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Abstract: Vehicle automation requires new onboard sensors, communication equipment, and/or
data processing units, and may encourage modifications to existing onboard components (such as
the steering wheel). These changes impact the vehicle’s mass, auxiliary load, coefficient of drag, and
frontal area, which then change vehicle performance. This paper uses the powertrain simulation
model FASTSim to quantify the impact of autonomy-related design changes on a vehicle’s fuel
consumption. Levels 0, 2, and 5 autonomous vehicles are modeled for two battery-electric vehicles
(2017 Chevrolet Bolt and 2017 Nissan Leaf) and a gasoline powered vehicle (2017 Toyota Corolla).
Additionally, a level 5 vehicle is divided into pessimistic and optimistic scenarios which assume
different electronic equipment integration format. The results show that 4–8% reductions in energy
economy can be achieved in a L5 optimistic scenario and an 10–15% increase in energy economy
will be the result in a L5 pessimistic scenario. When looking at impacts on different power demand
sources, inertial power is the major power demand in urban driving conditions and aerodynamic
power demand is the major demand in highway driving conditions.

Keywords: autonomous vehicles; self-driving cars; autonomy; aerodynamic efficiency

1. Introduction

The global transportation sector is responsible for high levels of greenhouse gas
emissions, criteria pollutant emissions, and petroleum consumption. Governments and
researchers around the world are adopting various strategies to combat these emissions
and petroleum use [1–7]. In the private sector, technology advances—such as vehicle
automation—are reframing the way in which humans use, own, and interact with vehicles.
Once seen in scientific fiction stories, autonomous vehicles (AVs) have gained considerable
public attention, with most major automakers and some technology firms investing in
research and development activities. AVs are those in which at least some vehicle control
function (e.g., steering, acceleration, braking) occurs without direct human input. AVs are
rated on a scale of 0 to 5, from no to full automation [8].

Past research suggests the environmental promise of AVs rests in their ability to alter
driving behavior and travel patterns. For example, Wadud et al. [9] and Brown et al. [10]
discuss how AVs could reduce fuel consumption of the transportation sector through
smoother driving, efficient routing, smaller and more efficient engines, higher occupancy
rates, less hunting for parking, vehicle sizing optimization, and vehicle platooning. The
authors also discuss how AVs could detrimentally impact fuel consumption through greater
total distance travel and faster speeds of travel.

One aspect of AVs currently overlooked in the literature is the impact of in-vehicle
design on a vehicle’s fuel consumption. Early demonstrations by Uber, Waymo, General
Motors, and others suggest that reaching high levels of autonomy requires a multitude
of sensors, communication equipment, and on-board processing computers. The added
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mass and auxiliary load of the electronic equipment, as well as the lowered aerodynamic
efficiency from protruding equipment, could increase total fuel consumption per distance
traveled. Additionally, these design changes have cascading effects on other vehicle
components and vehicle performance, such as the required power output of the motor and
size of the fuel tank or battery. Although there are understanding and relevant reports
of potential environment and energy impacts due to AVs’ components, to the best of our
knowledge, there are limited studies that have systematically quantified those impacts.

This paper tackles the question: how will autonomy-related features impact a ve-
hicle’s fuel consumption? This question has implications for environmental modelers
in how they estimate society-wide impacts of AVs. Most environmental studies of AVs
assume no change in the performance of vehicles with and without autonomy-related
features. Additionally, the research question has regulatory implications for fuel economy
testing. Most fuel economy testing around the globe does not directly capture the aerody-
namic impacts of protruding sensors or the impact of add-on electronic equipment. For
example, the United States Environmental Protection Agency (EPA) provides CO2 credit
(“off-cycle credits”) for technologies that lower emissions beyond the standard emissions
test. However, there is no penalty in place for technologies that raise emissions. Mersky
and Samaras [11] have noted that current fuel economy test cycles are ill-suited for AVs
(although those authors were considering the driving behavior impacts). In this paper, we
assess fuel consumption impacts of autonomy-related features under a variety of autonomy
scenarios through powertrain simulations. Specifically, we utilize a powertrain simulation
model, FASTSim, which is a well-validated model with high precision in vehicle energy
consumption estimation. The results can serve as a first-hand information to estimate
bounds and identify important factors for fuel use of autonomy features on passenger cars.
The simulation plus scenario analysis framework can also be used to tackle future studies
related to the environmental and energy impacts of vehicles.

The paper begins with an overview of how AVs could impact vehicle mass, auxiliary
load, and aerodynamic efficiency. The following section describes our methodology and
the FASTSim model. The results section summarizes our findings, and the final section
concludes. Results from the modeling suggest that the fuel consumption impacts of vehicle
automation can be quite large in high levels of automation, due to the combination of
added mass, auxiliary load, and aerodynamic drag.

2. Autonomy-Related Components

A vehicle’s powertrain normally must overcome four forces during motion: rolling
resistance, aerodynamic drag, road grade, and rotational inertial force (Brooker et al.,
2015). Each of the forces is well defined according to corresponding vehicle driving load
equations. In addition to motive power, a vehicle must power auxiliary equipment, such as
heating and cooling, lights, and sensors, expressed as Paux. Adding Paux to the equations
above gives the total power needed to maintain vehicle motion (Pv). The power needed
to overcome these four forces is the multiplication of the velocity multiplied by the force.
Note that powertrain losses are not considered here.

Comparing with human-driven vehicles, AVs have additional equipment in order
to implement automation-related technologies. This paper examines the impact of AVs’
additional equipment on four of the variables in vehicle load equations, namely, vehicle
mass (m), drag coefficient (Cd), frontal area (A), and auxiliary power (Paux). Each of the
four is discussed in more detail below. Note that vehicle automation may also impact the
speed (V) of the vehicle through changes in driving behavior. Additionally, AVs will likely
impact the acceleration (a) of the vehicles through smoothing behavior. Both impacts are
beyond the scope of this paper and are discussed in other papers [11,12].

2.1. Vehicle Mass

The suite of sensors, communication equipment, and computers onboard AVs add to
a vehicle’s mass, thereby increasing rolling resistance and inertial force. Early prototypes
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of autonomous vehicles employ some or all of the following electronic equipment: LiDAR
(for light detection and ranging), radar (for radio detection and ranging), ultrasonic sensors,
GPS, antennae, interactive displays for drivers, and processing units for inputting data and
making vehicle control decisions. Other equipment and components could potentially be
removed from AVs—such as the steering wheel, rearview mirrors, and spare tire—thereby
lowering the vehicle’s mass. In addition, changes in vehicle mass, if significant, will also
influence the driving and operating performance of vehicles, such as slower acceleration
time or shorter driving range due to heavier vehicle mass. Therefore, in order to avoid any
sacrifice in vehicle performance due to automation, vehicle engine, or motor power, battery
size needs to be adjusted to maintain performance.

2.2. Drag Coefficient (C)

The drag coefficient of a vehicle is a measure of the impact of air flow conditions,
vehicle shape, and vehicle inclination on aerodynamic drag. A higher coefficient results
in a higher power requirement to overcome aerodynamic drag. For example, Chen and
Meier [13] estimated that roof racks are responsible for 0.8 percent of US vehicle fuel
consumption. The average drag coefficient of vehicles has decreased from between 0.7 and
0.9 in the early 1900s to between 0.2 and 0.4 in most modern passenger cars [14]. As shown
in Figure 1, firms that are trying to reach high levels of vehicle automation use a number
of protruding sensors and rooftop housing. This suggests that the drag coefficient will
increase, as it would with a roof rack, taxi sign, or other vehicle add-ons.
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On the other hand, if the side rearview mirrors are removed from AVs, the drag
coefficient will decrease. Hucho [14] reported that rearview mirrors have a 2 to 7 percent
impact on the total drag of the vehicles.

Chowdhury et al. [15] use a wind tunnel to estimate the change in the drag coefficient
from adding equipment on the roof of a General Motors Holden VT Commodore. They
examine the following add-ons: taxi signs, advertisement signs, roof racks, roof racks with
a ladder, and a barrel (rooftop carrier). Compared to the same vehicle without add-ons,
the drag coefficients increase by between 5.1 percent for a taxi sign to 24 percent for a
roof rack with ladder (Table 1). The size and shape of these vehicle add-ons are given in
Chowdhury et al. [15].

2.3. Frontal Area

Frontal area is the total cross-sectional area facing the direction of motion. As with the
drag coefficient, most early versions of AVs increase the frontal area because of protruding
sensors and communication equipment (Figure 1). Chowdhurry et al.’s [15] analysis
suggests that vehicle add-ons result in a greater percentage change in drag coefficient
rather than frontal area (Table 1).
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Table 1. Impact on drag coefficient and frontal area of six vehicle add-ons as estimated by [16].

Component Impact on Drag Coefficient
(Baseline Vehicle Cd = 0.4)

Impact on Frontal Area
(No Baseline Given by

Authors)

Police siren 19.3% 0.9%
Taxi sign 5.1% 0.9%

Advertisement sign 7.2% 2.0%
Roof rack 20.4% 1.2%

Roof rack with ladder 24% 2.5%
Barrel 33.1% 4.9%

2.4. Auxiliary Load

Auxiliary loads on motor vehicles have been increasing for several years as greater
numbers of electronics have been added to vehicles [16]. Most conventional auxiliary
loads operate on an as-needed basis. Kavalchuk et al. [17] built a powertrain simulation
model based on a 2013 Kia Optima sedan and used the following inputs for auxiliary loads:
heating system (3000 W), air conditioning (2500 W), headlamps (60 W per light), motor
for moving seats (300 W), cigarette light (100 W), and CPU for passive safety systems (100
W). Other research assumes a total auxiliary load of 2000 W [18] under normal steady state
operations.

Egede [19] discusses how auxiliary loads are typically under-reported in fuel economy
testing because most auxiliaries can be turned off in the test cycles. It was suggested that
the energy needed for heating and cooling can contribute as much as 50 percent of energy
consumption in battery electric vehicles (BEVs) [19]. In the four vehicle models in their
study, Carlson et al. [20] estimated that auxiliary loads account for between 7.5 percent to
18.1 percent of fuel consumption on average across three petroleum and one compressed
natural gas passenger vehicles.

Unlike conventional auxiliary loads, autonomy-related loads—i.e., sensors, commu-
nication equipment, and computers onboard—run continuously. The 360-degree LiDAR
system used on several early level 4 or 5 AV models (the Velodyne 64 E) consumes on
average 48 W of continuous power as it scans the environment near the vehicle [21]. Other
LiDAR systems, such as the Neptec’s Opal ECR, consume 105 W of continuous power [21].

To note for this study, an advantage of BEVs compared to internal combustion engine
vehicles (ICEVs) is that onboard electrical equipment can be powered directly from the
vehicle’s battery, with minimal losses. On the other hand, ICEVs require an alternator to
convert engine power to 12 Volt DC power. Past studies assumed that alternator efficiencies
range from 50 to 60 percent [16].

Table 2 provides examples of common components used in early models of AVs shown
in Figure 1. Note that this is not an exhaustive list of a complete functioning AV system. The
purpose of Table 2 is to give a sense of the power, mass, and dimensions of current AV equipment.
These data were collected from product specifications from equipment manufacturers.
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Table 2. Example component specifications for autonomy-related equipment. Data taken from product specification sheets.
Note: This is not a complete list of functioning AV system.

Component Manufacturer Model Average
Power (W) Mass (kg) Dimension (mm)

LiDAR Velodyne VLP-16 8 0.83 103 (diameter) × 72
LiDAR Continental AG SRL 1 56 0.1 150 × 73 × 36
LiDAR LeddarTech Vu8-100 1.4 0.13 73 × 40 × 65
LiDAR Quanergy M8 10.5 0.8 97 (diameter) × 87
LiDAR IBEO Automotive Lux 2010 Standard 4 Layer 5.6 1 164 × 9.3 × 88
LiDAR SICK SICK LMS111 42 1.1 105 × 102 × 162

Ultrasonic sensors Bosch Driver assistance 2.8 0.5 not available
Ultrasonic sensors Valeo Beep and Park 2.8 0.5 not available

Antennas NovAtel Smart 6-L 2.8 0.5 155 (diameter) × 81
Antennas Laird Multi-Band Phantom 70 0.11 37(diameter) × 80
Cameras Mobileye EyeQ5 5 0.2 122 × 79 × 43

Radar Delphi ESR 8.4 0.6 174 × 90 × 49
Radar Delphi SRR2 4.9 0.38 not available
Radar Delphi 24 VDC 8.4 0.6 not available

Data processor NVIDIA Tegra X1 10 10 not available
Data processor NVIDIA PX2 250 10 not available

Computing Platform Analog Devices ADI ADAS ECU 1.3 0.5 not available
Side rear view mirrors Toyota Sienna 1 2.5 kg/mirror 397 × 2.54 × 106

Steering wheel Volvo N/A 0 6.8 not applicable
Spare tire and jack Kia Optima 0 14.54 not applicable

Battery Chevy Bolt N/A 6 kg/kWh not applicable

3. Methodology

Two candidate methods can be used to estimate the change in fuel consumption
from vehicle autonomy. The first method uses observational data to establish a statistical
relationship between energy consumption and vehicle attributes. This method is particu-
larly suited to studies that explore technological progress trends of vehicle attributes over
time [2,22]. However, there are very limited observational data for on-road autonomous
vehicles in real-world contexts. A second method is engineering-based powertrain sim-
ulation. A powertrain simulation tool mimics the complex relationship between engine
control technology, auxiliary power, vehicle performance, and other attributes and allows
the user to reconfigure those vehicle design as desired. Several publicly available tools exist,
such as Autonomie, CMEM, and ADOPT, and various studies have used these models.
An engineering-based approach is well suited for the purpose of this paper since direct
observational data on autonomous technologies are limited or proprietary.

For this study, we adopt Future Automotive Systems Technology Simulator (FASTSim),
developed by United States National Renewable Energy Laboratory [23]. FASTSim enables
rapid and accurate comparison of the design and performance of multiple light-duty
vehicle powertrains [23]. FASTSim takes inputs of vehicle attributes and produces results
including vehicle fuel efficiency, time to accelerate (MPH), range, and battery life (among
other outputs). Specifically, for conventional internal combustion engine vehicles, the key
inputs captured in FASTSim model are parameters of vehicle (drag coefficient, frontal area,
gilder mass, wheel base), fuel converter (e.g., specific power, power efficiency curve), wheel
(e.g., rolling resistance), and others (e.g., alternator efficiency, auxiliary loads, transmission
efficiency). The FASTSim model calculates power needed at the wheel based on the
four forces related to rolling resistance, aerodynamic drag, road grade, and rotational
inertial at every second of different driving cycles. This step needs driving cycle data (e.g.,
speed, acceleration, road grade), as well as vehicle attributes (e.g., rolling resistance, drag
coefficient). Once power demand at the wheel is obtained, the model back calculates fuel
required at the engine using parameters that determine energy flow between components,
such as transmission efficiency and power efficiency curve.
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The FASTSim model has been carefully calibrated with real-world measurements
in terms of parameters and model outputs on energy consumption rates [23,24]. There
are studies that utilize FASTSim model to analyze fuel consumption of vehicles under
real-world driving conditions [25–27].

To construct vehicles with an AV design, we began by preloading three representative
vehicles into FASTSim: 2017 Nissan Leaf, 2017 Chevrolet Bolt, and 2017 Toyota Corolla.
FASTSim default input values are based on vehicle specifications information provided
by automakers. Next, vehicle attributes were varied, including vehicle mass, frontal area,
drag coefficient, and auxiliary power as prescribed at the bottom of Table 3. Assumptions
regarding the equipment used in the L2 and L5 vehicles are given in Table 3. Particularly,
we try to set the assumptions to be close to equipment likely to be used in L2 and L5
vehicles in the future using information from Table 2. It is important to note that we are not
claiming the information in Table 3 is complete. However, this is the information, to the best
of our knowledge, found in literature. Given that the focus of this paper is the framework
of utilizing simulation tools to conduct scenario analysis to quantify environment and
energy impacts of AVs, we view Table 3 as an initial assessment of attributes to be evaluated
and it can be one of the future research directions to provide more realistic attributes of
AVs, particularly level 5 AVs. We developed one pessimistic and one optimistic scenario
for the L5 technologies based on low and high values of each attributes from literature so
that our energy estimations can provide bounds rather than a point estimate.

Table 3. Summary of assumed changes for in-vehicle design due to vehicle automation. The table shows two levels of
autonomy: Level 2 (L2) and 5 (L5). Level 0 AVs are not shown because all changes are zero.

Level of
Autonomy

Changes in Vehicle Design

Assumptions and SourcesMass
(kg)

Frontal Area
(sq. m)

Drag
Coefficient

(percentage)

Auxiliary
Power
(Watts)

LiDAR
L2 0 0 0% 0 No LiDAR in L2

L5 1.6–3.2 0–0.1 0–5% 16–32 4 LiDAR (e.g., Velodyne VLP-16). The LiDAR
can be integrated in vehicle or put outside.

Radar
L2 0.4 0 0% 8 1 Radar 8 W, 0.4 kg per unit (Delphi ESR)
L5 0.2–0.4 0 0% 4–6 1 improved Radar

Ultrasonic Sensor
L2 2 0 0% 16 4 park assist sensors, 4 W,

0.5 kg per unit, (Valeo).
L5 0.5–1 0 0% 4–8 4 improved park assist sensor.

Camera
L2 0.4 0 0% 10 2 cameras, e.g., MobileEye EyeQ5.
L5 0.4–0.8 0 0% 10–20 5 improved cameras.

Touchscreen
display for driver

L2 0.5 0 0% 3 1 touch screen, 3 W, 0.5 kg per unit
(e.g., iPad)

L5 0.3 0 0% 2 1 improved touch screen

Antennae
L2 0 0 0% 0 No antennae

L5 0.1–0.2 0 0% 70–140 2 improved antennae,
e.g., Laird on Uber’ AV.

On-board
computation

L2 0.5 0 0% 2 Analog processing unit,
e.g., ADI ADAS ECU.

L5 3–6 0 0% 2000–2500
[28]

1 industrial-grade GPU computer that
supports high-end graphics cards,

AStuff Spectra.

Side rearview
mirrors

L2 0 0 0% 0 No change to external mirrors
L5 −5~0 −0.1–0 −5%–0 0 Removal of side rearview mirrors.

Spare Tire and
Jack

L2 0 0 0% 0 No change to spare tire and jack
L5 0 0 0% 0 No change to spare tire and jack

L5F −15~0 0 0% 0 Removal of spare tire and jack.

Total
L2 4 0 0% 40
L5 −14–12 −0.1–0.1 −5–5% 2106–2708
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The changes in vehicle parameters will result in changes in vehicle driving and energy
consumption performance. We loaded all the changes in vehicle parameters as defined
in Table 3 and directly report changes in driving and energy consumption performance
metrics. After all adjustments to the model inputs, FASTSim estimated the necessary fuel
consumption for the modeled vehicle and we obtained a new energy consumption rate
(kWh per 100 miles/162 km or gallons per 100 miles/162 km). The energy consumption is
compared with that of a level 0 base vehicle (no AV components).

The powertrain simulation is conducted on both Environmental Protection Agency
certified city (Urban Dynamometer Driving Schedule, UDDS) and highway (Highway Fuel
Economy Driving Schedule, HWFET) driving cycles. The city energy consumption value
is weighted by 55 percent and highway value by 45 percent to calculate combined fuel
consumption rate for comparison in this study. This is consistent with EPA’s certified fuel
economy calculation process. In a sensitivity analysis below, the urban and highway drive
cycles are reported separately to understand the relative attractiveness of using AVs in a
city setting versus a highway corridor.

4. Results

Figures 2 and 3 present profiles of urban and highway driving cycles, instantaneous
power demand, and its breakdown for the Toyota Corolla. It shows that instantaneous
power demand positively relates with vehicle instantaneous speed. For power breakdown,
the vehicle inertial power accounts for the largest portion most of the time for urban driving.
For highway driving, inertial power is still a major power demand source, but the rolling
resistance and aerodynamic power demand sources are the major sources when vehicles
are cruising at high speeds.
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Figure 3. Vehicle speed and power (upper) and power demand by sources for highway driving cycle
for gasoline Toyota Corolla.

Table 4 gives the vehicle parameters and 0 to 100 kph acceleration time and energy
economy in unit of liter per 100 km for three vehicles at three scenarios after loading all
assumptions as shown in Table 3. The energy economy and acceleration performance of
L2 vehicles are almost identical to L0 vehicles, which is expected because of very limited
changes in parameters with L2 technologies. The L5 optimistic scenarios lead to about
4–8% reductions in energy economy compared with those of L0, with higher reductions
achieved in electric vehicles. The L5 pessimistic scenarios lead to 10–15% increase in
energy economy.

Table 4. Vehicle parameters and performance parameters to FASTSim runs. L0 values are defaults in FASTSim. L2, L5, and
L5F were either input by authors or rstimated by FASTSim.

Attribute
L0 L2 L5, Pessimistic L5, Optimistic

Bolt Leaf Corolla Bolt Leaf Corolla Bolt Leaf Corolla Bolt Leaf Corolla

Vehicle
Parameters

Mass (kg) 1621 1635 1417 1625 1639 1421 1633 1647 1429 1607 1619 1403
Auxiliary (kW) 0.3 0.3 0.7 0.3 0.3 0.7 2.8 2.8 3.2 2.5 2.5 3.0

Frontal Area (m2) 2.8 2.8 2.6 2.8 2.8 2.6 2.9 2.9 2.7 2.7 2.7 2.5
Drag coef. 0.30 0.30 0.30 0.30 0.30 0.30 0.31 0.31 0.31 0.29 0.29 0.29

Performance

0 to100
kphAcceleration

(secs)
6.8 10.6 9.8 6.8 10.6 9.9 7.1 10.9 10.2 6.5 10.3 9.7

Fuel liters per 100 km 1.9 1.9 7.6 1.9 1.9 7.6 2.2 2.2 8.5 1.8 1.8 7.4

Figure 4 presents the changes in power by sources for urban and highway driving of
a Toyota Corolla passenger car for a L5 optimistic scenario. We omit presenting auxiliary
power because it is just a constant value to primarily power the on-board computing system.
The results show that rather than auxiliary power, the changes in other power sources are
negative, i.e., reduction in energy consumption. This is promising to see energy savings
even with the additional equipment loaded for the implementation of L5 technologies.
Figure 5 presents the changes in power by sources for urban and highway driving of Toyota
Corolla passenger car for a L5 pessimistic scenario. The L5 pessimistic scenario assumes
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vehicle specification changes that tend to adversely affect energy consumption, thus, all
changes in power demand are positive, i.e., increasing energy consumption. However, it
is observed that although auxiliary power is not a major component in power demand,
the added auxiliary power accounts for a large portion of the changes in power for both
optimistic and pessimistic scenarios.
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Figure 6 shows the change in energy consumption per distance traveled for the repre-
sentative vehicles relative to the original fuel consumption ratings (i.e., L0). A conversion
factor for BEVs of 33.7 kWh per gallon of gasoline (8.91 kWh per liter) was used [29]. We
omit presenting L2 technology results given that there were very limited changes in energy
consumption. We assumed 55% urban driving and 45% highway driving in calculating the
energy impacts.

Sustainability 2021, 13, x FOR PEER REVIEW 11 of 14 
 

  
(a) (b) 

Figure 6. (a) Impact on energy use per distance traveled for L5 optimistic; (b) impact on energy use per distance traveled 
for L5 pessimistic assuming 55% urban driving and 45% highway driving. 

The findings suggest that achieving a high level of autonomy has a substantial impact 
on energy consumption due to additional auxiliary and inertial power demand. The iner-
tial power leads to higher energy increase in electric vehicles in the pessimistic scenario. 
We also looked at the energy impacts for urban and highway separately. The findings 
suggest that the detrimental impacts of vehicle automation on energy consumption are 
vehicle weight on urban driving and aerodynamic on highway driving. Vehicle load equa-
tions provide insights into the differential impacts between city and highway drive cycles. 
For acceleration event, the powertrain must overcome inertial force, 𝐹௜ = 𝑚 ∙ 𝑎. Since the 
number of acceleration events is much higher in a city drive cycle, changes in vehicle mass 
play a major role in this drive cycle. On the other hand, the powertrain must also over-
come aerodynamic drag, which is higher in a highway drive cycle. 

5. Conclusions 
This paper demonstrates that in-vehicle design changes related to vehicle autonomy 

can have noticeable impacts on a vehicle’s fuel economy through primarily changes in 
vehicle mass, drag coefficient, and auxiliary power, and to a lesser extent frontal area. The 
analysis was conducted using a simulation plus scenario evaluation framework, which 
can be used to tackle future studies related to environmental and energy impacts of vehi-
cles. 

The results suggest that the impact on energy economy can be reduction in energy 
consumption in an optimistic L5 technology scenario and increase in energy in a pessi-
mistic L5 technology scenario. For example, in three representative level 5 pessimistic au-
tonomous vehicles that use the same suite of autonomy-related equipment, these impacts 
can be 10–15 percent increase in energy use per distance traveled and 4–8 percent reduc-
tion in energy consumption per distance in optimistic L5 scenario. Although not examined 
in this paper, emissions from these vehicles would be expected to change by commensu-
rate levels relative to the non-autonomous version of the vehicle. 

There are several reasons to view these results with caution. The foremost one is the 
lack of measurement data in the analysis. Instead, we employed a powertrain model, 
FASTSim, that is well-calibrated with real-world measurements, to simulate possible en-
ergy impacts with various vehicle automation scenarios. Various studies have employed 
FASTSim and verified its validity against real-world measurements [24–27]. The well-cal-
ibrated simulation can provide the assessment in a prompt manner, whereas real-world 
measurements will be costly and time-consuming for all the scenarios we explored in the 
simulations. However, future research with more real-world measurement data will cer-
tainly be an important supplement to this study. 

-15%

-10%

-5%

0%

5%

10%

15%

20%

Bolt Leaf Corolla

Inertial Rolling Aerodynamic Aux

0%

2%

4%

6%

8%

10%

12%

14%

16%

Bolt Leaf Corolla
Inertial Rolling Aerodynamic Aux

Figure 6. (a) Impact on energy use per distance traveled for L5 optimistic; (b) impact on energy use per distance traveled
for L5 pessimistic assuming 55% urban driving and 45% highway driving.

The findings suggest that achieving a high level of autonomy has a substantial impact
on energy consumption due to additional auxiliary and inertial power demand. The inertial
power leads to higher energy increase in electric vehicles in the pessimistic scenario. We
also looked at the energy impacts for urban and highway separately. The findings suggest
that the detrimental impacts of vehicle automation on energy consumption are vehicle
weight on urban driving and aerodynamic on highway driving. Vehicle load equations
provide insights into the differential impacts between city and highway drive cycles. For
acceleration event, the powertrain must overcome inertial force, Fi = m·a. Since the number
of acceleration events is much higher in a city drive cycle, changes in vehicle mass play
a major role in this drive cycle. On the other hand, the powertrain must also overcome
aerodynamic drag, which is higher in a highway drive cycle.

5. Conclusions

This paper demonstrates that in-vehicle design changes related to vehicle autonomy
can have noticeable impacts on a vehicle’s fuel economy through primarily changes in
vehicle mass, drag coefficient, and auxiliary power, and to a lesser extent frontal area. The
analysis was conducted using a simulation plus scenario evaluation framework, which can
be used to tackle future studies related to environmental and energy impacts of vehicles.

The results suggest that the impact on energy economy can be reduction in energy
consumption in an optimistic L5 technology scenario and increase in energy in a pessimistic
L5 technology scenario. For example, in three representative level 5 pessimistic autonomous
vehicles that use the same suite of autonomy-related equipment, these impacts can be
10–15 percent increase in energy use per distance traveled and 4–8 percent reduction in
energy consumption per distance in optimistic L5 scenario. Although not examined in this
paper, emissions from these vehicles would be expected to change by commensurate levels
relative to the non-autonomous version of the vehicle.

There are several reasons to view these results with caution. The foremost one is
the lack of measurement data in the analysis. Instead, we employed a powertrain model,
FASTSim, that is well-calibrated with real-world measurements, to simulate possible
energy impacts with various vehicle automation scenarios. Various studies have employed
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FASTSim and verified its validity against real-world measurements [24–27]. The well-
calibrated simulation can provide the assessment in a prompt manner, whereas real-world
measurements will be costly and time-consuming for all the scenarios we explored in
the simulations. However, future research with more real-world measurement data will
certainly be an important supplement to this study.

Secondly, the authors used their own discretion in identifying “reasonable” input
parameters to represent AV design. These parameters were based on first-hand accounts
of early AVs but may not fully reflect the choices of vehicle engineers. To date, AV de-
velopers seem to have taken an “all-of-the-above” strategy when choosing which sensors
and communication equipment to place on their vehicle, which is consistent with our
list of equipment for the level 5 vehicle. As suppliers optimize these vehicle add-ons,
the detrimental impact of autonomy-related equipment on fuel consumption will likely
decrease.

Thirdly, although not done in this paper, a lifecycle assessment of autonomous vehicle
equipment would also include energy impacts from supporting equipment along the
roadways and at the central data centers. This equipment includes roadside communication
equipment, roadside sensors, and centrally housed servers. Shehabi et al. [30] estimate
that data centers in the United States consumed 1.8 percent of the electricity in 2014. Other
direct energy impacts from AV-related equipment include the manufacturing and disposal
of the in-vehicle, roadside, or data center equipment. Each of these impacts would increase
the overall impact of AVs.

Lastly, other authors have speculated that vehicle automation could impact vehicle
mass through a number of other avenues not quantified in this paper. For example, AVs
may not require the same levels of performance as non-autonomous vehicles because of
their ability to smooth the acceleration and deceleration profile. This may mean smaller
engines can be used in AVs, thereby reducing vehicle mass [9]. Self-driving AVs will also
remove the mass of a driver and possibly the driver’s seat, which will lower total vehicle
mass. On the other hand, AV design may include additional human comfort features such
as onboard computers, televisions, or even food-related equipment, which would increase
vehicle mass.

As with past studies on the environmental impacts of AVs, this paper finds that certain
impacts could be quite large but real-world impacts are unknown at this point. As greater
data on AV add-ons become publicly available and as AV developers converge on likely
mass-market designs, analysts will have a better sense of the true impacts of AV design.
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