Forecasting of Carbon Emission in China Based on Gradient Boosting Decision Tree Optimized by Modified Whale Optimization Algorithm
Abstract
:1. Introduction
- (1)
- To improve the global search ability and local search ability, this paper uses four methods: the compound chaotic map, nonlinear convergence factor, local domain perturbation and reverse learning. In addition, this paper compares the optimization performance of the algorithm and proves that the optimized whale algorithm has strong optimization ability;
- (2)
- Based on the impact of the policy, this paper evaluates China’s 2030 Carbon Peak Target, provides a scientific basis for carbon reduction policy making and puts forward relevant suggestions.
2. Materials and Methods
2.1. Standard Whale Optimization Algorithm
2.1.1. Prey Encirclement Stage
2.1.2. Bubble-Net Attack
- (a)
- Contraction of the envelope: encirclement shrinkage of the prey by means of the control parameter of the coefficient variable ;
- (b)
- Spiral position renewal: after encircling the prey, the whale captures it in a spiral movement, which is mathematically modelled as follows:
2.1.3. Searching for Prey
2.2. Modified Whale Optimization Algorithm
2.2.1. Composite Chaotic Mapping
2.2.2. Non-Linear Convergence Factor
2.2.3. Local Neighbourhood Perturbation
2.2.4. Reverse Learning Strategy
2.3. Gradient Boosting Tree
2.4. MWOA-Based GBDT Prediction Model
- (1)
- Input data selection
- (2)
- GBDT prediction model based on MWOA
3. Experimental Analysis
3.1. Confirmation of Input Values for the Prediction Model
3.2. MWOA-GBDT-Based Carbon Emission Forecasting in China
3.3. Comparison of Prediction Results between Models
4. China’s Carbon Emission Projections for 2020–2035
4.1. Simulation of Influencing Factors
4.1.1. GDP
4.1.2. Consumption Level of the Population
4.1.3. Total Imports and Exports
4.1.4. Industrial Structure
4.1.5. Urbanization Rate
4.1.6. Total Energy Consumption
4.2. Forecast Results
5. Conclusions and Recommendations
- (1)
- Total energy consumption, urbanization level and industrial structure are the top three factors with the highest correlation. Therefore, relevant suggestions can be made in terms of low carbon consumption to further reduce carbon emissions;
- (2)
- By comparing the performance of the optimization algorithm and the prediction model, the MWOA-GBDT model constructed in this paper has an excellent prediction capability;
- (3)
- Due to the superiority of MWOA-GBDT in error comparisons, the prediction results of carbon emission consumption have practical significance. According to the prediction results of 2020–2035, China can achieve the carbon emission-related target in 2030 under the existing policies.
- (1)
- Acceleration of the adjustment of industrial structure and implementation of industry transformation.
- (2)
- Acceleration of the construction of a perfect carbon market system.
- (3)
- Building a clean, low-carbon, safe and efficient energy system.
- (4)
- Promotion of a carbon-labeling system for products and low-carbon consumption by the public.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.M.; Wei, X. A study on the relationship between traditional energy prices and carbon trading prices in China—Based on panel data of seven pilot provinces and cities of carbon trading in China. Ecol. Econ. 2019, 35, 31–34. [Google Scholar]
- Kazuya, N.; Chisato, T.; Shigehiro, I.; Shoji, H. Tree manipulation experiment for the short-term effect of tree cutting on N2O emission: A evaluation using Bayesian hierarchical modeling. Environ. Pollut. 2021, 288, 117725. [Google Scholar]
- Tamim, N.; Laboureur, D.M.; Hasan, A.R.; Mannan, M.S. Developing leading indicators-based decision support algorithms and probabilistic models using bayesian network to predict kicks while drilling. Process Saf. Environ. 2018, 121, 239–246. [Google Scholar] [CrossRef]
- Alade, I.O.; Rahman, M.A.; Saleh, T.A. Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support vector regression model optimized with bayesian algorithm. Sol. Energy 2019, 183, 74–82. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, K.J. Optimizing Mean and Variance of Multiresponse in a Multistage Manufacturing Process Using a Patient Rule Induction Method. Procedia Manuf. 2019, 39, 618–624. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, X.; Luo, X.; Zhou, Y.; Farah, S. Identifying the most significant input parameters for predicting district heating load using an association rule algorithm. J. Clean. Prod. 2020, 275, 122984. [Google Scholar] [CrossRef]
- Du, P.; Cao, S.; Li, Y. Predicting protein subchloroplast locations with pseudo-amino acid composition and the evidence-theoretic K-nearest neighbor (ET-KNN) algorithm. J. Theor. Biol. 2009, 261, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Kim, S.; Hong, S.; Kim, K.; Kim, E.; Im, J.; Heo, J. Effects of national forest inventory plot location error on forest carbon stock estimation using k-nearest neighbor algorithm. ISPRS J. Photogramm. 2013, 81, 82–92. [Google Scholar] [CrossRef]
- Goodrich, J.P.; Wall, A.M.; Campbell, D.I.; Fletcher, D.; Wecking, A.R.; Shipper, L.A. Improved gap filling approach and uncertainty estimation for eddy covariance N2O fluxes. Agric. For. Meteorol. 2021, 297, 108280. [Google Scholar] [CrossRef]
- Zolfaghari, A.A.; Taghizadeh-Mehrjardi, R.; Moshki, A.R.; Malone, B.P.; Weldeyohannes, A.O.; Sarmadian, F.; Yazdani, M.R. Using the nonparametric k-nearest neighbor approach for predicting cation exchange capacity. Geoderma 2016, 265, 111–119. [Google Scholar] [CrossRef]
- Tso, G.K.F.; Yau, K.K.W. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy 2007, 32, 1761–1768. [Google Scholar] [CrossRef]
- Nie, P.; Roccotelli, M.; Fanti, M.P.; Ming, Z.; Li, Z. Prediction of home energy consumption based on gradient boosting regression tree. Energy Rep. 2021, 7, 1246–1255. [Google Scholar] [CrossRef]
- Wy, A.; Szbc, D. Using decision tree analysis to identify the determinants of residents’ CO 2 emissions from different types of trips: A case study of Guangzhou, China. J. Clean. Prod. 2020, 277, 124071. [Google Scholar]
- Wang, M.X. A review of data mining. Softw. Guid. 2013, 12, 135–137. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Zhang, C.S.; Liu, C.C.; Zhang, X.L.; George, A. An up-to-date comparison of state-of-the-art classification algorithms. Expert Syst. Appl. 2017, 82, 128–150. [Google Scholar] [CrossRef]
- Fan, J.; Yue, W.; Wu, L.; Zhang, F.; Cai, H.; Wang, X.; Lu, X.; Xiang, Y. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric. For. Meteorol. 2018, 263, 225–241. [Google Scholar] [CrossRef]
- Lu, X.; Ju, Y.; Wu, L.; Fan, J.; Zhang, F.; Li, Z. Daily pan evaporation modeling from local and cross-station data using three tree-basedmachine learning models. J. Hydrol. 2018, 566, 668–684. [Google Scholar] [CrossRef]
- David, M.; Luis, M.A.; Lauret, P. Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data. Int. J. Forecast. 2018, 34, 529–547. [Google Scholar] [CrossRef]
- Amar, M.N.; Shateri, M.; Hemmati-Sarapardeh, A.; Alamatsaz, A. Modeling oil-brine interfacial tension at high pressure and high salinity conditions. J. Petrol. Sci. Eng. 2019, 183, 106413. [Google Scholar] [CrossRef]
- Wang, S.M.; Wang, S.X.; Wang, D. Combined probability density model for medium term load forecasting based on quantile regression and kernel density estimation. Energy Procedia 2019, 158, 6446–6451. [Google Scholar] [CrossRef]
- Zheng, K.W.; Yang, C. Research on short-term load forecasting based on iterative decision tree (GBDT). Guizhou Electr. Power Tech. 2017, 20, 82–84. [Google Scholar]
- Wang, H.Y.; Yang, C.; Tang, H. Research on GBDT short-term load forecasting based on LightGBM improvement. Automat. Instrum. 2018, 39, 76–78+82. [Google Scholar]
- Ma, J.; Cheng, J.C.P. Identification of the numerical patterns behind the leading counties in the U.S. local green building markets using data mining. J. Clean. Prod. 2017, 151, 406–418. [Google Scholar] [CrossRef]
- Park, H.; Haghani, A.; Samuel, S.; Knodler, M.A. Real-time prediction and avoidance of secondary crashes under unexpected traffic congestion. Accid. Anal. Prev. 2018, 112, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yu, J.; Zhao, A.; Zhou, X. Predictive model of cooling load for ice storage air-conditioning system by using GBDT. Energy Rep. 2021, 7, 1588–1597. [Google Scholar] [CrossRef]
- Wang, R.; Lu, S.L.; Feng, W. A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost. Energy 2020, 192, 11672314. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, Y.; Wang, H.; Jiang, Z. Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse. Sci. Total Environ. 2020, 716, 137077. [Google Scholar] [CrossRef]
- Tang, T.; Liu, R.; Choudhury, C. Incorporating weather conditions and travel history in estimating the alighting bus stops from smart card data. Sustain. Cities Soc. 2019, 53, 101927. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, P.; Jiang, B.; Li, M.; Gong, Z. Early detection of water stress in maize based on digital images. Comput. Electron. Agric. 2017, 140, 461–468. [Google Scholar] [CrossRef]
- Jia, C.; Yang, Q.; Zou, Q. NucPosPred: Predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC. J. Theor. Biol. 2018, 450, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Jin, H.; Zhang, Y.; Liu, T.; Zhou, Z. Detecting temporal changes in the temperature sensitivity of spring phenology with global warming: Application of machine learning in phenological model. Agric. For. Meteorol. 2019, 279, 107702. [Google Scholar] [CrossRef]
- Yang, Q.; Jia, C.; Li, T. Prediction of aptamer–protein interacting pairs based on sparse autoencoder feature extraction and an ensemble classifier. Math. Biosci. 2019, 11, 103–108. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, S.; Wu, Q.; Azim, R.; Li, W. Predicting potential miRNA-disease associations by combining gradient boosting decision tree with logistic regression. Comput. Biol. Chem. 2020, 85, 107200. [Google Scholar] [CrossRef] [PubMed]
- Huan, J.; Li, H.; Li, M.B.; Chen, B. Prediction of dissolved oxygen in aquaculture based on gradient boosting decision tree and long short-term memory network: A study of Chang Zhou fishery demonstration base. Comput. Electron. Agric. 2020, 175, 105530. [Google Scholar] [CrossRef]
- Ghosh, S.; Maulik, S.; Chatterjee, S.; Mallick, I.; Chakravorty, N.; Mukherjee, J. Prediction of survival outcome based on clinical features and pretreatment 18fdg-pet/ct for hnscc patients. Comput. Methods Prog. Biomed. 2020, 195, 105669. [Google Scholar] [CrossRef]
- Yu, P.; Gao, R.; Zhang, D.; Liu, Z.P. Predicting coastal algal blooms with environmental factors by machine learning methods. Ecol. Indic. 2021, 123, 107334. [Google Scholar] [CrossRef]
- Wl, A.; Hong, F.A.; Min, X.B. Step-wise multi-grained augmented gradient boosting decision trees for credit scoring. Eng. Appl. Artif. Intell. 2021, 97, 104036. [Google Scholar]
- Li, Y.W.; Wang, X.Y.; Che, C.C.; Jing, C.Y.; Wu, T. Exploring firms’ innovation capabilities through learning systems. Neurocomputing 2020, 409, 27–34. [Google Scholar] [CrossRef]
- Du, X.D.; Li, W.; Ruan, S.M.; Li, L. Cus-heterogeneous ensemble-based financial distress prediction for imbalanced dataset with ensemble feature selection. Appl. Soft Comput. 2020, 97, 106758. [Google Scholar] [CrossRef]
- Yang, J.S.; Zhao, C.Y.; Yu, H.T.; Chen, H.Y. Use GBDT to predict the stock market. Procedia Comput. Sci. 2020, 174, 161–171. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, Q.; Sornette, D.; Jiang, L. Cascading logistic regression onto gradient boosted decision trees for forecasting and trading stock indices. Appl. Soft Comput. 2019, 84, 105747. [Google Scholar] [CrossRef]
- Zhou, J.; Li, W.; Wang, J.X.; Ding, S.; Xia, C.Y. Default prediction in p2p lending from high-dimensional data based on machine learning. Phys. A 2019, 534, 122370. [Google Scholar] [CrossRef]
- Zhang, H.B.; Zhong, H.; Bai, W.H.; Pan, F. Cross-platform rating prediction method based on review topic. Future Gener. Comput. Syst. 2019, 101, 236–245. [Google Scholar] [CrossRef]
- Deng, S.K.; Wang, C.G.; Wang, M.Y.; Sun, Z. A gradient boosting decision tree approach for insider trading identification: An empirical model evaluation of china stock market. Appl. Soft Comput. 2019, 83, 105652. [Google Scholar] [CrossRef]
- Wang, R.; Lu, S.; Li, Q. Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for residential buildings. Sustain. Cities Soc. 2019, 49, 101623. [Google Scholar] [CrossRef]
- Liu, S.; Zeng, A.; Lau, K.; Ren, C.; Chan, P.; Ng, E. Predicting long-term monthly electricity demand under future climatic and socioeconomic changes using data-driven methods: A case study of Hong Kong. Sustain. Cities Soc. 2021, 70, 102936. [Google Scholar] [CrossRef]
- Zhang, T.N.; He, W.H.; Zheng, H.; Cui, Y.P.; Song, H.Q.; Fu, S.L. Satellite-based ground PM2.5 estimation using a gradient boosting decision tree. Chemosphere 2021, 268, 128801. [Google Scholar] [CrossRef] [PubMed]
- Jiong, G.J.; Ma, S.F.; Peng, B.B.; Zuo, J.; Du, H.B. Exploring the nonlinear and asymmetric influences of built environment on CO2 emission of ride-hailing trips. Environ. Impact Asses. 2021, 92, 106691. [Google Scholar]
- Gao, Y.N.; Li, Q.; Wang, S.S.; Gao, J.F. Adaptive neural network based on segmented particle swarm optimization for remote-sensing estimations of vegetation biomass. Remote Sens. Environ. 2018, 211, 248–260. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Wang, K.K.; Niu, D.X.; Zhen, H.; Sun, L.J.; Xu, X.M. A Study on Carbon Emission Forecasting in China Based on WOA-ELM Model. Ecol. Econ. 2020, 36, 20–27. [Google Scholar]
- Zhao, F.; Li, W. A combined model based on feature selection and woa for pm2.5 concentration forecasting. Atmosphere 2019, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.R.; Guo, S.; Zhao, H.R. Energy-Related CO2 Emissions Forecasting Using an Improved LSSVM Model Optimized by Whale Optimization Algorithm. Energies 2017, 10, 874. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Sha, J.; Liu, B.; Tian, W.; Lu, J. An ameliorative whale optimization algorithm for multi-objective optimal allocation of water resources in handan, china. Water 2018, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.C.; Wu, L.F.; Fan, J.L.; Zhang, F.C.; Zou, Y.F.; Wu, Y. A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China. Agric. Water Manag. 2021, 244, 106594. [Google Scholar] [CrossRef]
- Yang, S.M.; Chen, D.J.; Li, S.L.; Wang, W.J. Carbon price forecasting based on modified ensemble empirical mode decomposition and long short-term memory optimized by improved whale optimization algorithm. Sci. Total Environ. 2020, 716, 137117. [Google Scholar] [CrossRef]
- He, Q.; Wei, K.Y.; Xu, Q.S. A whale optimization algorithm based on hybrid policy improvement. Comput. Appl. Res. 2019, 36, 6. [Google Scholar]
- Liu, L.; Bai, K.Q.; Dan, Z.H.; Zhang, S.; Liu, Z.G. A whale optimization algorithm for global search strategy. Small Microcomput. Syst. 2020, 41, 30–35. [Google Scholar]
- Lin, J.; He, Q.; Wang, X.; Yang, R.Y.; Ning, J.Q. Chaos-based sine cosine whale optimization algorithm. Intell. Comput. Appl. 2020, 10, 43–48+52. [Google Scholar]
- Li, W.K. Design of dynamic encryption scheme for in-vehicle networks based on chaotic mapping. Comput. Eng. Appl. 2017, 53, 2287–2291. [Google Scholar]
- Cui, X.W.; E, S.J.; Niu, D.X.; Wang, D.Y.; Li, M.Y. An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target. Sustainability 2021, 13, 8670. [Google Scholar] [CrossRef]
Impact Factor | Grey Correlation |
---|---|
GDP (RMB 100 million) | 0.70810 |
Resident consumption level (RMB) | 0.70908 |
Total imports and exports (RMB billion) | 0.71578 |
Industry structure (%) | 0.73538 |
Energy consumption structure (%) | 0.68754 |
Population (10,000 people) | 0.65347 |
Urbanization rate (%) | 0.75202 |
Total energy consumption (104 tce) | 0.96839 |
Metrics | Range |
---|---|
min_samples_split | [1, 10] |
min_samples_leaf | [1, 10] |
min_weight_fraction_leaf | [0, 0.5] |
max_depth | [1, 10] |
Year | Actual Value (Million Tons) | Predicted Value (Million Tons) | RE (%) |
---|---|---|---|
1990 | 2088.854238 | 2090.273265 | 0.07% |
1991 | 2200.885206 | 2201.585453 | 0.03% |
1992 | 2295.775295 | 2296.007805 | 0.01% |
1993 | 2500.729949 | 2500.970731 | 0.01% |
1994 | 2599.5029 | 2599.938564 | 0.02% |
1995 | 2900.265046 | 2895.900413 | 0.15% |
1996 | 2871.980724 | 2876.946359 | 0.17% |
1997 | 2925.748702 | 2924.439849 | 0.04% |
1998 | 3020.716711 | 3017.665887 | 0.10% |
1999 | 2920.896797 | 2923.52852 | 0.09% |
2000 | 3099.685154 | 3101.90848 | 0.07% |
2001 | 3255.951126 | 3255.92946 | 0.00% |
2002 | 3511.727723 | 3511.81841 | 0.00% |
2003 | 4068.094745 | 4068.242272 | 0.00% |
2004 | 4741.830883 | 4741.818747 | 0.00% |
2005 | 5407.51803 | 5407.501885 | 0.00% |
2006 | 5961.808473 | 5961.646666 | 0.00% |
2007 | 6473.211479 | 6473.05578 | 0.00% |
2008 | 6669.111668 | 6669.091118 | 0.00% |
2009 | 7131.511865 | 7131.449172 | 0.00% |
2010 | 7830.968904 | 7830.918884 | 0.00% |
2011 | 8569.652812 | 8569.504519 | 0.00% |
2012 | 8818.41331 | 8818.224146 | 0.00% |
2013 | 9188.380792 | 9185.842412 | 0.03% |
2014 | 9116.341237 | 9118.100151 | 0.02% |
2015 | 9093.303762 | 9093.147602 | 0.00% |
2016 | 9054.476007 | 9054.255438 | 0.00% |
2017 | 9245.581695 | 9245.049652 | 0.01% |
2018 | 9606.6 | 9605.988844 | 0.01% |
2019 | 9920.5 | 9919.274747 | 0.01% |
MWOA-GBDT | PSO-GBDT | BA-GBDT | GWO-GBDT | WOA-GBDT | GBDT | |
---|---|---|---|---|---|---|
MAPE (%) | 0.028 | 0.546 | 0.484 | 0.512 | 1.854 | 1.90 |
RMSE (Million tons) | 1.64 | 88.71 | 26.24 | 85.34 | 4770.59 | 4863.45 |
MAR (Million tons) | 0.99 | 5.69 | 4.32 | 5.26 | 3874.14 | 3980.81 |
Year | Carbon Emissions (Million Tons) | Carbon Emissions Intensity Tons Per CNY One Million |
---|---|---|
2020 | 11,126.69642 | 1.097680814 |
2021 | 11,431.2639 | 1.059894057 |
2022 | 11,744.00943 | 1.024356985 |
2023 | 12,065.095 | 0.99092588 |
2024 | 12,394.67921 | 0.959467641 |
2025 | 12,732.91655 | 0.929858935 |
2026 | 12,947.38987 | 0.892843706 |
2027 | 13,299.93001 | 0.866875849 |
2028 | 13,435.77832 | 0.82850549 |
2029 | 13,285.61181 | 0.775800761 |
2030 | 13,196.19702 | 0.730407079 |
2031 | 13,138.33327 | 0.689947183 |
2032 | 12,848.25022 | 0.640753794 |
2033 | 12,566.72413 | 0.595735585 |
2034 | 12,293.38063 | 0.554498114 |
2035 | 12,027.83171 | 0.516686112 |
Year | Carbon Emissions (Million Tons) | Carbon Emissions Intensity (Tons per CNY One Million) | Can We Achieve Our Carbon Peak Target? | Can Carbon Intensity Targets be Met? |
---|---|---|---|---|
2020 | 11,126.69642307 | 1.09768081375886 | — | — |
2030 | 13,196.19701519 | 0.7304070790301 | Yes | Yes |
2035 | 12,027.83170639 | 0.516686112487781 | — | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; E, S.; Niu, D.; Chen, B.; Feng, J. Forecasting of Carbon Emission in China Based on Gradient Boosting Decision Tree Optimized by Modified Whale Optimization Algorithm. Sustainability 2021, 13, 12302. https://doi.org/10.3390/su132112302
Cui X, E S, Niu D, Chen B, Feng J. Forecasting of Carbon Emission in China Based on Gradient Boosting Decision Tree Optimized by Modified Whale Optimization Algorithm. Sustainability. 2021; 13(21):12302. https://doi.org/10.3390/su132112302
Chicago/Turabian StyleCui, Xiwen, Shaojun E, Dongxiao Niu, Bosong Chen, and Jiaqi Feng. 2021. "Forecasting of Carbon Emission in China Based on Gradient Boosting Decision Tree Optimized by Modified Whale Optimization Algorithm" Sustainability 13, no. 21: 12302. https://doi.org/10.3390/su132112302
APA StyleCui, X., E, S., Niu, D., Chen, B., & Feng, J. (2021). Forecasting of Carbon Emission in China Based on Gradient Boosting Decision Tree Optimized by Modified Whale Optimization Algorithm. Sustainability, 13(21), 12302. https://doi.org/10.3390/su132112302