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Abstract: Global governance of soil resources as well as revitalizations and remediation of degraded
areas seem to be necessary actions for sustainable development. A great deal of effort has gone into
developing remediation technologies to remove or reduce the impact of these contaminants in the
environment. However, contaminated soil remediations in stringent conditions deteriorate soil prop-
erties and functions and create the need for efficient soil revitalization measures. Soil washing (SW)
and thermal desorption (TD) are commonly used to remediate contaminated soil and can significantly
reduce the contaminant, sometimes to safe levels where reuse can be considered; however, the effects
of treatment on soil quality must be understood in order to support redevelopment after remediation.
In this review, we discussed the effects of SW and TD on soil properties, including subsequent soil
quality and health. Furthermore, the importance of these techniques for remediation and reclamation
strategies was discussed. Some restoration strategies were also proposed for the recovery of soil
quality. In addition, remediated and revitalized soil can be reused for various purposes, which can
be accepted as an implementation of sustainable remediation. This review concludes with an outlook
of future research efforts that will further shift SW and TD toward sustainable remediation.

Keywords: amendments; revitalization; soil remediation; soil reuse; sustainability

1. Introduction

Soil is an irreplaceable natural resource that plays essential roles in the natural envi-
ronment and human society [1]. However, human activities, such as industrial emissions,
mining, and sewage irrigation, pollute soil and produce numerous contaminated sites,
which threaten soil health worldwide [2]. Thus, management of contaminated land is
a global challenge that has prompted a wide array of remediation techniques and man-
agement options [3]. The growing demand for its reuse indicates the significance of soil
remediation. To facilitate the reuse of remediated soil, both remediation efficiency and soil
characteristics related to soil quality and health must be carefully considered. However,
to date, studies have focused on the development of remediation techniques that can be
applied to specific contaminants or sites, as well as on techniques to increase remediation ef-
ficiency or reduce remediation time [4–6]. Remediation of contaminated soil often provides
net benefits, and no intervention can lead to significantly greater environmental impacts
than those associated with pollution. Integration of sustainable practices for remediation of
contaminated land provides an opportunity to consider and optimize the social, ecological,
and economic aspects of the process.

Environmental remediation has primarily aimed to manage or prevent risks to hu-
mans and the environment through control or removal of pollutants, but the restoration of
soil ecological functions and productivity and reclamation of sediments, groundwater, and
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surface water allowing post-remediation land use increase the sustainability of the soil the
remediation interventions. Although environmental remediation has advanced with the
development of more sophisticated remedial technologies, the remedial actions currently
applied tend to be energy-intensive, and to emit pollutants and disturb neighboring com-
munities. Furthermore, these actions often require several years for implementation and
long-term monitoring, with the potential for long-term impacts. Therefore, remediation
must be conducted using a more environmentally, socially, and economically sustainable ap-
proach [7]. Recently, interest in the concept of “sustainable remediation” has grown [8–10].
Sustainable remediation has various definitions, but there is a consensus regarding its
broad aims, which include reducing the impacts and maximizing the long-term benefits of
remediation projects while ensuring an overall net benefit in terms of social, economic, and
biophysical conditions [11]. Sustainable remediation is not only a cost-cutting measure,
but also has long term implications [12]. Holland et al. [7] advocated the integration of
sustainability principles into remediation activities, which is described as a holistic ap-
proach to remediation. This approach aims to balance impacts and influences on social,
environmental, and financial sustainability while protecting human and ecosystem health.
They suggested that sustainable remediation frameworks should critically consider the
preferred end use or future use, and that all planning, activities, and resources dedicated to
remediating a site should align and add value to the preferred end or future uses, beginning
from the inception of the project.

Since the mid-to-late 2000s, growing interest for sustainable remediation has emerged
in initiatives from several international and national organizations as well as other ini-
tiatives from networks and forums [13]. SuRF-UK is a framework especially developed
for sustainable contaminated land and groundwater management. Criteria suggested by
SuRF-UK are divided into five indicator categories and each of these categories contains
several issues that can be considered for selecting the optimum land-use design, deter-
mining remedial objectives, and selecting a remediation strategy and technique [14]. Ellis
and Hadley [15] stated that land reuse is a key indicator of sustainable remediation of
contaminated soil.

The world is currently facing a serious agricultural crisis due to issues including
climate change, global warming, soil degradation, reduction of agricultural land area,
and food insecurity. Hence, recognition of remediated soil as a valuable resource and
strategies for its agricultural reuse are essential. To promote the reuse of remediated soil,
careful attention should be paid to the efficiency of remediation, as well as to changes
in soil properties during the remediation process. However, much of the research on
soil remediation has focused on increasing remediation efficiency for specific sites or
pollutants [4,5].

The association between remediation efficacy and soil function is vital to subsequent
reclamation or restoration processes [16]. Soil function is defined as the ability of the soil to
provide the following types of services: regulatory, supportive, provisioning, and cultural
services [17].

The concept of green and sustainable remediation focuses on minimizing the environ-
mental impacts of remediation activities, and covers a wide range of impacts and benefits,
including long-term land use and soil management. This concept aims to address the
following questions in the design of remediation strategies. Which remediation technolo-
gies can improve soil conditions, and which might result in reduced soil quality? How
can soil quality be restored after remediation? Which soil properties can and cannot be
restored? At present, systematic review of soil quality deterioration due to SW and TD
treatment, deteriorated soil recovery technology, and evaluation methods that can evaluate
deteriorated soil revitalization are insufficient.

The aims and conditions of remedial projects, and their effects on soil function, deter-
mine their relevance for long-term project management [18]. For example, some projects
may aim to return the land to commercial or industrial use; in such cases, soil productivity
will likely have low priority. However, soil strength and stability are essential for its use as
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an engineering medium. Conversely, remediation projects on agricultural land or natural
areas may aim to restore the land to a pre-disturbance state, and their reclamation goals
may focus on functions that support habitat, biomass, productivity, water management,
and nutrient cycling [19]. The main aims of this study were to assess the effects of soil
washing (SW) and thermal desorption (TD) on the physicochemical and biological proper-
ties of soil, and to determine the feasibility of improving deteriorated soil for reuse through
the remediation process.

2. Deterioration of Soil Quality during Remediation and Revitalization of Remediated
Soil for Sustainable Soil Management
2.1. Deterioration of Soil Quality during Soil Remediation

Directly assessing changes in soil health or quality resulting from the soil remediation
process is virtually impossible, as such changes are driven by dynamic interactions of
numerous soil properties and environmental processes. Nonetheless, identifying changes
specific to soil properties is valuable for estimating the effects of remediation on overall
soil function [20].

2.1.1. Soil Washing (SW)

SW is considered a permanent remediation technology for the removal of organic and
inorganic pollutants (Figure 1). The pollutants are removed from the soil through physical
separation and chemical leaching, using various reagents and extractants [21].
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Typical processes used for SW include physical separation, chemical extraction, and
combinations of those two techniques. Soil texture may be affected by the physical separa-
tion process, and its chemical properties can be altered by reagents such as acids, bases,
surfactants, chelating agents, salt, and redox agents, which are used to transfer pollutants
from soil solids to the aqueous phase [23].

Conversely, these processes can reduce soil quality during soil remediation due to
deterioration of soil physical properties caused by the loss of fine particles during physical
separation, changes to soil chemical properties due to extractants, and damage to soil
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quality caused by residual extractants [24]. Examples of soil degradation during SW are
summarized in Table 1.

Table 1. Effects of soil washing on soil quality indicators.

Soil Quality Indicators Deterioration Ref.

Physical Decrease in water and nutrient
holding capacities [24,25]

Chemical

Loss of soil organic matter, cation
exchange capacity, micro-

and macronutrients
[26–28]

Increase in bioavailability and
mobility of residual pollutants [29,30]

Toxicity of residual extractants [23,31,32]

Biological

Changes in DNA content and
microbial population structure

Reduced enzyme activities
Reduced germination and growth

rates of plants (crops)

[24,27,33,34]

The physical separation process involves reducing the volume of contaminated soil by
utilizing physical properties to separate ordinary particles from particles where pollutants are
concentrated. Gautam et al. [25] suggested that finer soils (particle diameters < 0.075 mm) act
as degrading media during SW and should be separated after washing all of the soil. Fine
soil particles that contain a high concentration of contaminants are separated for further
treatment or disposal [26]. The loss of fine particles during the physical separation process
alters soil physical properties, such as water- and nutrient-holding capacities.

Chemical extraction involves techniques for solubilizing pollutants from the soil using
an extraction solution containing inorganic acids (e.g., HCl, HNO3, or H2SO4), organic acids
(e.g., acetic acid, citric acid, or oxalic acid), chelating agents (e.g., ethylenediaminetetraacetic
acid (EDTA)), bases (e.g., NaOH), and inorganic salts (e.g., potassium phosphate). Strong
acids are often used, especially for the removal of toxic trace elements (TTEs) from soils.

Ko et al. [26] reported significant loss of soil organic matter (SOM) from the fine particle
fraction after leaching of soil with acids (HCl, H2SO4, and H3PO4). Because acids are non-
selective extractants, cation exchange capacity (CEC) as well as micro- and macronutrients
are removed along with pollutants. Udovic and Lestan [35] reported that leaching with HCl
dissolved carbonates in soils. Both the carbonate and SOM contents decreased significantly,
likely due to mechanical extraction of small organic soil constituents during the leaching
process. Hu et al. [28] reported that CEC, total P, total K, and available K all decreased after
leaching with EDTA.

After SW, residual pollutants with high mobility, which were detected mainly in the
highly available fraction, were affected by the redistribution of TTEs, showing increased
bioavailability [29,30,36,37]. Hazrati et al. [38] observed increases in exchangeable Cd, Pb,
and Zn concentrations after washing with hydroxylamine hydrochloride and citric acid,
which had a toxic effect on plant growth. Barona et al. [39] and Lei et al. [40] found that TTEs
remaining in the soil after chelation-based remediation showed enhanced mobility and
weak associations with soil components. Enhanced mobility of residual metals likely occurs
due to metal detachment, chelator attack, soil dissolution, or cation exchange between
chelated complexes and soil particles.

Washing with chelating agents and synthetic surfactants leads to health and safety
concerns due to their slow degradation and the inability to recover these extraction
agents [31,32]. The extraction efficiency of synthetic surfactants is optimal for organic
pollutants [33,41]. However, some synthetic surfactants have low biodegradability and
are affected by precipitation or sorption onto soil, thus requiring larger volumes that
may further damage the soil [42]. Moreover, surfactants may form emulsions with high
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viscosities that are difficult to manage and remove. EDTA is poorly photo-, chemo-, and
biodegradable, and persists in the environment [43]. EDTA has been used as an extractant,
and is reported to decompose by only 14% over 20 days, with the rest remaining in soil [44].
Sub-soil transportation of complex toxic metals and the spread of pollution could therefore
pose a long-term environmental hazard [45]. Significant differences in water retention
characteristics, aggregate fractionation, and stability exist between the original and re-
mediated soils; a lower yield of white clover was observed from EDTA-washed soil [23].
The introduction of EDTA into soil causes stress in soil microorganisms, and significantly
impairs the growth and activity of fungi while also causing necrotic lesions on Chinese
cabbage leaves, a lack of development of arbuscular mycorrhizae in red clover, and stress
in soil microfauna [46]. EDTA has been shown to reduce soil microbial biomass and inhibit
soil enzyme activity [47,48]. Chelated EDTA-TTE complexes pose a potential health risk, as
they are poorly biodegradable and persist in the soil environment. HCl is also used as an
extractant, and high concentrations of Cl− ions have been reported to cause salinization,
with detrimental effects on soil organisms [49].

Remediation changes the physical and chemical characteristics of soil, thereby influ-
encing its microbial activities. The structure and activity of the soil microbial community
can serve as a major indicator of changes in soil quality. The Shannon index, which indi-
cates the richness and evenness of soil bacteria and fungi, significantly decreased due to
changes in soil pH and nutrient contents after washing [50]. Soil pH is critical to microbial
activity, affecting the integrity and function of microbial cell membranes, as well as biomass
and community structure [51,52]. Under low-pH conditions, TTEs are easily converted into
more mobile or bioavailable forms [51]. Mühlbachova [47] reported a negative relationship
between microbial biomass (soil microbial carbon) and available (NH4NO3-extractable)
heavy metal fractions in EDTA-treated arable soils. Jelusic et al. [27] reported that remedi-
ation initially reduced soil DNA content and altered the microbial population structure.
Chae et al. [34] reported significantly lower enzyme activities in washed soil due to im-
proper conditions, including high pH, low nutrient levels, and high sand content in the
washed soil. The ecological properties of soil evaluated based on the activities of soil
enzymes, such as dehydrogenase (DH), phosphatase (PHO), and β-glucosidase (GLU), did
not recover fully after remediation to a healthy state despite pollutants being removed
through remediation, with many reports of lower soil enzyme activities due to changes
in soil properties, such as soil pH and nutrient concentrations [24,33,34]. In another case,
Kaulin et al. [53] reported that remediation had a positive effect on DH and GLU activities,
whereas urease (UR) activity decreased after washing with EDTA. They suggested that
enzyme activity is sensitive to both soil remediation and transient soil conditions, such as
substrate addition.

Yi and Sung [24] confirmed that the germination and growth rates of Brassica juncea
decreased after soil cleaning due to changes in soil pH and electrical conductivity (EC).
Increased mobility and bioavailability of residual soil pollutants after SW has been reported
to increase the absorption of toxic elements by plants [27,54]. Available potassium in soil
promotes good soil fertility and high crop yields [55]. Kwak et al. [56] confirmed that
the biomass and photosynthetic activity of Chlorococcum infusionum and Chlamydomonas
reinhardtii were reduced with changes in pH, EC, and nutrient contents, while the survival,
appearance, and burrowing behavior of Eisenia andrei were impacted in remediated soils;
therefore, follow-up measures were needed to restore habitat quality and function.

Im et al. [34] confirmed ecotoxicological effects, in terms of the germination rate, shoot
growth, and soil enzyme activities in remediated soil, using a bioassay, and noted that these
effects were caused by rapid changes in pH and nutrient contents. They suggested that
proper management of ecotoxicological effects and changes in soil properties is essential
for the reuse of remediated soil.

With increasing awareness of remediated soil quality, the following considerations
related to SW should receive greater attention in future research: controlling the increased
activity of pollutants during SW; preventing changes in certain soil physicochemical
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properties after washing (e.g., pH, macro- and micronutrients); alleviating decreases in
soil enzyme activities and microbial diversity after washing; and selecting milder chemical
reagents for SW and neutralization. The ideal extraction agent should have the following
properties: high extraction efficiency for the target pollutant at low extractant volume,
low soil sorption, minimal influence on soil health, little mobilization of SOM, little effect
on the efficiency of the process used for degradation of the target pollutant, and limited
degradation during SW.

2.1.2. Thermal Desorption (TD)

TD is a prominent remediation technique that is highly effective for removing most
volatile and semi-volatile contaminants, including polycyclic aromatic hydrocarbons
(PAHs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), total
petroleum hydrocarbon (TPH), and Hg. TD treatment has the advantages of processing
a wide range of pollutants, rapid treatment, high efficiency, safety, and little production
of secondary products (pollutants). For these reasons, TD has been widely used for re-
mediating highly contaminated small areas and has often been applied to sites needing
urgent treatment. TD is a physical remediation technology that removes contaminants
primarily through volatilization and desorption mechanisms. However, reactions such as
pyrolysis, degradation, and oxidation are dependent on temperature and oxygen concen-
trations in the local atmosphere, with the intensity of these reactions enhanced by increases
in temperature and oxygen (Figure 2). In terms of the temperature used for removal of
contaminants, TD can be divided into low-temperature thermal desorption (LTTD) and
high-temperature thermal desorption (HTTD) processes. The boundary between the two
technologies is unclear, but 300 ◦C–350 ◦C is generally considered a critical temperature
distinguishing HTTD from LTTD.
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LTTD is widely used for processing volatile organic compounds with low boiling
points, such as gasoline and benzene, while HTTD is suitable for semi-volatile organic
compounds (such as PAHs and PCBs) with high boiling points and for inorganic pollutants
(such as Hg). Regardless of temperature, the heating applied for desorption of contaminants
affects SOM, clay content, pH, and water holding content (WHC), and can also decrease
CEC [58,59], which may impair soil health [60].

Examples of soil quality deterioration during TD are summarized in Table 2.
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Table 2. Effect of thermal desorption on soil quality indicators.

Soil Quality
Indicators Deterioration Ref.

Physical
Clay-sized particles are cemented with Fe- and
Al-hydroxides, altering the distribution of soil

particle sizes
[58]

Chemical Can decrease clay content, soil pH, WHC, and CEC [58,59,61]

Biological

Genotoxic effects on coelomocytes of Eisenia fetida
Microbial activity (including soil enzyme activities)

decreases at higher temperature due to
thermal denaturation

[58,62,63]

TD treatment can cause changes in soil texture and mineral contents, as the structure
of the mineral clay lattice is dehydrated and decomposed [62]. Following the denaturation
of these mineral structures, amorphous clay-sized particles are cemented with Fe- and Al-
hydroxides released during the decomposition of SOM, resulting in larger particle sizes [58].
As a result, large soil particles, i.e., sand grains, are formed, which have low water and
nutrient holding capacities and poor structure, increasing susceptibility to wind erosion [60].
O’Brien et al. [61] reported that after oil-contaminated soil had been TD-treated at 350 ◦C,
soil physical characteristics and hydraulic processes related to agricultural productivity
were significantly altered, with increased saturated hydraulic conductivity, reduced water
retention, and caused a higher permanent wilting point.

During TD processing, SOM is affected by volatilization, charring, oxidation, and
pyrolysis reactions [64,65]. Such decomposition and reduction of SOM are affected by
heating time and temperature [19]. Incineration at 620 ◦C for 180 min reduces SOM by
more than 90% [64], while smoldering for 60 min can almost completely remove SOM [58];
however, when heated to 300 ◦C, the SOM level is not significantly reduced [17,58,66].
Ren et al. [67] reported that LTTD of diesel produced biochar-like pyrolytic carbon, which
buffered heat-induced changes and created favorable soil conditions, such as elevating the
soil pH to reduce Al phytotoxicity [68], improving soil fertility due to increases in surface
area and negatively charged functional groups [69], and enhancing the soil nutrient content
to facilitate wheat growth [70].

Changes in soil pH due to TD are affected by temperature and time, with many
studies showing little or no change in soil pH, especially at lower temperatures (<250 ◦C).
Decreases in pH are likely caused by oxidation reactions and the formation of HCO3

−

following the mineralization of CO2 [63]. Changes in pH have also been attributed to
the displacement of H+ from exchange sites on clay and SOM by basic cations released
during heating. SOM is mineralized, which releases CO2 that is readily transformed into
HCO3. At high temperatures (>250 ◦C), pH rises due to the removal of organic acids and
substitution of hydrogen ions in soil solutions with various cations formed during the
combustion of SOM [63,71]. In soils with high SOM content, TD treatment causes large pH
fluctuations, while pH shifts are less pronounced in soils with low SOM or high CaCO3
contents, as CaCO3 buffers against pH changes.

Thermal treatment can lead to changes in plant-available nutrient contents, particu-
larly in the major components of SOM, C, and N, which are lost through volatilization.
However, during LTTD (<220 ◦C), organic N is mineralized into either NO3

− or NH4
+ (pre-

dominantly NH4
+), which does not affect the total nitrogen content [72]. Soil phosphorus

is reported to have significantly higher volatilization temperatures than C and N, resulting
in minimal losses through volatilization, but in some cases plant-available P interacts with
newly formed highly reactive minerals following rehydroxylation, which may adsorb
additional P and thus reduce the plant-available fraction [73,74]. Huang et al. [75] reported
that thermal treatment led to repartitioning of trace elements. Trace elements in Fe/Mn
oxides were transformed into acid-extractable, organic-matter bound, and residual forms
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after thermal treatment of Hg-contaminated soil at 550 ◦C; meanwhile, Cr, Cu, and Ni
became less mobile.

Bonnard et al. [60] studied the effect of TD on genotoxicity in Eisenia fetida worms
using the comet assay and found that up to 94% of the contaminants were treated with
TD, but the genotoxicity of soil pollutants to earthworms increased. The concentration
of nonvolatile metals remained unchanged after TD. Among trace elements found in the
treated soil, Cd, Cr, and Ni could explain the genotoxicity of contaminated soil after TD.
Treatment could increase the bioavailability and genotoxicity of TTEs via modification
of SOM.

The recovery of soil microorganisms after TD occurs in distinctly different ways de-
pending on the desorption temperature. After LTTD (<300 ◦C), recovery occurs within a
few days, while HTTD (>300 ◦C) does not support recovery of the number and activity
of microorganisms, even after hundreds of days. Therefore, additional measures, such
as supplying nutrients or organic amendments, are needed to restore the activity of soil
microorganisms [58,76,77]. Low-temperature heating can lead to the release of dissolved
organic carbon (DOC), initiating a short-lived recovery that is ephemeral due to the rapid
mineralization of DOC. High-temperature heating destroys DOC, which inhibits recovery.
According to Mataix-Solera et al. [78], recovery is related to microbial community com-
position and heating temperature. In particular, fungi are more sensitive to heating than
bacteria. Moreover, vegetation can favor the recovery of microbial biomass [77,79], likely
due to the close relationships between microorganisms and plants (e.g., mycorrhiza or
N-fixing rhizobia).

Soil enzymes exhibit increased activity during LTTD treatment due to the release of
nutrients and cell lysis, while during HTTD their activity is greatly suppressed due to the
denaturation of enzymes [58,63,80].

The factors discussed above can facilitate the reuse of remediated soil if heat treatment
is conducted at an appropriate temperature. Ding et al. [81] reported that the effect of
low-temperature (<250 ◦C) heat desorption on soil properties was minimal, and that the
availability of nutrients and DOC increased during TD, thereby promoting the growth of
microorganisms and plants. Yi et al. [66] confirmed that LTTD can improved overall soil
health related to biological productivity and environmental functions and suggested that
LTTD be used as an alternative to harsher remediation methods. Sierra et al. [60] confirmed
that LTTD-treated soil can be reused as farmland soil, despite some nutrient losses due to
treatment. However, to fully recover the function of damaged soil after thermal treatment,
the addition of SOM and nutrients, individually or in combination, may be needed.

2.2. Revitalization of Disturbed Soil

Among the remediation technologies developed and utilized to date, SW and TD
are efficient techniques that permanently remove soil pollutants, but they also impair soil
quality. Although SW and TD are efficient and permanent methods of removing pollutants
from contaminated soils, these treatments adversely impact soil microorganisms and their
function, as well as other soil properties. Serious changes in soil properties during the
remediation process can irreparably damage the health of the remediated soil, despite
decreasing the pollutant concentration below the target level [27]. Barona et al. [39] and
Lei et al. [40] reported that effective revitalization approaches are essential for restoring
soil health and reclaiming remediated soil as a fertile and safe plant substrate.

Revitalization of soil health during the remediation of disturbed soils is essential
for the reuse of remediated soil. Understanding the soil functions that can be disrupted
during the remediation process provides information for the establishment of remediation
strategies and restoration plans that minimize disturbance.

Soil pH that is significantly outside the normal range (typically <5.5 or >8.5), due to
extraction with acid or alteration of SOM during TD, reduces the availability of nutrients
and inhibits microbial activity. Acid washing can cause problems, such as increased
mobility and bioavailability of TTEs remaining in the soil, which must be addressed
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through reduction of the mobility and availability of TTEs by raising the pH above 7.
Conversely, a rapid increase of soil pH significantly reduces P availability and increases the
solubility of As, thereby inhibiting plant growth and microbial activity. P and N deficiencies
limit plant and microbial growth; hence, maintaining sufficient levels of available or labile
N, P, and K is crucial to survival for most species.

Soil amendments, such as clay minerals (e.g., vermiculite and zeolite), lime, biochar,
and organic amendments are commonly used to effectively stabilize residual pollutants
and restore soil quality in remediated soils [37,51,53,82]. Jelusic et al. [37] used vermiculite
to improve soil structure, as it contributes numerous exchange sites for retaining nutrients
added to the soil; they also assessed apatite and a commercial mixture of absorbent
amendments in terms of their capacity to reduce leachability and plant-available TTE levels
remaining in the soil after remediation. Guo et al. [83] reported that inorganic amendments
(zeolite and CaCO3) increased seed germination in Chinese cabbage.

The bioavailability of TTEs (Cd, Cu, Pb, and Zn) in FeCl3-washed soil decreased
significantly with the addition of 1% (w/w) lime [51]. Wang et al. [50] reported that
Ca(OH)2 treatment of acidic soil after washing resulted in increased available P and total
N contents, and that the chemical forms of Cd and Pb in neutralized soil shifted toward
the residual and Fe–Mn oxide fractions. Additionally, although HNO3 reduced soil quality
to some extent, the normal growth of Mentha haplocalyx was unaffected, and the Pb, Cu,
and As concentrations in its aboveground parts decreased significantly when grown in
neutralized soil. Therefore, Ca(OH)2 neutralization is necessary to improve the quality
and ecological safety of washed soils. Kim et al. [52] reported that barley growth in acid-
washed and CaO-neutralized sediment was comparable to that observed in untreated and
water-washed sediments. This result indicates the protective effect of residual calcium
against sodium and chloride toxicity. The combined application of SW (with FeCl3) and
immobilization (with lime, biochar, and black carbon) reduces the toxicity of residual trace
elements, with significant recovery of microbial activity seen compared with soil that had
only been washed, thus confirming the necessity of immobilization with stabilizers after
SW [51].

Organic amendments such as biochar, compost, and organic fertilizer are frequently
used for supplying essential nutrients, such as N and P, increasing SOM content and restor-
ing microbial activity. The introduction of organic amendments affects the composition of
SOM, CEC, and the microbial community, ultimately improving overall soil quality [84].
Yoo et al. [84] revealed that sludge-derived biochar enhanced acid PHO activity, but only
marginally improved DH and UR activities in the remediated soil. Guo et al. [83] reported
that the combined application of CaCO3 and chicken manure reduced the bioavailability of
TTEs in acid-washed soil.

The use of specific combinations of plants and microbes to reintroduce nutrients and
organic matter through semi-natural succession [85] is an economical restoration strategy
that could provide long-term sustainable results. For example, red clover improved
biological activity in nitrogen-deficit soils when specific bacterial symbionts were present,
thereby facilitating nitrogen fixation. This process could complement or follow a short-
term amendment strategy. Developing the most appropriate combination of treatments for
local remediation must be conducted on a case-by-case basis. Comprehensive biological
restoration would provide long-term, sustainable site rehabilitation after remediation and
reduce the requirements for external inputs into the system.

Maček et al. [85] studied the revitalization of a remediated soil by inoculation with
arbuscular mycorrhizal (AM) fungi, and reported that the native fungal community es-
tablished in soil owing to its trophic relation with plants, thus highlighting a potential
sustainable strategy for revitalizing soils after remediation.

Changes in chemical properties, including significant reductions in essential nutri-
ents, such as N and P, in soil after HTTD (>500 ◦C) result in poor plant growth and limit
microbial recolonization. Soils showing severely deteriorated quality require intensive re-
habilitation processes, such as amendment with organic matter and nutrients, stabilization,
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or inoculation of nitrogen-fixing assemblages. O’Brien et al. [20] reported that the effects
of TD are heavily dependent on the nature and origin of the treated soil. Nonetheless,
until recovery of SOM and soil respiration, treated soils may be susceptible to nutrient and
water stresses. Despite substantially reducing crop production, mixing non-contaminated
soils with TD soils increased SOC, total N, and respiration, indicating that mixing may
enhance the recovery of soil health. Overall, the ability of organisms to recover depends on
the soil conditions after treatment, including SOM, available nutrients, and water content.
Additionally, organisms must be reintroduced into the treated soil, as most organisms are
destroyed during the heating process.

The type, mix, and amounts of soil amendments will vary from site to site in response
to the local mix of site contaminants, soil conditions, and type of desired vegetation. Post-
revitalization land use also is an important consideration in choosing soil amendments and
remedial strategies. Additionally, it is essential that potential soil amendments be carefully
characterized for all important physical, chemical, and microbiological properties. Soils are
the most complex natural system, and additional research is needed to fully understand
the role of factors such as the soil properties and the resilience of the microbial population
in soil remediation and revitalization.

3. Conclusions

Remediated soil reuse is a key indicator of sustainable remediation. Remediated soil
should be acknowledged as a valuable resource, and a feasible solution for its agricultural
reuse is urgently needed. To facilitate soil reuse, both remediation efficiency and soil
characteristics associated with soil quality and health should be carefully considered.
Revitalization of soil health is critical after drastically disturbing a site via remediation.
Contaminated soil remediations in stringent conditions, such as SW and TD, necessitate
more extensive rehabilitation. By integrating this knowledge with the design of remediation
processes, it will be possible to ensure that remediated sites offer environmental and
economic benefits in addition to lower environmental hazards. The following aspects
should receive more attention in future research regarding SW and TD: (i) the selection
of milder chemical reagents and appropriate temperature for SW and TD, respectively,
and neutralization; (ii) the control of elevations of availability of contaminants during soil
remediation; (iii) the avoidance of decreases in some soil physicochemical properties in
soil after soil remediation; and (iv) the alleviation of decreases in soil enzyme activities and
soil microbial diversity in the soil after remediation. In most cases, appropriate organic
or inorganic soil amendments can be used to regenerate the soil. Research is needed to
establish the quantitative relationships between the soil physicochemical properties and
microbial activity and the effect of soil remediation and revitalization on the functional
recovery of soil quality.
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