Understanding the Impacts of Blue Economy Growth on Deep-Sea Ecosystem Services
Abstract
:1. Introduction
- -
- Provide an overview of the studies focused on deep-sea E.S. carried out between 2012 and 2021 using VosViewer, a bibliometric tool;
- -
- Review and define the deep-sea services and goods;
- -
- Define the potential impact of provisioning services on biodiversity and functions;
- -
- Combine and assess the impact of deep-sea products used by humans on supporting, regulating and cultural services.
2. Materials and Methods
2.1. Bibliometric Analysis
2.1.1. Dimensions
- Date range: 2012–2021;
- Publication type: “article”, “policy document”, “chapter”, “articles”, “edited book”, “proceeding”, “preprint”;
- The query search was performed on 8 August 2021.
2.1.2. VOSviewer
2.2. Literature Review
2.3. Ma Conceptual Framework
3. Results
3.1. Bibliometric Analysis Using VOSviewer
3.2. Evaluation of Deep-Sea Services
3.2.1. Supporting Services
Habitat
Nutrient Cycling
Chemosynthetic Primary Production
3.2.2. Provisioning Services
Fish
Oil and Gas
Deep-Sea Minerals
Marine Renewable Energy (MRE)
Biotechnology and Chemical Compounds for Industrial and Pharmaceutical Uses
3.2.3. Regulating Services
Gas and Climate Regulation
Waste Absorption and Detoxification
Biological Regulation
3.2.4. Cultural Ecosystem Services
Scientific Research
Deep-Sea Cultural Heritage
3.3. Combination Analysis of Deep-Sea Ecosystems Services
3.3.1. Fishing
- -
- The Northeast Atlantic Fisheries Commission (NEAFC);
- -
- The Northwest Atlantic Fisheries Organisation (NAFO);
- -
- The Southeast Atlantic Fisheries Organisation (SEAFO);
- -
- The Southern Indian Ocean Fisheries Agreement (SIOFA);
- -
- The North Pacific Fisheries Commission (NPFC);
- -
- The General Fisheries Commission for the Mediterranean (GFCM);
- -
- The South Pacific Regional Fisheries Management Organisation (SPRFMO);
- -
- The Commission for the Conservation of Atlantic Marine Living Resources (CCAMLR).
3.3.2. Oil and Gas
3.3.3. Deep-Sea Minerals
3.3.4. Marine Renewable Energy (MRE)
3.3.5. Biotechnology and Chemical Compounds for Industrial and Pharmaceutical Uses
Supporting Services | Regulating Services | Cultural Services | Human Well-Being | Marine Environment Quality | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Habitat | Nutrient Cycling Water Cycling | Chemosynthesis Primary Production | Resilience | Climate Regulation | Biological Regulation | Waste Absorption and Detoxification | Education, Scientific Research & Knowledge | Cultural Meaning | Tourism | ||||
Provisioning services | Fishing | − | − | − | − | −/+ | −/+ | −/+ | + | + | + | + | − |
Oil and gas | − | − | − | − | − | − | − | + | − | − | − | − | |
Deep-sea minerals | − | − | − | − | − | − | − | + | + | − | + | − | |
MRE | −/+ | −/+ | −/+ | + | + | −/+ | + | + | + | −/+ | + | −/+ | |
Biotechnology | + | + | + | + | + | + | + | + | + | + | + | + |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gage, J.D.; Tyler, P.A. Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor; Cambridge University Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Orcutt, B.N.; Bradley, J.; Brazelton, W.J.; Estes, E.J.; Goordial, J.M.; Huber, J.A.; Jones, R.M.; Mahmoudi, N.; Marlow, J.J.; Murdock, S.; et al. Impacts of Deep-Sea Mining on Microbial Ecosystem Services. Limnol. Oceanogr. 2020, 65, 1489–1510. [Google Scholar] [CrossRef] [Green Version]
- York, A. Marine biogeochemical cycles in a changing world. Nat. Rev. Microbiol. 2018, 16, 259. [Google Scholar] [CrossRef]
- Armstrong, C.W.; Foley, N.S.; Tinch, R.; van den Hove, S. Services from the deep: Steps towards valuation of deep sea goods and services. Ecosyst. Serv. 2012, 2, 2–13. [Google Scholar] [CrossRef]
- Koslow, A.J. The silent deep: The discovery, ecology, and conservation of the deep sea. Oceanography 2007, 23, 228. [Google Scholar]
- Dell’Anno, A.; Danovaro, R. Extracellular DNA Plays a Key Role in Deep-Sea Ecosystem Functioning. Science 2005, 309, 2179. [Google Scholar] [CrossRef] [PubMed]
- Danovaro, R.; Gambi, C.; Dell’Anno, A.; Corinaldesi, C.; Fraschetti, S.; Vanreusel, A.; Vincx, M.; Gooday, A.J. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr. Biol. 2008, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Llodra, E.R.; Billett, D.S.M. Deep-sea ecosystems: Pristine biodiversity reservoir and technological challenges. In The Exploration of Marine Biodiversity: Scientific and Technological Challenges; Duarte, C.M., Ed.; Fundación BBVA: Bilbao, Spain, 2006; pp. 63–92. [Google Scholar]
- Asp, N.E.; Gomes, J.D.; Gomes, V.J.C.; Omachi, C.Y.; Silva, A.M.M.; Siegle, A.; Serrao, P.F.; Thompson, C.C.; Nogueira, L.C.; Francini-Filho, R.B.; et al. Water column and bottom gradients on the continental shelf eastward of the Amazon River mouth and implications for mesophotic reef occurrence. J. Mar. Syst. 2022, 225, 103642. [Google Scholar] [CrossRef]
- Jobstvogt, N.; Townsend, M.; Witte, U.; Hanley, N. How Can We Identify and Communicate the Ecological Value of Deep-Sea Ecosystem Services? PLoS ONE 2014, 9, e100646. [Google Scholar] [CrossRef]
- Thurber, A.R.; Sweetman, A.K.; Narayanaswamy, B.E.; Jones, D.O.B.; Ingels, J.; Hansman, R.L. Ecosystem function and services provided by the deep sea. Biogeosciences 2014, 11, 3941–3963. [Google Scholar] [CrossRef] [Green Version]
- Townsend, M.; Davies, K.; Hanley, N.; Hewitt, J.E.; Lundquist, C.J.; Lohrer, A.M. The Challenge of Implementing the Marine Ecosystem Service Concept. Front. Mar. Sci. 2018, 5, 359. [Google Scholar] [CrossRef] [Green Version]
- Barbier, E.B. Marine ecosystem services. Curr. Biol. 2017, 27, R507–R510. [Google Scholar] [CrossRef] [Green Version]
- Velasco, A.M.; Pérez-Ruzafa, A.; Martínez-Paz, J.M.; Marcos, C. Ecosystem services and main environmental risks in a coastal lagoon (Mar Menor, Murcia, SE Spain): The public perception. J. Nat. Conserv. 2018, 43, 180–189. [Google Scholar] [CrossRef]
- Newton, A.; Brito, A.C.; Icely, J.D.; Derolez, V.; Clara, I.; Angus, S.; Schernewski, G.; Inácio, M.; Lillebø, A.I.; Sousa, A.I.; et al. Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv. 2018, 44, 50–65. [Google Scholar] [CrossRef]
- Aung, T.D.W.; Kyi, S.W.; Suzue, K.; Theint, S.M.; Tsujita, K.; Yu, T.T.; Merriman, J.C.; Peh, K.S.-H. Rapid ecosystem service assessment of a protected wetland in Myanmar, and implications for policy development and management. Ecosyst. Serv. 2021, 50, 101336. [Google Scholar] [CrossRef]
- Sinclair, M.; Sagar, M.K.V.; Knudsen, C.; Sabu, J.; Ghermandi, A. Economic appraisal of ecosystem services and restoration scenarios in a tropical coastal Ramsar wetland in India. Ecosyst. Serv. 2021, 47, 101236. [Google Scholar] [CrossRef]
- Sagoe, A.A.; Aheto, D.W.; Okyere, I.; Adade, R.; Odoi, J. Community participation in assessment of fisheries-related ecosystem services towards the establishment of marine protected area in the Greater Cape Three Points area in Ghana. Mar. Policy 2021, 124, 104336. [Google Scholar] [CrossRef]
- Mejjad, N.; Radouane, N.; Al Masmoudi, Y.; Saghrouchni, H. State and pressures on ecosystem services of agricultural land in the Mediterranean area. In Understanding the Current Status, Emerging Challenges, Global Uncertainties and Coping Mechanisms of Agriculture and Food Systems around the Mediterranean: Proceedings of the Mediterranean Forum for Ph.D. Students and Young Researchers, Online—CIHEAM, CIHEAM-Montpellier, Montpellier, France, 6–7 July 2021; Belhouchette, H., Ed.; CIHEAM: Montpellier, France, 2021; pp. 12–13. [Google Scholar]
- Mayor, D.; Thornton, B.; Hay, S.; Zuur, A.F.; Nicol, G.W.; McWilliam, J.M.; Witte, U.F. Resource quality affects carbon cycling in deep-sea sediments. ISME J. 2012, 6, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Danovaro, R.; Fanelli, E.; Aguzzi, J.; Yasuhara, M. Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat. Ecol. Evol. 2020, 4, 181–192. [Google Scholar] [CrossRef]
- Tunnicliffe, V.; Juniper, K.S.; Sibuet, M. Reducing environments of the deep-sea floor. In Ecosystems of the World, 28 Ecosystems of the Deep Oceans; Tyler, P.A., Ed.; Elsevier: London, UK, 2003; pp. 81–110. [Google Scholar]
- UNEP. Marine Litter: A Global Challenge; UNEP: Nairobi, Kenya, 2009. [Google Scholar]
- Angiolillo, M. Debris in deep water. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 251–268. [Google Scholar]
- Pham, C.; Ramirez-Llodra, E.; Alt, C.; Amaro, T.; Bergmann, M.; Canals, M.; Company, J.B.; Davies, J.; Tubau, X.; Van Rooij, D.; et al. Marine litter distribution and density in European Seas, from the shelves to deep basins. PLoS ONE 2014, 9, e95839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitcher, T.J.; Clark, M.R.; Morato, T.; Watson, R. Seamount Fisheries: Do They Have a Future? Oceanography 2010, 23, 134–144. [Google Scholar] [CrossRef]
- Larsson, A.I.; Purser, A. Sedimentation on the cold-water coral Lophelia pertusa: Cleaning efficiency from natural sediments and drill cuttings. Mar. Poll. Bull. 2011, 62, 1159–1168. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; López-Cózar, E.D. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics 2021, 126, 871906. [Google Scholar] [CrossRef] [PubMed]
- Herzog, C.; Hook, D.; Konkiel, S. Dimensions: Bringing down barriers between scientometricians and data. Quant. Sci. Stud. 2020, 1, 387–395. [Google Scholar] [CrossRef]
- Hook, D.W.; Porter, S.J.; Herzog, C. Dimensions: Building context for search and evaluation. Front. Res. Metr. Anal. 2018, 3, 23. [Google Scholar] [CrossRef]
- García-Sánchez, P.; Morab, A.M.; Castilloc, P.A.; Pérez, I.J. A bibliometric study of the research area of video games using Dimensions.ai database. In Proceedings of the 7th International Conference on Information Technology and Quantitative Management (ITQM2019), Granada, Spain, 5–6 November 2019; pp. 737–744. [Google Scholar]
- Hook, D.; Porter, S.; Porter, S. How COVID-19 is changing research culture. Rep. Digit. Sci. 2020. [Google Scholar] [CrossRef]
- Hook, W.D.; Porter, S.J.; Draux, H.; Herzog, C.T. Real-Time Bibliometrics: Dimensions as a Resource for Analyzing Aspects of COVID-19. Front. Res. Metr. Anal. 2021, 5, 595299. [Google Scholar] [CrossRef]
- Khan, D.; Arjmandi, M.K.; Yuvaraj, M. Most Cited Works on Cloud Computing: The ‘Citation Classics’ as Viewed through Dimensions.ai. Sci. Tech. Libr. 2021. [Google Scholar] [CrossRef]
- Jan van Eck, J.; Waltman, L. VOSviewer Manual. (Manual for VOSviewer Version 1.6.17); University Leiden: Lieden, The Netherlands, 2021. [Google Scholar]
- Millenium Ecosystem Assessment. Ecosystems and Human Well-Being Synthesis Report; Island Press: Washington, DC, USA, 2005; p. 141. [Google Scholar]
- TEEB. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB; UNEP: Nairobi, Kenya, 2010; p. 29. [Google Scholar]
- CICES. Common International Classification of Ecosystem Services; University of Nottingham: Notthingham, UK, 2013. [Google Scholar]
- IPBES. Update on the Classification of Nature’s Contributions to People by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2017. [Google Scholar]
- Carpenter, K.E.; Abrar, M.; Aeby, G.; Aronson, R.B.; Banks, S.; Bruckner, A.; Chiriboga, A.; Cortés, J.; Weil, E.; Wood, E. One-Third of Reef-Building Corals Face Elevated Extinction Risk from Climate Change and Local Impacts. Science 2008, 321, 560–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balmford, A.; Rodrigues, A.S.L.; Walpole, M.; Ten Brinck, P.; Kettunen, M.; Braat, L.; De Groot, R.S. The Economics of Ecosystems and Biodiversity: Scoping the Science; European Comission: Cambridge, UK, 2008; 305p. [Google Scholar]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES): Consultation on Version 4; University of Nottingham: Nottingham, UK, 2009. [Google Scholar]
- Apgar, J.M.; Cohen, P.J.; Ratner, B.D.; De Silva, S.; Buisson, M.-C.; Longley, C.; Bastakoti, R.; Mapedza, E. Identifying opportunities to improve governance of aquatic agricultural systems through participatory action research. Ecol. Soc. 2017, 22, 9. [Google Scholar] [CrossRef]
- Mace, G.; Bateman, I.J.; Albon, S.; Balmford, A.; Church, A.; Winn, J. Conceptual Framework and Methodology, Report to the UK National Ecosystem Assessment; UNEP-WCMC: Cambridge, UK, 2009. [Google Scholar]
- Costa, C.; Fanelli, E.; Marini, S.; Danovaro, R.; Aguzzi, J. Global Deep-Sea Biodiversity Research Trends Highlighted by Science Mapping Approach. Front. Mar. Sci. 2020, 7, 384. [Google Scholar] [CrossRef]
- Jalal, S.K. Co-authorship and co-occurrences analysis using BibliometrixR package: A case study of India and Bangladesh. Ann. Libr. Inf. Stud. 2019, 66, 57–64. [Google Scholar]
- An, X.Y.; Wu, Q.Q. Co-word analysis of the trends in stem cells field based on subject heading weighting. Scientometrics 2011, 88, 133–144. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Y. Research patterns and trends of Recommendation System in China using co-word analysis. Inf. Process. Manag. 2015, 51, 329–339. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Wu, D.; Xie, Y.; Li, J. Mapping the research trends by co-word analysis based on keywords from funded project. Procedia Comput. Sci. 2016, 91, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations; Springer: Amsterdam, The Netherlands, 2017; 535p. [Google Scholar]
- Lusty, P.A.J.; Murton, B.J. Deep-Ocean Mineral Deposits: Metal Resources and Windows into Earth Processes. Elements 2018, 14, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.A.; Thompson, K.F.; Johnston, P.; Santillo, D. An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps. Front. Mar. Sci. 2018, 4, 418. [Google Scholar] [CrossRef]
- Roux, S.; Horsfield, C. Chapter 13 Review of National Legislations Applicable to Seabed Mineral Resources Exploitation. In The Law of the Seabed; Brill|Nijhoff: Lieden, The Netherlands, 2020. [Google Scholar]
- Levin, L.A.; Sibuet, M. Understanding continental margin biodiversity: A new imperative. Annu. Rev. Mar. Sci. 2012, 4, 79–112. [Google Scholar] [CrossRef]
- Aguzzi, J.; Chatzievangelou, D.; Marini, S.; Fanelli, E.; Roberto Danovaro, R.; Flögel, S.; Company, J.B. New High-Tech Flexible Networks for the Monitoring of Deep-Sea Ecosystems. Environ. Sci. Technol. 2019, 53, 6616–6631. [Google Scholar] [CrossRef] [Green Version]
- Valentine, J.W.; Jablonski, D. A twofold role for global energy gradients in marine biodiversity trends. J. Biogeogr. 2015, 42, 997–1005. [Google Scholar] [CrossRef]
- Eyal, G.; Pinheiro, H.T. Mesophotic Ecosystems: The Link between Shallow and Deep-Sea Habitats. Diversity 2020, 12, 411. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Van Den Belt, M. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Deep-Sea Biodiversity and Ecosystems: A Scoping Report on Their Socio-Economy, Managementand Governance. 2007. Available online: https://www.unep-wcmc.org/resources-and-data/deep-sea-biodiversity-and-ecosystems (accessed on 28 May 2021).
- Cochonat, P.; Durr, S.; Gunn, V.; Herzig, P.; Mevel, C.; Mienert, J.; Schneider, R.; Weaver, P.; Winkler, A. The Deep-Sea Frontier: Science Challenges for a Sustainable Future; Office for Official Publications of the European Communities: Luxembourg, 2007; p. 53. [Google Scholar]
- Jørgensen, B.B.; Boetius, A. Feast and famine—Microbial life in the deep-sea bed. Nat. Rev. Microbiol. 2007, 5, 770–781. [Google Scholar] [CrossRef]
- Levin, L.A. Oxygen minimum zone benthos: Adaptation and community response to hypoxia. Oceanogr. Mar. Biol. 2003, 41, 1–45. [Google Scholar]
- Sibuet, M.; Roy, K.O.L. Cold Seep Communities on Continental Margins: Structure and Quantitative Distribution Relative to Geological and Fluid Venting Patterns. In Ocean. Margin Systems; Wefer, G., Billett, D., Hebbeln, D., Jørgensen, B.B., Schlüter, M., van Weering, T.C.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Levin, L.A.; Liu, K.-K.; Emeis, K.-C.; Breitburg, D.L.; Cloern, J.; Deutsch, C.; Giani, M.; Wishner, K. Comparative biogeochemistry–ecosystem–human interactions on dynamic continental margins. J. Mar. Syst. 2015, 141, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Gordon, J.D.M. Deep-water fisheries at the Atlantic Frontier. Cont. Shelf Res. 2001, 21, 987–1003. [Google Scholar] [CrossRef]
- Roberts, J.M.; Wheeler, A.J.; Freiwald, A. Reefs of the deep: The biology and geology of cold-water coral ecosystems. Science 2006, 312, 543–547. [Google Scholar] [CrossRef] [Green Version]
- Morato, T.; Watson, R.; Pitcher, T.J.; Pauly, D. Fishing down the deep. Fish Fish. 2006, 7, 24–34. [Google Scholar] [CrossRef]
- Clark, M. Are deepwater fisheries sustainable? The example of orange roughy (Hoplostethus atlanticus) in New Zealand. Fish. Res. 2001, 51, 123–135. [Google Scholar] [CrossRef]
- Cordes, E.E.; Jones, D.O.B.; Schlacher, T.A.; Amon, D.J.; Bernardino, A.F.; Brooke, S.; Carney, R.; DeLeo, D.M.; Dunlop, K.M.; Escobar-Briones, E.G.; et al. Environmental Impacts of the Deep-Water Oil and Gas Industry: A Review to Guide Management Strategies. Front. Environ. Sci. 2016, 4, 58. [Google Scholar] [CrossRef]
- Zhang, G.; Qu, H.; Chen, G.; Zhao, C.; Zhang, F.; Yang, H.; Zhao, Z.; Ma, M. Giant discoveries of oil and gas fields in global deepwaters in the past 40 years and the prospect of exploration. J. Nat. Gas Geosci. 2019, 4, 1–28. [Google Scholar] [CrossRef]
- Cox, A. Subsidies and deep-sea fisheries management: Policy issues and challenges. OECD, Fisheries Division. In Proceedings of the Deep Sea 2003: Conference on the Governance and Management of Deep-sea Fisheries. Part. 1: Conference Reports, Queenstown, WA, New Zealand, 1–5 December 2003. [Google Scholar]
- Sumaila, U.R.; Khan, A.S.; Dyck, A.J.; Watson, R.; Munro, G.; Tyedmers, P.; Pauly, D. A bottom-up re-estimation of global fisheries subsidies. J. Bioeconomics 2010, 12, 201–225. [Google Scholar] [CrossRef]
- Beaubouef, B. Total wildcat off Angola to establish new water depth record. Offshore Mag. 2020. Available online: https://www.offshore-mag.com/drilling-completion/article/14168421/total-wildcat-off-angola-to-establish-new-water-depth-record (accessed on 4 July 2021).
- Hein, J.R.; Koschinsky, A.; Kuhn, T. Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ. 2020, 1, 158–169. [Google Scholar] [CrossRef]
- Halbach, P.E.; Jahn, A.; Cherkashov, G. Marine Co-Rich Ferromanganese Crust Deposits: Description and Formation, Occurrences and Distribution, Estimated World-wide Resources. In Deep-Sea Mining; Springer: Lieden, The Netherlands, 2017. [Google Scholar]
- Petersen, S.; Hein, J.R. The Geology of Sea-Floor Massive Sulphides. In Deep Sea Minerals: Sea-Floor Massive Sulphides, a Physical, Biological, Environmental, and Technical Review; Baker, E., Beaudoin, Y., Eds.; Secretariat of the Pacific Community: Noumea, New Caledonia, France, 2013. [Google Scholar]
- International Seabed Authority (ISA). 2020. Available online: https://isa.org.jm/exploration-contracts (accessed on 15 March 2021).
- Levin, L.A.; Amon, D.J.; Lily, H. Challenges to the sustainability of deep-seabed mining. Nat. Sustain. 2020, 3, 784–794. [Google Scholar] [CrossRef]
- Van Dover, C.L.; Arnaud-Haond, S.; Gianni, M.; Helmreich, S.; Huber, J.A.; Jaeckel, A.L.; Yamamoto, H. Scientific Rationale and International Obligations for Protection of Active Hydrothermal Vent Ecosystems from Deep-Sea Mining. Mar. Policy 2018, 90, 20–28. [Google Scholar] [CrossRef]
- Gerber, L.J.; Grogan, R.L. Challenges of operationalising good industry practice and best environmental practice in deep seabed mining regulation. Mar. Policy 2020, 114, 103257. [Google Scholar] [CrossRef] [Green Version]
- Rovere, M. The Common Heritage applied to the resources of the seabed. Lessons learnt from the exploration of deep sea minerals and comparison to marine genetic resources. Mar. Saf. Law. J. 2018, 5, 78–98. [Google Scholar]
- Christiansen, B.; Denda, A.; Christiansen, S. Potential effects of deep seabed mining on pelagic and benthopelagic biota. Mar. Policy 2020, 114, 103442. [Google Scholar] [CrossRef]
- Zountouridou, E.I.; Kiokes, G.C.; Chakalis, S.; Georgilakis, P.S.; Hatziargyriou, N.D. Offshore floating wind parks in the deep waters of Mediterranean Sea. Renew. Sustain. Energy Rev. 2015, 51, 433–448. [Google Scholar] [CrossRef]
- Bonar, P.; Bryden, I.; Borthwick, A. Social and ecological impacts of marine energy development. Renew. Sustain. Energy Rev. 2015, 47, 486–495. [Google Scholar] [CrossRef]
- Loomis, R.; Kershaw, F. Floating Offshore Wind Brings Challenges and Opportunities. NRDC. 2021. Available online: https://www.nrdc.org/experts/rebecca-loomis/floating-offshore-wind-brings-challenges-and-opportunities (accessed on 1 July 2021).
- Pham, T.-D.; Dinh, M.-C.; Kim, H.-M.; Nguyen, T.-T. Simplified Floating Wind Turbine for Real-Time Modeling of Large-Scale Floating Offshore Wind Farms. Energies 2021, 14, 4571. [Google Scholar] [CrossRef]
- Bosch, J.; Staffell, I.; Hawkes, A.D. Temporally explicit and spatially resolved global offshore wind energy potentials. Energy 2018, 163, 766–781. [Google Scholar] [CrossRef]
- Council, G.W.E. GWEC|Global Wind Report 2021; Global Wind Energy Council: Brussels, Belgium, 2017. [Google Scholar]
- Munro, M.H.G.; Blunt, J.W.; Dumdei, E.J.; Hickford, S.J.H.; Lilla, R.E.; Li, S.; Battershill, C.N.; Duckworth, A.R. The discovery and development of marine compounds with pharmaceutical potential. J. Biotechnol. 1999, 70, 15–25. [Google Scholar] [CrossRef]
- Appeltans, W.; Ahyong, S.T.; Anderson, G.; Angel, M.V.; Artois, T.; Bailly, N.; Bamber, R.; Barber, A.; Bartsch, I.; Berta, A.; et al. The magnitude of global marine species diversity. Curr. Biol. 2012, 22, 2189–2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, T.P.; Sloan, W.T.; Scannell, J.W. Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 2002, 99, 10494–10499. [Google Scholar] [CrossRef] [Green Version]
- Suttle, C.A. Viruses: Unlocking the greatest biodiversity on Earth. Genome 2013, 56, 542–544. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, N.; Tinch, R. Goods and Services Related to the Marine Benthic Environment; Centre for Social and Economic Research on the Global Environment: Norwich, UK, 2003; pp. 3–14. [Google Scholar]
- Baker, E.T.; Cormier, M.H.; Langmuir, C.H.; Zavala, K. Hydrothermal plumes along segments of contrasting magmatic influence, 15°20’–18°30’ N, East Pacific Rise: Influence of axial faulting. Geochem. Geophys. Geosystems 2001, 2. [Google Scholar] [CrossRef]
- Ramirez-Llodra, E.; Brandt, A.; Danovaro, R.; Mol, B.; Escobar, E.; German, C.; Vecchione, M. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 2010, 7, 2851–2899. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, S.E.; Graedel, T.E.; Hannington, M.D. Should we mine the deep seafloor? Earth’s Future 2017, 5, 655–658. [Google Scholar] [CrossRef] [Green Version]
- Aylward, F.O.; Eppley, J.M.; Smith, J.M.; Chavez, F.P.; Scholin, C.A.; DeLong, E.F. Expression networks in disparate marine habitats. Proc. Natl. Acad. Sci. USA 2015, 112, 5443–5448. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.; Flemer, B.; Jackson, S.A.; Morrissey, J.P.; O’Gara, F.; Dobson, A.D. Evidence of a putative deep sea specific microbiome in marine sponges. PLoS ONE 2014, 9, e91092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubert, W.; Bonnekoh, B.; Pommer, A.J.; Philipsen, L.; Böckelmann, R.; Malykh, Y.; Gollnick, H.; Friedenberger, M.; Bode, M.; Dress, A.W. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat. Biotechnol. 2006, 24, 1270–1278. [Google Scholar] [CrossRef] [PubMed]
- Garcia Rodrigues, J.; Conides, A.; Rivero Rodriguez, S.; Raicevich, S.; Pita, P.; Kleisner, K.; Pita, C.; Lopes, P.; Alonso Roldán, V.; Ramos, S.; et al. Marine and Coastal Cultural Ecosystem Services: Knowledge gaps and research priorities. One Ecosyst. 2017, 2, e12290. [Google Scholar] [CrossRef]
- Ottaviani, D. Economic Value of Ecosystem Services from the Deep Seas and the Areas Beyond National Jurisdiction; Food & Agriculture Org.: Rome, Italy, 2020. [Google Scholar]
- Nellemann, C.; Hain, S.; Alder, J.E. In Dead Water—Merging of Climate Change with Pollution, Over-Harvest and Infestations in the World’s Fishing Grounds, United Nations Environment Programme; GRID: Arendal, Norway, 2008. [Google Scholar]
- Labeyrie, L.D.; Duplessy, J.C.; Blanc, P.L. Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature 1987, 327, 477–482. [Google Scholar] [CrossRef]
- Varmer, O. Underwater Cultural Heritage Law Study; U.S. Dept. of the Interior, Bureau of Ocean Energy Management: Herndon, VA, USA, 2014. [Google Scholar]
- UNESCO. Convention on the Protection of the Underwater Cultural Heritage. 2 November 2001. Available online: http://www.unesco.org/new/en/culture/themes/underwater-cultural-heritage/2001-convention/official-text (accessed on 3 October 2021).
- Freestone, D.; Laffoley, D.; Douvere, F.; Badman, T. World Heritage in the High Seas: An Idea Whose Time Has Come, World Heritage Reports; UNESCO: Paris, France, 2016; 92p. [Google Scholar]
- Coscieme, L. Cultural ecosystem services: The inspirational value of ecosystems in popular music. Ecosyst. Serv. 2015, 16, 121–124. [Google Scholar] [CrossRef]
- Börger, T.; Hattam, C.; Burdon, D.; Atkins, J.; Austen, M. Valuing conservation benefits of an offshore marine protected area. Ecol. Econ. 2014, 108, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Harmsworth, G.R.; Awatere, S. Indigenous Māori Knowledge and Perspectives of Ecosystems. In Ecosystem Services in New Zealand—Conditions and Trends; Manaaki Whenua Press: Manaaki Whenua, New Zealand, 2013; pp. 274–286. [Google Scholar]
- Ratana, K.; Williams, E.; Roper, D. Indigenous Values and Marine Ecosystem Management, A Literature Review; Prepared for Landcare Research; NIWA Client Report No: 2017046HN; Landcare Research: Hamilton, New Zealand, 2017. [Google Scholar]
- Watson, R.A.; Morato, T. Fishing down the deep: Accounting for within-species changes in depth of fishing. Fish. Res. 2013, 140, 63–65. [Google Scholar] [CrossRef]
- Pusceddu, A.; Bianchelli, S.; Martín, J.; Puig, P.; Palanques, A.; Masque, P.; Danovaro, R. Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proc. Natl. Acad. Sci. USA 2014, 111, 8861–8866. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, M.J.; Hilborn, R.; Jennings, S.; Amaroso, R.; Andersen, M.; Balliet, K.; Sutherland, W.J. Prioritization of knowledge-needs to achieve best practices for bottom trawling in relation to seabed habitats. Fish Fish. 2016, 17, 637–663. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.R.; Koslow, J.A. Impacts of Fisheries on Seamounts. In Seamounts: Ecology, Fisheries & Conservation; Pitcher, T.J., Morato, T., Hart, P.J.B., Clark, M.R., Haggan, N., Santos, R.S., Eds.; Wiley: Hoboken, NJ, USA, 2007; pp. 413–441. [Google Scholar]
- O’Neill, F.G.; Ivanović, A. The Physical Impact of Towed Demersal Fishing Gears on Soft Sediments. 73 (Supplement). ICES J. Mar. Sci. 2016, 73 Suppl_1, i5–i14. [Google Scholar]
- Bradshaw, C.; Jakobsson, M.; Brüchert, V.; Bonaglia, S.; Mörth, C.-M.; Muchowski, J.; Stranne, C.; Sköld, M. Physical Disturbance by Bottom Trawling Suspends Particulate Matter and Alters Biogeochemical Processes on and Near the Seafloor. Front. Mar. Sci. 2021, 8, 683331. [Google Scholar] [CrossRef]
- Clark, M.R.; Althaus, F.; Schlacher, T.A.; Williams, A.; Bowden, D.A.; Rowden, A.A. The impacts of deep-sea fisheries on benthic communities: A review. ICES J. Mar. Sci. 2016, 73 (Suppl. 1), i51–i69. [Google Scholar] [CrossRef]
- Collie, J.; Hiddink, J.G.; van Kooten, T.; Rijnsdorp, A.D.; Kaiser, M.J.; Jennings, S.; Hilborn, R. Indirect effects of bottom fishing on the productivity of marine fish. Fish Fish. 2017, 18, 619–637. [Google Scholar] [CrossRef] [Green Version]
- Cailliet, G.M.; Andrews, A.H.; Burton, E.J.; Watters, D.L.; Kline, D.E.; Ferry-Graham, L.A. Age determination and validation studies of marine fishes: Do deep-dwellers live longer? Exp. Gerontol. 2001, 36, 739–764. [Google Scholar] [CrossRef]
- MacDiarmid, A.; McKenzie, A.; Sturman, J.; Beaumont, J.; Mikaloff-Fletcher, S.; Dunne, J. Assessment of anthropogenic threats to New Zealand marine habitats. N. Z. Aquat. Environ. Biodivers. Rep. 2012, 93, 255. [Google Scholar]
- Ramalho, S.P.; Lins, L.; Soetaert, K.; Lampadariou, N.; Cunha, M.R.; Vanreusel, A.; Pape, E. Ecosystem Functioning Under the Influence of Bottom-Trawling Disturbance: An Experimental Approach and Field Observations from a Continental Slope Area in the West Iberian Margin. Front. Mar. Sci. 2020, 7, 457. [Google Scholar] [CrossRef]
- Schnabel, K.E.; Mills, V.S.; Tracey, D.M.; Macpherson, D.; Kelly, M.; Peart, R.A.; Maggs, J.Q.; Yeoman, J.; Wood, C.R. Identification of Benthic Invertebrate Samples from Research Trawls and Observer Trips 2020–2021. Available online: https://fs.fish.govt.nz (accessed on 12 August 2021).
- Pitcher, R.; Williams, A.; Georgeson, L. Progress with Investigating Uncertainty in the Habitat Suitability Model Predictions and VME Indicator Taxa Thresholds Underpinning CMM 03-2019. Paper for SPRFMO SC7, SC7-DW21_rev. Available online: https://www.sprfmo.int/assets/2019-SC7/Meeting-Docs/SC7-DW21-rev1-Uncertainty-in-model-predictions-and-VME-thresholds-for-CMM-03-2019.pdf (accessed on 20 July 2021).
- Collie, J.S.; Hall, S.J.; Kaiser, M.J.; Poiner, I.R. A quantitative analysis of fishing impacts on shelf-sea benthos. J. Anim. Ecol. 2000, 69, 785–798. [Google Scholar] [CrossRef]
- McConnaughey, R.A.; Syrjala, S.E.; Dew, C.B. Effects of chronic bottom trawling on the size structure of soft-bottom benthic invertebrates. In Benthic Habitats and the Effects of Fishing, Symposium; Barnes, P.W., Thomas, J.P., Eds.; American Fisheries Society: Bethesda, MD, USA, 2005; Volume 41, pp. 425–437. [Google Scholar]
- Kaiser, M.J.; Clarke, K.R.; Hinz, H.; Austen, M.C.V.; Somerfield, P.J.; Karakassis, I. Global analysis of response and recovery of benthic biota to fishing. Mar. Ecol. Prog. Ser. 2006, 311, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hiddink, J.G.; Jennings, S.; Sciberras, M.; Szostek, C.L.; Hughes, K.M.; Ellis, N.; Kaiser, M.J. Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance. Proc. Natl. Acad. Sci. USA 2017, 114, 8301–8306. [Google Scholar] [CrossRef] [Green Version]
- Sciberras, M.; Hiddink, J.G.; Jennings, S.; Szostek, C.L.; Hughes, K.M.; Kneafsey, B.; Kaiser, M.J. Response of benthic fauna to experimental bottom fishing: A global meta-analysis. Fish Fish. 2018, 19, 698–715. [Google Scholar] [CrossRef]
- McConnaughey, R.A.; Hiddink, J.G.; Jennings, S.; Pitcher, C.R.; Kaiser, M.J.; Suuronen, P.; Hilborn, R. Choosing best practices for managing impacts of trawl fishing on seabed habitats and biota. Fish Fish. 2020, 21, 319–337. [Google Scholar] [CrossRef] [Green Version]
- Mazor, T.; Pitcher, C.R.; Rochester, W.; Kaiser, M.J.; Hiddink, J.G.; Jennings, S.; Hilborn, R. Trawl fishing impacts on the status of seabed fauna in diverse regions of the globe. Fish Fish. 2021, 22, 72–86. [Google Scholar] [CrossRef]
- OSPAR. Commission Initial OSPAR List of Threatened and/or Declining Species and Habitats; OSPAR: London, UK, 2003; ISBN 1-904426-12-3. [Google Scholar]
- Stiles, M.L.; Stockbridge, J.; Lande, M.; Hirshfield, M.F. Impacts of Bottom Trawlingon Fisheries, Tourism, and the Marine Environment. Ocean 2010. Available online: https://oceana.org/sites/default/files/reports/Trawling_BZ_10may10_toAudrey.pdf (accessed on 15 September 2021).
- Stiles, M.; Ylitalo-Ward, H.; Faure, P.; Hirshfield, M. There’s no place like home: Deep seafloorecosystems of New England and the Mid-Atlantic. Oceana 2007. Available online: https://oceana.org/reports/there%E2%80%99s-no-place-home-deep-seafloor-ecosystems-new-england-and-mid-atlantic (accessed on 15 September 2021).
- Tekman, M.B.; Krumpen, T.; Bergmann, M. Marine litter on the Arctic seafloor continues to increase and spreads to the North at the HAUSGARTEN observatory. Deep Sea Res. I 2017, 120, 88–99. [Google Scholar] [CrossRef] [Green Version]
- United Nations Environment Programme (UNEP). Wealth In the Oceans: Deep Sea Mining on The Horizon? Unep 2014, Global Environmental Alert Service (Geas). Available online: https://wedocs.unep.org/handle/20.500.11822/8903 (accessed on 16 June 2021).
- Patin, S. Environmental Impact of the Offshore Oil and Gas Industry; EcoMonitor: East Northport, NY, USA, 1999; pp. 53–54. [Google Scholar]
- Vinogradov, S. The impact of the deepwater horizon: The evolving international legal regime for offshore accidental pollution prevention, preparedness, and response. Ocean Dev. Int. Law 2013, 44, 335–362. [Google Scholar] [CrossRef]
- Smith, C.R. Tempo and mode in deep-sea benthic ecology: Punctuated equilibrium revisited. Palaios 1994, 9, 3–13. [Google Scholar] [CrossRef]
- Grassle, J.F. Slow recolonisation of deep-sea sediment. Nature 1977, 265, 618–619. [Google Scholar] [CrossRef]
- McClain, C.R.; Schlacher, T.A. On some hypotheses of diversity of animal life at great depths on the sea floor. Mar. Ecol. 2015, 36, 849–872. [Google Scholar] [CrossRef]
- Southall, B.L.; Bowles, A.E.; Ellison, W.T.; Finneran, J.J.; Gentry, R.L.; Greene, C.R., Jr.; Tyack, P.L. Marine mammal noise exposure criteria: Initial scientific recommendations. Bioacoustics 2008, 17, 273–275. [Google Scholar] [CrossRef]
- Moore, S.E.; Reeves, R.R.; Southall, B.L.; Ragen, T.J.; Suydam, R.S.; Clark, C.W. A new framework for assessing the effects of anthropogenic sound on marine mammals in a rapidly changing arctic. Bioscience 2012, 62, 289–295. [Google Scholar] [CrossRef]
- Hawkins, A.D.; Pembroke, A.E.; Popper, A.N. Information gaps in understanding the effects of noise on fishes and invertebrates. Rev. Fish Biol. Fish. 2014, 25, 39–64. [Google Scholar] [CrossRef]
- Solan, M.; Hauton, C.; Godbold, J.A.; Wood, C.L.; Leighton, T.G.; White, P. Anthropogenic sources of underwater sound can modify how sediment-dwelling invertebrates mediate ecosystem properties. Sci. Rep. 2016, 6, 20540. [Google Scholar] [CrossRef]
- Montagna, P.A.; Baguley, J.G.; Cooksey, C.; Hartwell, I.; Hyde, L.J.; Hyland, J.L.; Rhodes, A.C. Deep-sea benthic footprint of the Deepwater Horizon blowout. PLoS ONE 2013, 8, e70540. [Google Scholar] [CrossRef] [PubMed]
- White, H.K.; Hsing, P.-Y.; Cho, W.; Shank, T.M.; Cordes, E.E.; Quattrini, A.M.; Fisher, C.R. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico. Proc. Natl. Acad. Sci. USA 2012, 109, 20303–20308. [Google Scholar] [CrossRef] [Green Version]
- Levin, L.A.; Bett, B.J.; Gates, A.R.; Heimbach, P.; Howe, B.M.; Janssen, F.; McCurdy, A.; Ruhl, H.A.; Snelgrove, P.; Weller, R.A. Global Observing Needs in the Deep Ocean. Front. Mar. Sci. 2019, 6, 241. [Google Scholar] [CrossRef]
- Bjørgesæter, A. Environmental Effects of Oil and Gas Exploration on the Benthic Fauna of the Norwegian Continental Shelf: An Analysis Using the OLF-Database. Ph.D. Thesis, University of Oslo, Oslo, Norway, 2009. Available online: http://urn.nb.no/URN:NBN:no-23919 (accessed on 26 August 2021).
- Geutebruck, E.; Herler, J.; Kikinger, R.; Stachowitsch, M.; Lorkin, M. Environmental Impact of Offshore Oil and Gas Company Operations in the Southern Arabian Gulf: A Marine Environmental Survey. In Proceedings of the SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, Kuala Lumpur, Malaysia, 20–22 March 2002. [Google Scholar]
- Bakke, T.; Klungsøyr, J.; Sanni, S. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Mar. Environ. Res. 2013, 92, e154–e169. [Google Scholar] [CrossRef] [Green Version]
- Moura, R.L.; Amado-Filho, G.M.; Moraes, F.C.; Brasileiro, P.S.; Salomon, P.S.; Mahiques, M.M.; Bastos, A.C.; Almeida, N.G.; Silva, J.M.; Araujo, B.F.; et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2016, 2, e1501252. [Google Scholar] [CrossRef] [Green Version]
- Francini-Filho, R.B.; Coni, E.O.; Meirelles, P.M.; Amado-Filho, G.M.; Thompson, F.L.; Pereira-Filho, G.H.; Bastos, A.C.; Abrantes, D.P.; Ferreira, C.M.; Gibran, F.Z.; et al. Dynamics of coral reef benthic assemblages of the Abrolhos Bank, eastern Brazil: Inferences on natural and anthropogenic drivers. PLoS ONE 2013, 8, e54260. [Google Scholar] [CrossRef] [Green Version]
- Waló, Á.N. Economic impacts of oil spills in island tourism destinations. An application to the Canary Islands. Memoria Del Trabajo Fin De Grado. In Economic Facultad De Economía, Empresa Y Turismo; Universidad de la Laguna: La Laguna, Spain, 2016; pp. 1–27. [Google Scholar]
- Paulikas, D.; Katona, S.; Ilves, E.; Ali, S.H. Life cycle climate change impacts of producing battery metals from land ores versus deep-sea polymetallic nodules. J. Clean. Prod. 2020, 275, 123822. [Google Scholar] [CrossRef]
- Beaulieu, S.E.; Baker, E.T.; German, C.R. Where are the undiscovered hydrothermal vents on oceanic spreading ridges? Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 121, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Halfar, J.; Fujita, R.M. Danger of Deep-Sea Mining. Sci. Policy Forum 2007, 316, 987. [Google Scholar]
- Gollner, S.; Kaiser, S.; Menzel, L.; Jones, D.O.B.; Brown, A.; Mestre, N.C.; Martinez Arbizu, P. Resilience of benthic deep-sea fauna to mining activities. Mar. Environ. Res. 2017, 29, 76–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, D.O.B.; Kaiser, S.; Sweetman, A.K.; Smith, C.R.; Menot, L.L.; Vink, A.; Clark, M.R. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 2017, 12, e0171750. [Google Scholar] [CrossRef]
- Simon-Lledó, E.; Bett, B.J.; Huvenne, V.A.I.; Schoening, T.; Benoist, N.M.A.; Jeffreys, R.M.; Durden, J.M.; Jones, D.O.B. Megafaunal variation in the abyssal landscape of the Clarion Clipperton Zone. Prog. Oceanogr. 2019, 170, 119–133. [Google Scholar] [CrossRef]
- Cuvelier, D.; Gollner, S.; Jones, D.O.B.; Kaiser, S.; Arbizu, P.M.; Menzel, L.; Colaço, A. Potential mitigation and restoration actions in ecosystems impacted by seabed mining. Front. Mar. Sci. 2018, 5, 467. [Google Scholar] [CrossRef] [Green Version]
- Wakefield, J.R.; Myers, K. Social cost benefit analysis for deep-sea minerals mining. Mar. Policy 2018, 95, 346–355. [Google Scholar] [CrossRef]
- Durden, J.M.; Bett, B.J.; Ruhl, H.A. Subtle variation in abyssal terrain induces significant change in benthic megafaunal abundance, diversity, and community structure. Prog. Oceanogr. 2020, 186, 102395. [Google Scholar] [CrossRef]
- Levin, L.A.; Mengerink, K.; Gjerde, K.M.; Rowden, A.A.; Van Dover, C.L.; Clark, M.R.; Ramirez-Llodra, E.; Currie, B.; Smith, C.R.; Sato, K.N.; et al. Marine Policy Defining “serious harm” to the marine environment in the context of deep seabed mining. Mar. Policy 2016, 74, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Drazen, J.C.; Smith, C.R.; Gjerde, K.M.; Haddock, S.H.D.; Carter, S.; Choy, C.A.; Clark, M.R.; Dutrieux, P.; Goetze, E.; Hauton, C.; et al. Opinion: Midwater ecosystems must be considered when evaluating environmental risks of deep-sea mining. Proc. Natl. Acad. Sci. USA 2020, 117, 17455–17460. [Google Scholar] [CrossRef]
- Veillette, J.; Sarrazin, J.; Gooday, A.J.; Galéron, J.; Caprais, J.C.; Vangriesheim, A.; Étoubleau, J.; Christian, J.R.; Juniper, S.K. Ferromanganese nodule fauna in the tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 1912–1935. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.R. Biology associated with Cobalt-rich Ferromanganese crusts. In Deep Sea Minerals: Cobalt-Rich Ferromanganese Crusts, a Physical, Biological, Environmental, and Technical Review; Baker, E., Beaudoin, Y., Eds.; SPC: Noumea, New Caledonia, France, 2013. [Google Scholar]
- Vanreusel, A.; Hilario, A.; Ribeiro, P.A.; Menot, L.; Martinéz Arbizu, P. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 2016, 6, 26808. [Google Scholar] [CrossRef]
- Boschen, R.E.; Rowden, A.A.; Clark, M.R.; Gardner, J.P.A. Mining of deep-sea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast. Manag. 2013, 84, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Koschinsky, A.; Hein, J.R.; Kraemer, D.L.; Foster, A.L.; Kuhn, T.; Halbach, P. Platinum enrichment and phase associations in marine ferromanganese crusts and nodules based on a multi-method approach. Chem. Geol. 2020, 539, 119426. [Google Scholar] [CrossRef]
- Suzuki, K.; Yoshida, K.; Watanabe, H.; Yamamoto, H. Mapping the resilience of chemo- synthetic communities in hydrothermal vent fields. Sci. Rep. 2018, 8, 9364. [Google Scholar] [CrossRef] [PubMed]
- Urabe, T.; Ura, T.; Tsujimoto, T.; Hotta, H. Next-generation technology for ocean resources exploration (Zipangu-in-the-Ocean) project in Japan. In OCEANS 2015—Genova; IEEE: Manhattan, NY, USA, 2015. [Google Scholar]
- Dick, G.J.; Anantharaman, K.; Baker, B.J.; Li, M.; Reed, D.C.; Sheik, C.S. The microbiology of deep-sea hydrothermal vent plumes: Ecological and biogeographic linkages to seafloor and water column habitats. Front. Microbiol. 2013, 4, 124. [Google Scholar] [CrossRef] [Green Version]
- Van Dover, C.L. Inactive sulfide ecosystems in the deep sea: A review. Front. Mar. Sci. 2019, 6, 461. [Google Scholar] [CrossRef]
- Purser, A.; Marcon, Y.; Hoving, H.-J.T.; Vecchione, M.; Piatkowski, U.; Eason, D.; Bluhm, H.; Boetius, A. Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean. Curr. Biol. 2016, 26, R1247–R1271. [Google Scholar] [CrossRef] [Green Version]
- Le, J.T.; Levin, L.A.; Carson, R.T. Deep-Sea Research II Incorporating ecosystem services into environmental management of deep-seabed mining. Deep Sea Res. Part II 2017, 137, 486–503. [Google Scholar] [CrossRef]
- Krupp, F. ; Horn., N. Earth: The Sequel. The Race to Reinvent Energy and Stop Global Warming; Norton and Company: New York, NY, USA, 2008; p. 288. [Google Scholar]
- Taormina, B.; Laurans, M.; Marzloff, M.P.; Dufournaud, N.; Lejart, M.; Desroy, N.; Leroy, D.; Martin, S.; Carlier, A. Renewable energy homes for marine life: Habitat potential of a tidal energy project for benthic megafauna. Mar. Environ. Res. 2020, 161, 105131. [Google Scholar] [CrossRef]
- Dannheim, J.; Bergström, L.; Birchenough, S.N.R.; Brzana, R.; Boon, A.R.; Coolen, J.W.P.; Dauvin, J.-C.; Degraer, S. Benthic effects of offshore renewables: Identification of knowledge gaps and urgently needed research. ICES J. Mar. Sci. 2019, 77, 1092–1108. [Google Scholar] [CrossRef]
- Boehlert, G.W.; Gill, A.B. Environmental and ecological effects of ocean renewable energy development: A current synthesis. Oceanography 2010, 23, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Copping, K.J.; Accioly, J.M.; Deland, M.P.B.; Edwards, N.J.; Graham, J.F.; Hebart, M.L.; Pitchford, W.S. Divergent genotypes for fatness or residual feed intake in Angus cattle. 3. Performance of mature cows. Anim. Prod. Sci. 2016, 58, 55–66. [Google Scholar] [CrossRef]
- Neo, Y.Y.; Seitz, J.; Kastelein, R.A.; Winter, H.V.; Ten Cate, C.; Slabbekoorn, H. Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biol. Conserv. 2014, 178, 65–73. [Google Scholar] [CrossRef]
- Coates, D.A.; Van Hoey, G.; Colson, L.; Vincx, M.; Vanaverbeke, J. Rapid macrobenthic recovery after dredging activities in an offshore wind farm in the Belgian part of the North Sea. Hydrobiologia 2015, 756, 3–18. [Google Scholar] [CrossRef]
- Burkhard, B.; Opitz, S.; Lenhart, H.-J.; Ahrendt, K.; Garthe, S.; Mendel, B.; Windhorst, W. Ecosystem based modelling and indication of ecological integrity in the German North Sea. Case study offshore wind farms. Ecol. Indic. 2011, 11, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Mangi, S.C. The impact of offshore wind farms on marine ecosystems: A review taking an ecosystem services perspective. Proc. IEEE 2013, 101, 999–1009. [Google Scholar] [CrossRef]
- Bergström, L.; Kautsky, L.; Malm, T.; Ohlsson, H.; Wahlberg, M.; Rosenberg, R.; Capetillo, N.Å. The Effects of Wind Power on Marine Life: A Synthesis; Swedish Environmental Protection Agency: Stockholm, Sweden, 2012; ISBN 978-91-620-6512-6. [Google Scholar]
- Bahrman, M.P.; Johnson, B.K. The ABCs of HVDC transmission technologies. IEEE Power Energy Mag. 2007, 5, 32–44. [Google Scholar] [CrossRef]
- de Vries, E.; Milborrow, D.; Staffell, I. Wind turbine trends. ENDS Intell. 2017. Available online: https://www.windpowermonthly.com/article/1595917/wind-turbine-trends (accessed on 20 April 2021).
- Ryndzionek, R.; Sienkiewicz, Ł. Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems. Energies 2020, 13, 1914. [Google Scholar] [CrossRef] [Green Version]
- Carr-Harris, A.; Lang, C. Sustainability and tourism: The effect of the United States’ first offshore wind farm on the vacation rental market. Resour. Energy Econ. 2019, 57, 51–67. [Google Scholar] [CrossRef]
- Albrecht, C.; Wagner, A.; Wesselmann, K.; Korb, M. The Impact of Offshore Wind Energy on Tourism. Good Practices and Perspectives for the South Baltic Region. 2013. Available online: https://www.offshore-stiftung.de/sites/offshorelink.de/files/documents/Offshore_Stiftung_2013_04SBO_SOW_tourism_study_final_web.pdf (accessed on 1 August 2021).
- Glasgow Caledonian University. Economic Impacts of Wind Farms on Scottish Tourism: Research Findings; 2008; ISBN 9780755970322. Available online: https://www.gov.scot/publications/economic-research-findings-economic-impacts-wind-farms-scottish-tourism/documents/ (accessed on 18 March 2021).
- Cherif, E.K.; Vodopivec, M.; Mejjad, N.; Da Silva, J.C.G.E.; Simonovič, S.; Boulaassal, H. COVID-19 Pandemic Consequences on Coastal Water Quality Using WST Sentinel-3 Data: Case of Tangier, Morocco. Water 2020, 12, 2638. [Google Scholar] [CrossRef]
- Mejjad, N.; Laissaoui, A.; El-Hammoumi, O.; Fekri, A.; Amsil, H.; El-Yahyaoui, A.; Benkdad, A. Geochemical, radiometric, and environmental approaches for the assessment of the intensity and chronology of metal contamination in the sediment cores from Oualidia lagoon (Morocco). Environ. Sci. Pollut. Res. Int. 2018, 25, 22872–22888. [Google Scholar] [CrossRef] [PubMed]
- Ballschmiter, K.H.; Froescheis, O.; Jarman, W.M.; Caillet, G. Contamination of the deep-sea. Mar. Pollut. Bull. 1997, 34, 288–289. [Google Scholar] [CrossRef]
- Benmhammed, A.; Laissaoui, A.; Mejjad, N.; Ziad, N.; Chakir, E.; Benkdad, A.; Ait Bouh, H.; El Yahyaoui, A. Recent pollution records in Sidi Moussa coastal lagoon (western Morocco) inferred from sediment radiometric dating. J. Environ. Radioact. 2020, 227, 106464. [Google Scholar] [CrossRef] [PubMed]
- Mejjad, N.; El-Hammoumi, O.; Fekri, A.; Laissaoui, A.; Benmansour, M.; Bounouira, H.; Benkdad, A.; Bounakhla, M.; Benbrahim, S.; Bouthir, F.Z. Sediment geochronology and geochemical behavior of major and rare earth elements in the Oualidia Lagoon in the western Morocco. J. Radioanal. Nucl. Chem. 2016, 309, 1133–1143. [Google Scholar] [CrossRef]
- Arrieta, J.M.; Arnaud-Haond, S.; Duarte, C.M. What lies underneath: Conserving the oceans’ genetic resources. Proc. Natl. Acad. Sci. USA 2010, 107, 18318–18324. [Google Scholar] [CrossRef] [Green Version]
- Deming, J.W. Deep ocean environmental biotechnology. Curr. Opin. Biotechnol. 1998, 9, 283–287. [Google Scholar] [CrossRef]
- Leary, D.K. International Law and the Genetic Resources of the Deep Sea; Martinus Nijh off Publishers: Lejda, The Netherlands, 2007; p. 56. [Google Scholar]
- Fingerman, M. Recent Advances in Marine Biotechnology, Volume 8: Bioremediation; CRC Press: Boca Raton, FL, USA, 2003; p. 8. [Google Scholar]
- Mapelli, F.; Scoma, A.; Michoud, G.; Aulenta, F.; Boon, N.; Borin, S.; Daffonchio, D. Biotechnologies for marine oil spill cleanup: Indissoluble ties with microorganisms. Trends Biotechnol. 2017, 35, 860–870. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejjad, N.; Rovere, M. Understanding the Impacts of Blue Economy Growth on Deep-Sea Ecosystem Services. Sustainability 2021, 13, 12478. https://doi.org/10.3390/su132212478
Mejjad N, Rovere M. Understanding the Impacts of Blue Economy Growth on Deep-Sea Ecosystem Services. Sustainability. 2021; 13(22):12478. https://doi.org/10.3390/su132212478
Chicago/Turabian StyleMejjad, Nezha, and Marzia Rovere. 2021. "Understanding the Impacts of Blue Economy Growth on Deep-Sea Ecosystem Services" Sustainability 13, no. 22: 12478. https://doi.org/10.3390/su132212478
APA StyleMejjad, N., & Rovere, M. (2021). Understanding the Impacts of Blue Economy Growth on Deep-Sea Ecosystem Services. Sustainability, 13(22), 12478. https://doi.org/10.3390/su132212478