxide) gas yield [10].

Alternatively, simpler empirical expressions have also been considered for predicting
the product gas composition as a function of the gasifier inputs and operating conditions.
These have the advantage that they will typically have fewer parameters to fit, but the
resulting model may be less accurate. For example, Chavan et al. compared a power-law
type empirical formula against artificial neural networks for the prediction of gas produc-
tion rate and heating value of gas products from coal gasification and showed that while
both methods give a good fit, the artificial neural network method was slightly more accu-
rate [11]. For the case of biomass gasification, the study of Chee looks at the experimental
evaluation of a downdraft biomass gasifier and proposes various linear and non-linear
correlation equations to predict outlet conditions [12]. However, these correlations are
in terms of only a single inlet property and are obtained by varying only that parameter
experimentally, so they cannot be used when more than one input is varied [12]. In another
example, Pradhan et al. developed a number of thermodynamic models then fitted linear
expressions to predict the results of the best fitting thermodynamic model [13]. They show
that the linear models can adequately predict the output of the equilibrium model but do
not show how well the linear expressions can predict experimental values [13]. This same
procedure of developing equilibrium models then fitting linear correlations to the model
outputs has also been demonstrated by Rupesh et al., who also show that linear models
can fit well with the output of an equilibrium type model but do not show a comparison
of experimental values against the linear correlations [14]. More recently, Pio and Tarelho
have compared the prediction accuracy of equilibrium and linear models for predicting the
performance of bubbling fluidized bed reactors for biomass gasification [4]. They show that
the linear models can accurately be used to predict the output composition of the thermo-
dynamic model (R squared values of 0.93 and 0.79 for hydrogen and carbon monoxide) but
have limited accuracy when used to predict the experimental output composition values
(R squared values of 0.04 and 0.23 for hydrogen and carbon monoxide) [4]. This could
be due to the high variability of experimental composition values for bubbling fluidized
bed reactors as suggested by Pio and Tarelho [4]. Alternatively, Mirmoshtaghi et al. have
shown through partial least squares regression that higher prediction accuracy can be
found from the resulting linear model expressions (R squared values of 0.8 and 0.53 for
hydrogen and carbon monoxide) for circulating fluidized bed gasifiers [15]. Although
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this higher accuracy achieved by Mirmoshtaghi et al. could be explained by the fact that
they use a much larger number of different input values (18 different terms in the linear
expressions) [15], compared to the two input values considered in the linear relations used
by Pio and Tarelho (only considering temperature and equivalence ratio) [4].

In addition to regression, Mirmoshtaghi et al. also present principal component
analysis and statistical analysis of p-values from the partial least squares regression to
identify significant parameters showing that the equivalence ratio is the most important
parameter [15]. The study of Gil et al. also applied principal component analysis to
investigate the influence of different biomass properties on the resulting producer gas for a
range of different biomass feedstocks when fed to a bubbling fluidized bed reactor [16].
This showed which feedstocks lead to higher production of combustible gases CO (carbon
monoxide) and CH4 (methane) [16]. In the similar study of Dellavedova et al., they also
used partial least squares regression and principal component analysis for a set of data
including different types of biomass gasifiers and while they do not report R squared values,
they do find that the most important parameters are equivalence ratio, steam-to-biomass
ratio, higher heating value, and carbon content of the feedstock and temperature [17]. They
also mention that the limited accuracy of their linear model may be due to the non-complete
homogeneity (high variability) of the data set they have used [17].

While linear models are simple, they have been shown to have relatively limited
accuracy for predicting the output of gasifiers and it might be assumed that quadratic
expressions could achieve a better prediction accuracy, accounting for interactions between
pairs of different coefficients. However, Pan and Pandey have shown that both linear and
quadratic expressions give high relative errors when they try to fit them to data for fluidized
bed gasifiers fed with municipal solid waste [18]. They also show that an artificial neural
network and their proposed Bayesian approach using Gaussian processes can achieve a
much more accurate prediction, although the main aim of their proposed method is to
incorporate uncertainty [18]. However, this high error in the quadratic regression may be
because they attempted to fit a very large number of parameters based on combinations
of the 9 input values (potentially 45 parameters or 81 parameters if interaction pairs are
counted multiple times) with a full dataset of 67 points, which could be difficult to fit [18].

In summary, a number of studies mentioned above have used simple linear empirical
models fitted to the outputs of some other model (e.g., an equilibrium model) and have
shown that linear empirical models can quite accurately reproduce the result of the other
models [4,13,14]. However, the “other model” can contain some inaccuracies when com-
pared to experimental values and so the fitted correlations will not necessarily reproduce
experimental values well. When simple empirical models are fitted directly to experimental
values, the statistical fitting appears to be worse [4] (e.g., compared to fitting an empirical
model to the output of a thermodynamic model). The use of more complex methods,
such as quadratic expressions or artificial neural networks, could achieve a better fit by
accounting for non-linear behavior. This prediction accuracy has been demonstrated by
a number of studies for artificial neural networks [7–11] but has not been demonstrated
for quadratic expressions. Additionally, while dimension reducing model reduction has
been successfully applied (e.g., using principal component analysis) to identify significant
parameters [15–17], the use of the LASSO [19] (least absolute shrinkage and selection
operator) shrinkage method, which aims to eliminate large numbers of less significant
parameters, has not so far been applied for the model reduction of biomass gasification
models.

In this study, both linear and quadratic expressions are fitted to a set of data from a
downdraft biomass gasifier. To avoid the problem of fitting large numbers of parameters,
model reduction is included using the LASSO method [19] which is implemented together
with cross validation to identify significant parameters and eliminate other parameters
such that reduced expressions are obtained. This can be used, for example, in cases where
the number of data points is less than the total number of parameters used in the full
complex expressions (since the model reduction will eliminate most of the parameters such
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that the number of fitted parameters in the reduced model is less than the number of data
points). The resulting models are evaluated based on their ability to predict the gasifier
output.

2. Development of New Empirical Models for Gasification

The empirical models are developed here relating to a number of inputs (x) to predict
some output value (ŷ) as shown in Figure 1. If there are multiple outputs to be predicted,
then regression models can be developed separately for each. For the case of gasification,
the exact input values used depends on the gasifier design and the available data but
will generally include the moisture and the elemental composition as well as the air- or
steam-to-biomass ratio (or equivalence ratio). Based on these inputs, various different
linear or non-linear expressions can be proposed relating to inputs with outputs which
might typically include the product gas composition, gas yield/production rate etc.

Figure 1. Simple schematic of a regression model used to take inputs (x) and calculate a predicted
output value (ŷ).

2.1. Linear and Quadratic Modeling Equations

The linear model is relatively simple with a form given in Equation (1).

ŷ = β0 +
n

∑
i=1

βixi (1)

where ŷ is the predicted value for output variable y, the xi terms are the input values (there
are n different inputs with subscripts i) and the β values are fitted parameters. Considering
a quadratic expression, there will be a number of additional terms:

ŷ = β0 +
n

∑
i=1

βixi +
n

∑
i=1

n

∑
j=i

βijxixj (2)

Including the linear terms from Equation (1) in addition to pair-wise combinations
of different inputs, which can lead to a large number of terms and a large number of
additional parameters βij, which need to be fitted.
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2.2. Model Reduction through LASSO Shrinkage

The most common method used for regression is the least squares formulation, which
aims to minimize the residual sum of squares (RSS):

RSS =
N

∑
z=1

(yz − ŷz)
2 (3)

which is the sum of the differences between measured outputs and predicted outputs
squared for N data points. Shrinkage methods attempt to reduce the magnitude of the
predicted β values (shrinking them). This is performed by modifying Equation (3), adding
an additional term, and in the case of LASSO shrinkage, this is given in Equation (4) [19]:

RSS =
N

∑
z=1

(yz − ŷz)
2 + λ

n

∑
i=1
|βi| (4)

where n is the number of input variables and λ is a tuning parameter. This is related to the
linear model in Equations (1) and (2) but can also be applied to quadratic expressions as
follows:

RSS =
N

∑
z=1

(yz − ŷz)
2 + λ

n

∑
i=1
|βi|+ λ

n

∑
i=1

n

∑
j=i

∣∣βij
∣∣ (5)

such that all the parameters in the linear and quadratic terms are included together. In
either case, Equations (4) or (5) are minimized during fitting, which simultaneously reduces
the error between model and measured values and reduces the magnitude the β values.
This is controlled by tuning the value of λ, and increasing this value should decrease the
values of fitted parameters. In this case, using the LASSO formulation with absolute values
of the parameters, it can be shown that this leads to increasing numbers of parameters set
to zero [19]. This in turn allows parameters set to zero to be neglected together with the
associated inputs producing a simplified or reduced model [19].

2.3. Cross Validation and Model Development

For comparison, three different types of models will be developed and tested:

• Full linear model;
• Reduced linear model;
• Reduced quadratic model.

To develop these models, the procedure shown in Figure 2 was employed here for both
the linear and quadratic reduced models. The available data were initially separated into
separate training and testing sets. Then, only data from the training set was used in cross
validation with the LASSO approach and was used to identify a λ value which minimises
the cross validation MSE (mean squared error). Utilizing the LASSO method with this λ
reveals which of the parameters have been set to zero and the non-zero parameters were
identified to generate reduced expressions. These reduced expressions were then fitted
to the full training set data giving fitted values for the identified parameters. For the full
linear model, there was no cross validation and all the parameters were obtained through
regression using the training set. Finally, all the fitted models were validated to see if they
were able to adequately predict the results of the testing data.
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Figure 2. Procedure used to develop and validate reduced linear and quadratic models.

3. Case Study Based on a Commercial Biomass Gasifier

The measured input and output values are taken from the study of Chee, who inves-
tigated the effect of different operating conditions and different wood-based feedstocks
on the performance of a commercial biomass downdraft gasifier [12]. In particular, the
gasifier used by Chee had a rotating grate at the base of the fixed bed and a fan for
driving the air flow and the rotation rate of these two components were investigated [12].
This data set consists of 34 data points with input values given in Table 1 [12]. Run
number “201” in this study was not used here because the conditions for that run were
significantly different from all the others tested (with an equivalence ratio of 0.56) [12].
From these 34 data points, 25 randomly chosen points were assigned to the training set
and the remaining 9 data points were used for testing. The data values used are also
given in the Supplementary data file together with additional data used for validation
and all the model parameters.

Table 1. Input parameters, ranges, and average values for a commercial downdraft biomass gasifier
using data from Chee [12].

Gasifier Input Range Average

Tgas = Gasification temperature (K) 961–1100 1039
ER = Equivalence ratio 0.1555–0.2607 0.2001

MC = Moisture content (% wet basis) 5.4–22.4 11.3
H = Hydrogen content (% dry basis) 47.88–49.44 48.53
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Table 1. Cont.

Gasifier Input Range Average

O = Oxygen content (% dry basis) 5.78–6.00 5.9
C = Carbon content (% dry basis) 39.06–44.31 43.44
Ash = Ash content (% dry basis) 1.10–2.07 1.66
Gr = Grate rotation speed (rph) 2.55–20.69 5.13

Fs = Gas fan speed (rpm) 1388–2561 1750
Bulk = Wet bulk density (kg/m3) 133–230 167.35
Void = Biomass void percent (%) 32–56 46.22

These data values are used to predict the produced gas properties:

• Hydrogen (mole %);
• Carbon monoxide (mole %);
• Carbon dioxide (mole %);
• Methane (mole %);
• Nitrogen (mole %);
• Gas/fuel ratio (kg/kg).

3.1. Cross Validation and Model Development

Cross validation and fitting with the LASSO approach was carried out here using
the statistical software R and RStudio using the package “glmnet” written by Friedman
et al. [20]. This software is commonly used for both linear and non-linear regression in
addition to classification. To make this easier, various packages and subroutines have been
written in this software including machine learning-based methods such as the LASSO.
In the field of process/chemical engineering, alternative software such as Aspen Plus is a
very powerful tool which can be used for both simulation and regression of parameters
for both linear and non-linear expressions but as far as we know it does not include the
option to include shrinkage-based model reduction (although perhaps subroutines could
be written to add this functionality in the future).

An example of the output of cross validation is shown in Figure 3, which demonstrates
how the mean square error (from cross validation) varies with changing the value of the
tuning parameter λ. This particular graph shows the cross validation results for the
prediction of hydrogen mole % in the produced gas based on a linear expression in terms
of the 11 inputs. It can be seen from the number at the top edge that the number of inputs
included in the model reduces as λ increases, with a minimum MSE value given with 7 out
of 11 inputs.

In particular, the inputs that can be eliminated are shown from the data to be: C, H,
Fs, and bulk, so the reduced linear expression can be stated as

H2(%) = β0 + β1Tgas + β2ER + β3MC + β4O + β5 Ash + β6Gr + β7void (6)

If starting from a quadratic expression, it might be expected that a larger number of
inputs or combinations of inputs would result. However, the cross validation in Figure 4
shows a minimum MSE located near the point where there are only two inputs. Looking at
the data, the two remaining terms after this point are TgasER, the product of gasification
temperature and equivalence ratio, and MCAsh, the product of moisture content and ash
content, suggesting that a very simple expression can be obtained:

H2(%) = β0 + β1TgasER + β2MCAsh (7)

Although, at the exact minimum, a third product, ERGr (the product of equivalence
ratio and grate rotation speed), and fourth, Ovoid (the product of elemental oxygen content
and the void fraction), also appear.
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H2(%) = β0 + β1TgasER + β2MCAsh + β3ERGr + β4Ovoid (8)

Thus, it appears in the case of hydrogen that a quadratic expression with four terms
provides a much simpler model than both the full linear model and the reduced linear
model. Based on similar analysis, applying cross validation and fitting the resulting
expressions to the training data, the following expressions are given in Table 2.

Figure 3. Plot of cross validation MSE against the log of the tuning parameter λ from Equation (4)
for the prediction of hydrogen % using a linear expression. The numbers above the graph show the
corresponding number of inputs with non-zero parameters.

Figure 4. Plot of cross validation MSE against the log of the tuning parameter λ from Equation (5)
for the prediction of hydrogen % using a quadratic expression. The numbers above the graph show
the corresponding number of terms with non-zero parameters in the quadratic model.
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Table 2. Reduced model expressions resulting from cross validation with the LASSO approach.

Reduced Linear Model Reduced Quadratic Model

H2(%) = β0 + β1Tgas + β2ER + β3 MC +
β4O + β5 Ash + β6Gr + β7void

H2(%) = β0 + β1TgasER + β2 MCAsh +
β3ERGr + β4Ovoid

CO(%) = β0 + β1Tgas
+β2ER + β3 MC
+β4O + β5 Ash

+β6Gr + β7Fs + β8bulk
+β9void

CO(%) = β0 + β1TgasO
+β2ERO + β3ERAsh
+β4ERbulk + β5 MCGr

+β6HO + β7 AshGr + β8Fsbulk

CO2(%) = β0 + β1ER
+β2 MC + β3O
+β4 Ash + β5Gr

+β6Fs + β7bulk + β8void

CO2(%) = β0 + β1O
+β2TgasER + β3TgasO
+β4 MCAsh + β5 MCGr

+β6 MCbulk + β7Ovoid + β8Fsbulk +
β9bulkvoid

CH4(%) = β0 + β1ER
+β2 MC + β3C
+β4H + β5 Ash

+β6Gr + β7Fs + β8void

CH4(%) = β0 + β1TgasGr
+β2ERAsh + β3ERvoid
+β4 MCAsh + β5 MCFs

+β6CC + β7Hvoid + β8Grbulk

N2(%) = β0 + β1ER
+β2 MC + β3C
+β4Gr + β5void

N2(%) = β0 + β1TgasER
+β2ERO + β3ERGr

+β4 MCAsh + β5 MCvoid

G/F = β0 + β1ER
+β2C + β3H

+β4O + β5Gr + β6Fs + β7void

G/F = β0 + β1C
+β2TgasO + β3ERH
+β4ERFs + β5ERvoid

+β6CC + β7CH + β8OO + β9Grbulk

3.2. Model Validation

To evaluate the predictive power of the different models developed in Section 3.1,
which are developed and trained using the training set (25 data points), they are also
validated here through comparison with the testing set of data (9 data points). The perfor-
mance of the different models was evaluated based on comparison of the mean squared
error (MSE) and the R2 values of each model with respect to the output values from the
test set as shown in Table 3. It can be seen that while the full linear model can adequately
predict the output for some of the predicted outputs in almost all cases, the reduced linear
or quadratic models are shown to more accurately have predictions with higher R2 and
lower MSE values. An exception to this rule is the gas-to-fuel ratio, for which the full linear
model has the best fit and where all the models are shown to have very high accuracy.

Table 3. Validation of models against a testing set of data showing the prediction capability of full
linear and reduced linear and quadratic models.

Gasifier Input 1 H2 CO CO2 CH4 N2 G/F

Full linear
model

# terms 11 11 11 11 11 11
MSE(test) 0.648 6.869 1.043 0.037 5.104 0.0025

R2 0.660 −0.009 0.649 0.753 0.440 0.953

Reduced linear
model

# terms 7 9 8 8 5 7
MSE(test) 0.146 4.850 0.800 0.010 0.502 0.0032

R2 0.924 0.288 0.731 0.935 0.945 0.942

Reduced
quadratic model

# terms 4 8 9 8 5 9
MSE(test) 0.777 3.317 0.830 0.011 1.232 0.0031

R2 0.592 0.513 0.720 0.928 0.865 0.943

It is also worth noting that the model for carbon monoxide (CO) shows a very poor
prediction using the full linear model and appears to require a quadratic model to obtain
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a reasonable predictive power. Previous studies of Mirmoshtaghi et al. [15] and Pio
and Tarelho [4] have also shown difficulty fitting empirical models to the CO output of
circulating and bubbling fluidized bed reactors with R2 values of 0.53 and 0.23, respectively.
In this study, an R2 value of 0.513 was found for the downdraft gasifier data used here.

The fitting of these models is also demonstrated in Figures 5 and 6, which show the
comparison of experimental values plotted against model predictions for the test data set.
This shows that all of the models appear to predict hydrogen mole percentage reasonably
well, but there are some deviations for model predictions of carbon monoxide mole per-
centage. The reduced models are shown to give predictions closer to the experimental
values for both of these outputs.

Figure 5. Parity plot of models against experimental hydrogen mole % using data from Chee [12].

Figure 6. Parity plot of models against experimental carbon monoxide mole % using data from Chee [12].

To assess if the models generated based on fitting to the data of Chee [12] can be used
for other biomass gasifiers, the best fitting models for predicting hydrogen and carbon
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monoxide are compared against experimental data from three other downdraft gasifier
studies. In particular, this experimental data includes the gasification of rubberwood (nine
data points) from the study of Jayah et al. [21], the gasification of sesame wood (four data
points) from the study of Sheth and Babu [22], and the gasification of wood chips (two data
points) from the study of Costa et al. [23].

Figures 7 and 8 show the parity plots of the reduced linear models against these three
sets of data. It can be seen that the model gives a reasonable prediction of the data points
from the study of Jayah et al. but has much lower accuracy for predicting the results of
Costa et al. and Sheth and Babu.

Figure 7. Parity plot of reduced linear model against experimental hydrogen mole % for data from other downdraft biomass
gasifiers using experimental data from the literature [21–23].

Figure 8. Parity plot of reduced linear model against experimental carbon monoxide mole % for data from other downdraft
biomass gasifiers using experimental data from the literature [21–23].
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Considering the reduced quadratic model, which gives the best fit to the data of Chee,
when this is compared against other experimental data in Figure 9 it is shown to give poor
or very poor predictions. These inaccuracies may be because of differences in the design
of different downdraft gasifiers or because the conditions are outside the ranges given in
Table 1. In particular, the bulk density of biomass used in all these cases are higher than
those for the experiments of Chee. Additionally, these new data sources do not include
grate or fan rotation speeds, so the average values from Table 1 have been assumed to
utilize the reduced linear and quadratic expressions given in Table 2. Due to the second
order terms in the quadratic expression, the errors associated with these assumptions lead
to a much greater inaccuracy.

Figure 9. Parity plot of reduced quadratic model against experimental carbon monoxide mole % for data from other
downdraft biomass gasifiers using experimental data from the literature [21–23].

This shows that these empirical models may only be practical for gasifiers with a
similar scale and design and within the range of conditions used to build the models.
This is supported by the results of Pio and Tarelho, who also found difficulty fitting
empirical models to a wide range of different gasifier data sources [4], and by Baruah et al.,
who suggest that data must be taken from very similar scale gasifiers and with similar
feedstocks [7]. However, if a large amount of data are collected from a single biomass
gasifier with different conditions and feedstocks, this methodology should provide accurate
models. Furthermore, due to the LASSO model reduction applied, simpler models can be
obtained with much fewer parameters, which are very practical for the design of similar
gasifiers.

4. Conclusions

Empirical models are proposed for the prediction of downdraft biomass gasifiers’
outlet values (in particular the product gas composition). Both linear and quadratic
expressions are considered, and a model reduction method is implemented based on cross
validation with the LASSO method in order to select subsets of important parameters so
that the resulting expressions can be simplified. This identifies significant parameters and
reduces the number of parameters which must be regressed. We believe this is the first
application of this LASSO model reduction method in the field of biomass gasification
which is generally formulated in terms of linear models (combining Equations (1) and
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(4)) [19] but can also be used for more complex quadratic equations (see Equations (2) and
(5)), as demonstrated here.

This model reduction is particularly important for quadratic expressions which can
contain a large number of parameters. For example, in the case study considered here,
there are 11 inputs and a quadratic expression including all combinations of these 11 (as in
Equation (2)) would have 78 different parameters to fit, but following the model reduction
in the case study, there were 5–10 parameters needing to be identified. Considering
the training data set contained only 25 data points, this means fitting the full quadratic
expression with 78 parameters would not have been feasible.

In addition to reducing the complexity of fitted correlations, it is shown here that in
almost all the outputs in the case study, the model reduction also leads to improved model
prediction accuracy when the models were evaluated using test set data (which has not
been used for training the models).
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parameters” tab containing the fitted parameters for the models given in Table 2.
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