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Abstract: Massive open online course (MOOC) is an innovative educational model that has attracted
widespread attention in recent years. Despite a growing number of registered users, many have given
up continuously using MOOC platforms after the first-time user experience; thus, a high dropout rate
has severely hindered the sustainable development of MOOC platforms. To address the problem, this
study started with the quality factors of MOOC platforms and the confirmation of user expectations
by integrating the D&M ISS model and the expectation confirmation model into one, with the goal
of identifying the factors that affect users’ continuance intention to use MOOC platforms. In this
study, online questionnaires were distributed to Chinese users with experience in using MOOC
platforms, and a total of 550 valid samples were recovered. In addition, the theoretical model was
tested using structural equation modeling (SEM). The research results showed that there are three
critical antecedents affecting the confirmation of user expectations for a MOOC platform, including
information quality, system quality, and service quality, of which service quality has the greatest
impact on users’ expectation confirmation. If user expectations for an MOOC platform are positively
confirmed, the perceived usefulness of the platform as well as the satisfaction with it will effectively
be improved. Moreover, perceived usefulness has been proven to be a critical factor affecting users’
continuance intention to use MOOC platforms, which is followed by user satisfaction. Compared to
the original ECM, the integrated research model has delivered significantly improved explanatory
power for users’ continuance intention. Hence, this study makes up for the insufficiency of ECM in
explaining the factors affecting users’ expectation confirmation and provides theoretical support for
MOOC platform developers.

Keywords: MOOC platforms; quality factors; expectation confirmation; D&M ISS model; ECM;
continuance intention

1. Introduction

Education plays a vital role in promoting human progress and sustainable develop-
ment [1,2], especially when current widespread attention has been attached to how to
solve unsustainable problems in society through education [3–5]. With the advancement
of information and communication technology, education is integrating with technology,
thereby changing the traditional way of education [6]. As a result, teachers and students are
provided with an increasing number of teaching and learning options under the support of
mature technology [7], of which massive open online course (MOOC) is attracting more
and more attention [8,9].

In 2001, the Massachusetts Institute of Technology (MIT) launched the Open Educa-
tional Resources Movement, which laid the foundation for the development of MOOCs.
In 2011, Stanford University offered AI courses that attracted more than 160,000 people
to participate online, bringing about the first breakthrough of MOOCs [10]. Subsequently,
typical MOOC platforms emerged one after another in the United States, including Cours-
era, edX, Udacity, and more. Compared to traditional education methods, internet-based
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MOOC platforms are free from the limitation of time and space, allowing users to re-
ceive educational services anytime and anywhere, through mobile devices, computers,
networks, etc. [11,12].

MOOCs get rid of the limitation of traditional education models and, therefore, are
regarded as innovative [13,14]. While breaking the traditional model of offline classroom
teaching, MOOC provides learners with an additional learning method [15]. According
to Class Central research reports, as of 2019, there had been over 900 colleges and univer-
sities worldwide launched MOOCs, with the total number of courses launched reaching
13,500 and the total number of registered learners reaching 101 million, an increase rate of
29.5% [16]. It can be seen that the MOOC education model is being increasingly accepted.
Meanwhile, the learning results on MOOC platforms are gradually being recognized by tra-
ditional universities and governments. As an example, in China, The Ministry of Education
of China issued the Opinions on Strengthening Construction, Application and Management
of Online Open Courses in Colleges and Universities in 2015, for the purpose of encourag-
ing colleges and universities in China to recognize the credits earned by students on MOOC
platforms [17]. As of December 2019, an array of colleges and universities in China, such as
China Pharmaceutical University, China University of Geosciences, and Jiangxi University
of Science and Technology, have recognized the academic performance and credits of
students in certified courses on Coursera, EDX, Udacity, Icourse163, and other MOOC
platforms, which are accepted as public electives. Although the measures such as certificate
issuance and credit recognition taken by MOOC providers and government departments
uplift the effectiveness of MOOCs and the enrollment rate of students to a certain degree, a
high dropout rate seems to be a common feature of many MOOCs [18–20]. Studies have
shown that the dropout rate of MOOCs is as high as 90%; and most of the learners abandon
course learning after their initial experience [21–23]. However, the ultimate success of an
MOOC platform relies on the continued enrollment of learners [24,25], which promises
to bring considerable benefits to MOOC platforms and reduce advertisement costs [26].
Therefore, such a high dropout rate has seriously hindered the sustainable development of
the MOOC industry [20,21,27–29].

With the increasing acceptance of the open education model of MOOCs and the con-
cept of lifelong learning, growing attention from the academic community has been paid
to whether MOOCs can promote the sustainable development of education [10,27,30,31].
An MOOC platform is a network-based learning system, so users’ continuance intention
depends largely on user satisfaction, which is also considered to be one of the factors
that evaluates the success of an information system (IS) [13,32–35]. The expectation con-
firmation model (ECM) believes that user satisfaction to a large extent is determined by
expectation confirmation [33]. If the expectation of users is confirmed after the use of a
system, it has a positive impact on user satisfaction, which in turn promotes continuance
intention [33,36,37]. However, the original ECM fails to analyze the external factors affect-
ing expectation confirmation, which limits the predictive ability of the model [38–40]. In
view of this, some studies have introduced the quality factors constructed by the informa-
tion systems success model (D&M ISS model) as the preceding factors affecting expectation
confirmation, in an attempt to make up for the aforesaid shortcoming [39–42]. The com-
bined ECM with the D&M ISS model better explains users’ behavior of continuously using
ISs [39,43,44]. Nonetheless, to the best of our knowledge, a scarcity of studies apply the
combination of the ECM and the D&M ISS model to investigate users’ continuance inten-
tion to use MOOC platforms. Therefore, in the context of MOOCs, this paper proposes
a research framework that combines the D&M ISS model and the ECM, with the goal of
identifying the causal relationship between the quality factors of MOOC platforms and
the confirmation of user expectations, and thus exploring the preceding factors that affect
continuance intention. While making up for the gap in previous studies, our research
results are expected to provide a theoretical basis for the sustainable development of the
MOOC industry.
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2. Research Background
2.1. Massive Open Online Courses

The definition of MOOC is derived from the combination of e-learning, large-scale
communication, knowledge sharing, and openness [45]. Generally speaking, MOOCs are to
spread and share knowledge via information and communication technology, emphasizing
the scale and openness of courses that target all potential learners [22,45]. Learners not
only can obtain course resources anytime and anywhere via MOOC platforms, they can
also perform online exchanges, communication, and interaction [46].

MOOC is a concept first proposed by Bryan Alexander and Dave Cormier used to
refer to the public course “Connectivism and Connective Knowledge” (CCK08) [13] that
was lectured in Canada by Stephen Downes and George Siemens in 2008. Different from
traditional online distance learning, CCK08 underscored more the openness and scalability
of courses. The milestone that indicates MOOC having gained the wide attention of the
public is the success of the online open course “Artificial Intelligence” lectured by Professor
Sebastian Thrun at Stanford University in 2011, which attracted more than 160,000 students
from more than 190 countries worldwide. Inspired by this success, a large number of
MOOC platforms emerged one after another, such as Coursera, Udacity, and edX, a non-
profit organization, that develops courses in cooperation with world-class universities
to provide learners with free courses and value-added paid services. As a result of the
growing popularity of MOOC platforms in the United States, MOOC has been spread to
many other countries, where this education model sees further development. According to
statistics, there have been at least 40 MOOC platform operators worldwide [47].

At this stage, the development of MOOC platforms is mainly based on Connective
MOOC (cMOOC) and Extended MOOC (xMOOC) [48]. The former, established on con-
nectivism [49], does not emphasize teacher-generated content but instead contributes to
the creation and construction of knowledge by inviting learners [49,50]. Differently, the
latter, established on content-based cognitive behaviorism, highlights cooperation with
prestigious universities, whose experts and scholars or teachers undertake curriculum
development, while learners complete the learning goals of each course in a linear man-
ner [48]. Noticeably, the three representative MOOC platforms, including Coursera, edX,
and Udacity all use the xMOOC model [51]. Taking Coursera as an example, the platform
cooperates with well-known universities to develop courses, whose content information
and schedule can be obtained before they are offered. In these courses, quizzes, after-class
assignments, mid-term and final exams are to be set up [52]. Meanwhile, xMOOC is in
favor of the teaching methods adopted by traditional higher education institutions, so that
it is generally used by the latter as a supplement to their online teaching [50].

The growing emergence of MOOCs gives birth to an increasing number of academic
research thereon [53]. MOOC is considered as a more advanced form of higher education,
and its learning model is more similar to the openness of individuals naturally revealed
in daily life [54]. In traditional higher education, MOOCs are expected to improve stu-
dents ‘academic performance and help freshmen to catch up with university courses [55].
Li et al. [56] studied 23 representative MOOC platforms and concluded that these platforms
had a varying number of users ranging from 10 thousand to 5 million and most of them had
developed their mobile APP and that the credits of some MOOCs developed in cooperation
with traditional educational institutions were recognized by colleges and universities. Most
researchers believe that the education model in MOOCs can effectively reduce the learning
costs of students and solve the problem of teacher shortage in many regions, especially in
developing countries, thereby increasing the opportunities of common people to access
to education [57–59].

However, the education community casts doubts over whether MOOC platforms can
achieve sustainable development considering the unsatisfactory dropout rate of MOOC
platform learners and the miscellaneous quality of services provided by platform opera-
tors [53]. MOOC platforms are web-based learning information systems, so their sustain-
ability depends largely on users’ continuance intention, which is considered to be one of
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the indicators to evaluate whether an MOOC platform is successful [23]. Therefore, this
study holds that apart from the efforts of promotion and advertisement, MOOC platforms
should strive to understand user satisfaction after the first use, so as to effectively expand
and optimize services.

2.2. DeLone and McLean Information Systems Success Model (D&M ISS Model)

The original D&M ISS model [60] consisted of six factors that affect the success of an IS
proposed by DeLone and McLean in 1992 based on the research of Mason [61] on Shannon
and Weaver [62] in communication mathematical theory. These six factors include (1)
system quality, (2) information quality, (3) IS use, (4) user satisfaction, (5) individual impact,
and (6) organizational impact. With the emergence and explosive growth of e-commerce,
IS practice has changed dramatically. In 2004, DeLone and McLean updated the research
model and evaluated its effectiveness [32]. The updated D&M ISS model added service
quality as a new dimension of successful ISs, and combined all “influential” measures into
a single impact or net benefit. The D&M ISS model considers system quality, information
quality, and service quality as the key factors for users to determine whether or not to
continuously use an IS, while the quality of the IS determines users’ use efficiency and
personal outcomes [32].

The updated D&M ISS model is widely applied to the research on information systems
in different fields [63,64], and the information quality, service quality, and system quality it
constructs are also considered as the indicators to determine whether or not an e-learning
system is successful [65]. Based on the D&M ISS model, Al-Fraihat et al. [10] developed
a multi-dimensional success model for e-learning systems, in which quality is taken as
the main factor that drives users to continuously use e-learning systems. Cidral et al. [66]
deemed the D&M ISS model’s quality factor as the preceding factor that affects users’
continuance intention to use e-learning systems. Furthermore, they evaluated the success
of e-learning systems. In addition, research on continuance intention to use e-learning
systems also shows that the quality dimension of the D&M ISS model is an important factor
influencing users’ continuance intention to use e-learning systems [67–69]. Therefore, this
study considers that for MOOC platforms as a kind of e-learning system, the precondition
to gain success is to have excellent platform quality, which can effectively improve users’
psychological perception of services. Based on the external factors constructed by the D&M
ISS model (e.g., information quality, service quality and system quality), this study strives
to develop the quality factor of MOOC platforms.

2.3. Expectation Confirmation Model (ECM)

The Expectation confirmation model, first proposed by Bhattacherjee in 2001 based
on expectation confirmation theory [70], revolves around the interconnection between
users’ cognitive beliefs and the formation of their continuance intention to use e-learning
systems [33]. According to the ECM, the initial enrollment of learners is only the first step of
success for an e-learning system, and the key thereof lies in maintaining users’ willingness
for continuous use, in which confirmation of user expectations, perceived usefulness, and
user satisfaction are considered to be the key factors affecting their willingness [71]. ECM
claims that users have different expectations upon ISs before and after adoption, while
perceived performance is the psychological reflection of user expectations after adoption;
perceived performance and satisfaction of users increase or decrease with the degree of
expectation confirmation, further affecting the formation of their continuance intention [72].

Since its development, the ECM has been widely used to study users’ continuance
intention to use ISs, including ERP systems [73], e-learning systems [6], e-government [43],
mobile social commerce [37], and mobile applications [74]. For example, Kim et al. [75]
integrated the value-based adoption model and the ECM together to investigate users’
continuance intention to use accommodation-related mobile phone software. The results
showed that users’ expectation confirmation after the first use of a mobile phone software
product had a significant impact on their perceived usefulness and satisfaction and that
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user satisfaction demonstrated the strongest impact on users’ willingness for continued
use. Cheng [39] used the ECM to study the continuance intention to use e-learning systems,
and detected that expectation confirmation affected users’ perceived performance and
satisfaction with e-learning systems, which, in turn, affect their continuance intention.
However, some studies questioned the accuracy of the above results, claiming that the
ECM fails to fully consider the impact of external factors on the confirmation of user
expectations, which may limit the prediction accuracy of the model [38,39,43,76]. In view
of this, we expanded the quality factor constructed by the D&M ISS model as an external
factor of expectation confirmation, in an attempt to better understand the continuous use
behaviors of users in a MOOC context.

3. Research Model and Hypothesis
3.1. Research Model

This study establishes a theoretical model based on the ECM and the quality factors
of the D&M ISS model, and attempts to examine the role that information quality, system
quality, and service quality as the preceding factors affect the confirmation of user expecta-
tions play in the formation of users’ continuance intention to use MOOC platforms. The
research model is advanced as indicated in Figure 1.
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3.2. Research Hypothesis

Delone and Mclean pointed out that the key to driving users to continuously use ISs is
the quality factor, which, as they suggested, should include three aspects, i.e., information
quality, system quality, and service quality [32]. Information quality is determined by
both the source and content of the information provided by ISs, reflecting the accuracy,
effectiveness, and versatility of system contents; system quality corresponds to the technical
characteristics, performance, and availability of a system itself; while service quality is
associated with the capacities of IS developers in response and perception and generally
described as the degree of matching between the service level delivered by IS developers
and user expectations [32,77].

The quality factor constructed by the D&M ISS model as the precondition of IS
success has been widely used in the research on ISs. With e-learning systems as an
example, Cidral et al. [66] verified the importance of system quality, information quality,
and service quality in affecting users’ psychological perception. They reported that the
degree of conformity of platform quality to user expectations positively influenced users’
continuance intention to use ISs. In addition, Cheng [39] took system quality, information
quality, and service quality as the preconditions of users’ continuance intention to use
e-learning systems and concluded that the quality factor of IS affected the confirmation
of user expectations [38]. Studies have shown that if users perceive the quality of an
e-learning system as exceeding their expectations, they respond positively to the e-learning
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system. Therefore, this study concludes that the high-level platform qualities (including
information quality, system quality, and service quality) provided by MOOC operators
have a positive impact on expectation confirmation. Based on this, we proposed the
following hypotheses:

Hypothesis 1 (H1). The information quality of a MOOC platform positively affects users’ confirmation.

Hypothesis 2 (H2). The system quality of a MOOC platform positively affects users’ confirmation.

Hypothesis 3 (H3). The service quality of a MOOC platform positively affects users’ confirmation.

In addition, according to the ECM, user satisfaction is an important component of pre-
dicting continuance intention, while the degree of user satisfaction depends on expectations
and perceived usefulness of the product or service bought. These connections come from
the theory of cognitive dissonance [33,78]. Moreover, Bhattacherjee believed that users
generate initial expectations before using an IS and they confirm their expectations based on
the actual experience. If an IS outperforms expectations, users generate positive emotional
responses to it, which in turn positively affects perceived performance and user satisfaction.
A large number of studies on IS continuation have shown that it is feasible to apply the
ECM to study users’ continuance intention to use a product [44,79]. Akram et al. [44] in-
vestigated the determinants of users’ continuance intention to use mobile banking services
using an extended ECM, and concluded that the confirmation following the first use of the
mobile banking services had a significant impact on perceived performance and user satis-
faction. Hung et al. [80] explored the willingness of university teachers to continuously use
e-learning systems using an ECM and detected that confirmation would affect perceived
performance and post-use satisfaction, which consequently influence users’ continuance
intention. In view of the above, this study puts forward the following hypotheses based on
the ECM:

Hypothesis 4 (H4). Confirmation positively affects perceived usefulness of an MOOC platform.

Hypothesis 5 (H5). Confirmation positively affects satisfaction of an MOOC platform.

Hypothesis 6 (H6). Perceived usefulness positively affects satisfaction of an MOOC platform.

Hypothesis 7 (H7). Perceived usefulness positively affects continuance intention of an MOOC
platform.

Hypothesis 8 (H8). Satisfaction positively affects continuance intention of an MOOC platform.

4. Methodology
4.1. Questionnaire and Pre-Test

This study includes 7 constructs and 28 question items, and the measurements of
all constructs refer to existing research. Specifically, the items on information quality,
system quality, and service quality come from the studies by Delone and Mclean [32] and
Aparicio et al. [34]; confirmation items refer to the studies by Liao et al. [71], Cheng [39],
and Bhattacherjee [33]; both perceived usefulness and satisfaction items refer to the studies
by Bhattacherjee [32] and Liao et al. [71]; and continuance intention items come from the
studies by Bhattacherjee [33], Cheng [39], and Lin and Wang [81].

In order to ensure that all items are suitable for the MOOC environment, five professors
in the field of pedagogy and information system management were invited to evaluate
whether there is a deviation in the measured questions. Then, a pre-survey was performed on
30 undergraduates with experience in at least one MOOC platform. According to the results
of the pre-survey and the recommendations from the professors, slight modifications to the
wording of the questions were made with their original intent unchanged. Ultimately, a final
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questionnaire was designed. All questions were statistically analyzed by the 7-point Likert
scale, where, “1” indicates “strongly disagree” and “7” “strongly agree”. See Appendix A.

4.2. Data Collection and Analysis Method

Using a convenient sampling method, this study surveyed Chinese learners who were
enrolled in at least a course in MOOC platforms including Coursera, Edex, Udacity, and
Icourse163. The questionnaires were distributed online from October to December 2019.
There were a total of 550 valid questionnaires collected. The questionnaire data collected
were statistically analyzed using SPSS 24 (SPSS Inc., Chicago, IL, USA) and AMOS 24 (SPSS
Inc., Chicago, IL, USA). First of all, a frequency analysis was performed to identify the
demographic characteristics of the respondents. Then, partial least squares regression (PLS
regression) was adopted to process the data collected, and the fitness and structural validity
of the proposed measurement model was tested by evaluating its reliability, convergence
validity, and discrimination validity. Finally, the hypotheses proposed were verified by a
structural equation model [82].

4.3. Sample Characteristics

According to descriptive demographic characteristics, the respondents had a balanced
gender distribution, including 42% of males and 58% of females, mainly falling into the
two age groups, 19–28 (28.7%) and 29–38 (55.6%). In terms of educational background,
more than 90% of the respondents had a bachelor’s degree or higher. In terms of use
time of MOOC platforms, the proportions of the respondents who had use time of less
than 6 months, 6–12 months, and longer than 1 year were 34.9%, 56.9%, and 8.2%, respec-
tively. Additionally, the main MOOC platforms used include Icourse163 (52.2%), Coursera
(25.6%), Udacity (14.2%) and Edex (8%). The sample traits are basically consistent with
the characteristics of the main users of MOOC platforms in China. Therefore, the sample
data collected in this study were suitable for empirical analysis. Table 1 presents the
respondents’ profile.

Table 1. Demographic sample characteristics.

Demographics Category Frequency Percentage

Gender
Male 231 42

Female 319 58
Total 550 100

Age

≤18 51 9.3
19–28 158 28.7
29–38 306 55.6
≥39 35 6.4
Total 550 100

Educational level

Senior high school or below 12 2.2
Associate degree 34 6.2
Bachelor’s degree 416 75.6

Master’s or higher degree 88 16
Total 550 100

Experience in MOOC

Less than 6 months 192 34.9
6–12 months 313 56.9

More than 1 year 45 8.2
Total 550 100

MOOC platforms

Coursera 141 25.6
Edex 44 8

Udacity 78 14.2
Icourse163 287 52.2

Total 550 100
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5. Results

Before statistical analysis, the normality and multicollinearity of the data were tested.
The maximum absolute value of skewness was 0.832, less than 2, and the maximum
absolute value of kurtosis was 1.962, less than 5, so the data conformed to a normal
distribution [83]. In order to test whether the data had multicollinearity, the variance
inflation factor (VIF) was calculated. The results showed that the maximum VIF value
of all variables was 2.127, much lower than the recommended threshold of 10, which
suggested that the data had no serious collinearity problems [84]. In addition, considering
that common-method variance (CMV) may threaten the validity of the data, the Harman’s
single factor test was adopted to detect the CMV [85]. It was found that the variance
explanation rate of the first factor was 35.081%, which is less than 50%, suggesting that
CMV had little effect on the results of this study.

5.1. Measurement Model

In order to verify the validity and accuracy of the data collected, this study tested the
reliability and convergent validity of the measurement model built. It is generally believed
in the field of social science that Cronbach’s alpha > 0.7 and composite reliability (CR) >
0.7, suggesting that the measurement items of the potential constructs have good internal
consistency. Convergent validity is mainly tested by the average variance extracted (AVE)
value; that is, when an AVE value greater than 0.5 indicates that the measurement items
have satisfactory convergent validity [86,87]. The analysis results of the measurement
model showed that the Cronbach’s alpha value and factor load of all the constructs in this
study were greater than 0.7, and the CR and AVE values were also acceptable (See Table 2).
These suggest that the measurement items have satisfactory reliability and validity [87].

Table 2. Convergent validity and reliability.

Construct Item Factor
Loading SMC CR AVE Cronbach’s

Alpha

Information
Quality

INFQ1 0.744 0.553

0.896 0.684 0.893
INFQ2 0.917 0.840
INFQ3 0.876 0.767
INFQ4 0.757 0.573

System
Quality

SYSQ1 0.895 0.800

0.897 0.688 0.887
SYSQ2 0.934 0.872
SYSQ3 0.753 0.567
SYSQ4 0.714 0.510

Service
Quality

SERQ1 0.653 0.427

0.825 0.543 0.797
SERQ2 0.835 0.697
SERQ3 0.675 0.456
SERQ4 0.771 0.594

Confirmation

CONF1 0.809 0.654

0.852 0.591 0.841
CONF2 0.811 0.658
CONF3 0.678 0.460
CONF4 0.768 0.590

Perceived
Usefulness

PU1 0.781 0.610

0.838 0.565 0.835
PU2 0.702 0.493
PU3 0.792 0.627
PU4 0.728 0.530

Satisfaction

SAT1 0.805 0.648

0.873 0.633 0.873
SAT2 0.787 0.619
SAT3 0.791 0.625
SAT4 0.799 0.638

Continuance
Intention

CI1 0.763 0.582

0.835 0.559 0.833
CI2 0.718 0.516
CI3 0.767 0.588
CI4 0.740 0.548

Note: CR = Composite Reliability; AVE = Average Variance Extracted.
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Discrimination validity refers to the low correlation and significant difference between
latent variables, and it can be evaluated by comparing AVE square root and correlation
coefficients between variables. If the correlation coefficient of a variable with another one
is smaller than the square root of the average variance of the variable, it indicates that the
discrimination validity of the variable is good [86]. According to the analysis results in
Table 3, all potential variables had a square root of AVE larger than their correlation coeffi-
cients, suggesting that the measurement model built in this study has good discrimination
validity. Meanwhile, in terms of the degree of fitting of the model, CMIN/DF = 1.393,
TLI = 0.983, CFI = 0.985, GFI = 0.945, NFI = 0.949, RMSEA = 0.027, all results higher than
the recommended thresholds [88]. This suggests that the measurement model built has a
good degree of fitting.

Table 3. Discriminant validity.

Construct INFQ SYSQ SERQ CONF PU SAT CI

INFQ 0.827
SYSQ 0.310 0.829
SERQ 0.277 0.214 0.737
CONF 0.547 0.376 0.519 0.769

PU 0.494 0.458 0.614 0.628 0.752
SAT 0.391 0.470 0.343 0.663 0.669 0.796
CI 0.375 0.398 0.390 0.323 0.702 0.678 0.748

Note: The bolded numbers on the diagonal are the square root of AVE. INFQ: Information quality; SYSQ: System
quality; SERQ: Service quality, CONF: Confirmation; PU: Perceived usefulness, SAT: Satisfaction; CI: Continuance
intention.

5.2. Structural Model

After verifying the measurement model, we performed modeling using structural
equations and tested the relationship between latent variables. The fitting indicators of the
built structural model are as shown below: CMIN/DF = 1.477, TLI = 0.976, CFI = 0.979,
GFI = 0.931, NFI = 0.939, RMSEA = 0.029; all fitness indicators of the structural model were
higher than the recommended thresholds [89]. This suggests that the model has a good
degree of fitting. According to the analysis results of the structural model, all hypotheses
proposed in this study are valid. Figure 2 presents the path relationships and explanatory
variances of all hypotheses of the structural model, and Table 4 summarizes the results of
the above hypotheses.
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Table 4. Influence paths and hypotheses results.

Hypotheses Path Path Coefficient t-Value p-Value Result

H1 INFQ —> CONF 0.438 8.593 *** Supported
H2 SYSQ —> CONF 0.154 5.671 *** Supported
H3 SERQ —> CONF 0.437 8.326 *** Supported
H4 CONF —> PU 0.932 12.785 *** Supported
H5 CONF —> SAT 0.624 6.633 *** Supported
H6 PU —> SAT 0.447 6.662 *** Supported
H7 PU —> CI 0.416 7.101 *** Supported
H8 SAT —> CI 0.316 6.225 *** Supported

Note: *** p < 0.01; INFQ: Information quality, SYSQ: System quality, SERQ: Service quality, CONF: Confirmation,
PU: Perceived usefulness, SAT: Satisfaction, CI: Continuance intention.

6. Discussion

The purpose of this study is to explore the factors affecting users’ continuance intention
to use MOOC platforms. With the D&M ISS model and the ECM as the theoretical basis,
this study built a research model and performed an empirical analysis of the hypotheses
in the research model built in a structural manner. Analysis results showed that all the
eight hypotheses proposed are valid. In this section, we discuss the key findings and
implications of the hypothetical model’s analysis results.

First, expectation confirmation was significantly influenced by the MOOC platforms’
information quality (β = 0.438, p < 0.01), system quality (β = 0.154, p < 0.01), and service
quality (β = 0.437, p < 0.01). Information quality, system quality, and service quality ex-
plained 54.6% of the variation in users’ confirmation. Analysis results provided strong
support for H1, H2, and H3. The results showed that satisfactorily high-quality infor-
mation, systems, and services provided by an MOOC platform effectively facilitate the
formation of users’ initial expectation toward it. Therefore, platform quality is a key factor
affecting users’ adoption for a MOOC platform [90], which is consistent with previous
research results [38,39,44].

In addition, expectation confirmation had a significant effect on both perceived use-
fulness (β = 0.932, p < 0.01) and user satisfaction (β = 0.624, p < 0.01). Therefore, H4 and
H5 are backed, which is consistent with previous ECM-related research results [33,37,39].
Our results showed that expectation confirmation positively affects the perceived per-
formance of MOOC platforms, including enhancing perceived usefulness and user sat-
isfaction [40,71,91]. To note, this finding has also been confirmed in related research on
e-learning. For example, the research by Dai et al. [36] suggested that perceived usefulness
of an MOOC platform, in fact, is a manifestation of initial expectations confirmed after
the platform is adopted, while the confirmation degree of initial expectations completely
influences user satisfaction. Therefore, positive expectation confirmation is an important
prerequisite for promoting users’ continuance intention to use MOOC platforms.

In the end, perceived usefulness of MOOC platforms was found to positively influence
user satisfaction (β = 0.447, p < 0.01) and continuance intention (β = 0.416, p < 0.01), while
user satisfaction affected continuance intention (β = 0.316, p < 0.01), thereby supporting H6,
H7, and H8. These findings are consistent with the results of the studies on continuance
intention to use IS [40,43,76,79]. Perceived usefulness and user satisfaction have been
reconfirmed as key factors affecting continuance intention. Research results showed that if
a MOOC platform brings actual improvement in personal performance, users will generate
affirmative psychological feedback to the platform, which in turn uplifts users’ continuance
intention to use the MOOC platform.

7. Implications
7.1. Theoretical Implications

Theoretically, this study extends the information quality, system quality, and service
quality constructed in the D&M ISS model into the original ECM and takes them as the
preceding factors affecting expectation confirmation, making up for the insufficiency in
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explanation of the original ECM for expectation confirmation. We verified the theoretical
model using a structural model and found that all hypotheses proposed in this study are
valid. Furthermore, the integrated ECM explained 54.3% of the variation in continuance
intention, a remarkable increase compared with 41% explained by the original ECM [33].
Although the effectiveness of the extended ECM for users’ continuance intention in indus-
tries such as e-government, ERP, and mobile payment has been repeatedly confirmed, to
our knowledge, this paper is the first empirical study that applies the extended ECM to
MOOC platforms. Therefore, our findings are expected to provide a new perspective for
the application of ECM to the sustainable research on MOOC.

7.2. Practical Implications

This research is of significant practical value for MOOC providers to develop effective
strategies to improve platform functions and boost the degree of participation of learners.
From the perspective of MOOC platform operators, grasping users’ actual needs and
designing functions and systems that meet user expectations are key factors affecting the
initial operation of MOOC platforms. Study results have indicated that superior platform
quality (e.g., information quality, system quality, and service quality) plays a positive role
in promoting the formation of users’ initial expectations. Therefore, MOOC operators
should pay attention to the quality maintenance of MOOC platforms. First, while making
sure that the system is reliable and safe [31], MOOC platform operators should strive to
develop system functions on the basis of having a clear understanding of users’ actual
needs, with the goal of perfecting teaching processes and improving learning outcomes.

Moreover, apart from providing teacher profile and curriculum-related information,
efforts should be made to establish an effective evaluation mechanism for teachers and
courses. The mechanism may include, for example, scoring for teachers and courses, and
individual teaching characteristics of teachers, so as to provide references for potential users
to choose courses or for teachers to learn from each other. Moreover, sufficient attention
should be given to expectation confirmation that acts as a key preceding factor affecting
continuance use. MOOC platform operators are suggested to establish and maintain close
relationships with users while emphasizing platform practicality, with the goal of timely
understanding users’ expectations and needs for courses and systems. Additionally, they
should honestly acknowledge the actual performance and limitations of their courses
or services developed, avoiding exaggerated publicity. This is because unrealistic initial
expectations brought about by exaggerated publicity go against the formation of perceived
usefulness and satisfaction and thus negatively affect users’ continuance intention.

8. Conclusions

As an innovative educational model, MOOC is being increasingly accepted, but the
high dropout rate has turned out to be a barrier to its sustainable development. For this
reason, we attempted to identify the key factors affecting users’ continuance intention to
use MOOC platforms from the perspective of information systems. First, we extended
the constructs of the D&M ISS model (including information quality, system quality, and
service quality) to the initial ECM, in an attempt to make up for the insufficient explanation
of the original ECM for the external factors of expectation confirmation. Then, with the
help of the modified ECM that integrated the quality factors in the D&M ISS model, we
verified the tenability of the hypotheses proposed using a structural approach. Our research
results suggested that (1) the information quality, system quality, and service quality of
MOOC platforms have an impact on expectation confirmation, of which service quality
has the largest impact; (2) perceived usefulness and user satisfaction are the key factors
affecting users’ continuance intention to use MOOC platforms; and (3) the theoretical
model that combines the D&M ISS model and the ECM outperforms the original ECM in
explaining the variation in continuance intention. In view of the above, MOOC platform
operators are recommended to pay attention to platform quality, in an attempt to achieve
users’ expectation confirmation after adoption. Meanwhile, they are advised to take a
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cautious attitude towards promotion and advisement to avoid expectation deviation that
is considered to affect users’ continuance intention.

This study has some limitations. First, despite the satisfactory validity and reliability
of the research model built, this study, similar to other studies using a survey-based method,
is subject to a limited size of samples. The respondents mostly fell into the age group of
25–35 years, leading to the research model having an insufficient explanation for users
aged 45 years and higher. Meanwhile, all respondents were Chinese, so the applicability
of the research model in other countries or regions needs to be verified. Furthermore, in
terms of the research model, the constructs of this study mostly come from the D&M ISS
model and the ECM, failing to take into account the impact of other important variables to
continuance intention, such as course types, user habits, and trust. Therefore, the model
should be further expanded in future studies, with the goal of better clarifying the complex
relations between MOOC platforms and users’ continuance intention to use them.
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Appendix A

Table A1. The Study’s Measurement Items.

Information
Quality

MOOC platform provides accurate information.
MOOC platform provides clear information.
MOOC platform provides relevant information.
MOOC platform provides up-to-date information.

System
Quality

It is convenient (easy to use) to access MOOC platform system.
MOOC platform system is reliable.
MOOC platform system is flexible (user-friendly).
MOOC platform system allows information to be readily accessible to me.

Service
Quality

MOOC platform provides prompt responses to my request.
MOOC platform provides right solution to my request.
The service provided in MOOC platform attends to individual’s personalized needs.
The service provided in MOOC platform is reliable.

Confirmation

My experience with using the MOOC platform was better than I expected.
My expectations from using the MOOC platform were confirmed.
The service level provided by the MOOC platform was better than I expected.
The MOOC platform can meet demands in excess of what I required for the service.

Perceived
Usefulness

The MOOC platform benefits me.
The advantages of the MOOC platform outweigh the disadvantages.
Using a MOOC platform helps me accomplish tasks more quickly.
Overall, using a MOOC platform is advantageous.

Satisfaction

I am extremely pleased with the MOOC platform.
I am extremely contented with the MOOC platform.
I am extremely satisfied with the MOOC platform.
I am absolutely delighted with the MOOC platform.

Continuance
intention

I intend to continue using the MOOC platform in future.
I intend to continue using MOOC platform rather than using any alternative means.
I will continue using the MOOC platform in future.
I strongly recommend others to use MOOC platform.
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