Reviewing the Role of Outdoor Lighting in Achieving Sustainable Development Goals
Abstract
:1. Introduction
2. Human-Centric Lighting
2.1. Psychological Effects
2.2. Visual Perception
2.3. Non-Visual Perception
2.4. Safety
3. Energy Efficient Lighting
3.1. Luminaire Efficiency
3.2. Lighting Control Effectiveness
4. Environmental Impacts of Light Pollution
4.1. Light Pollution: Quantification and Astronomical Implications
4.2. Impacts on Aquatic Life
4.3. Impacts Terrestrial Life
4.4. Light Pollution Mitigation
5. Conclusions
- Breaking paradigms in lighting design assuming minimum illuminance levels required and implement standardized maximum limits allowed;
- Generalize the use of outdoor lighting control by timing and dimming decreasing illuminance and lit areas;
- Optimizing lighting designs avoiding spill lighting;
- Adopting holistic lighting design including evaluation of light pollution impacts in local organisms affected;
- Confirm and consolidate results with greenish outdoor lighting;
- Enhancing light pollution detection and measurement by the use of sensing and complimentary computational models for simulations;
- Promoting ecology education for civilians warning about light pollution impacts and promoting guideline actions to mitigate light pollution;
- Encouraging ecological friendly designs of lighting in commercial and industry sectors;
- Promote active governance participation in creating regulations and performing public lighting practices to mitigate light pollution.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ouyang, J.Q.; Davies, S.; Dominoni, D. Hormonally mediated effects of artificial light at night on behavior and fitness: Linking endocrine mechanisms with function. J. Exp. Biol. 2018, 221. [Google Scholar] [CrossRef] [Green Version]
- Chapin, F.S.; Pamela Matson, H.M. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2002. [Google Scholar]
- Fisher, C.R.; Takai, K.; Le Bris, N. Hydrothermal Vent Ecosystems. Oceanography 2007, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Gerrig, R.J.; Zimbardo, P.; Svartdal, F.; Brennen, T.; Donaldson, R.; Author, P. Psychology and Life, 20th ed.; Pearson: Boston, MA, USA, 2013; p. 85. [Google Scholar]
- World Health Organization. World Report on Vision; World Health Organization: Geneva, Switzerland, 2019; p. 160. ISBN 9789241516570. Available online: https://apps.who.int/iris/handle/10665/328717 (accessed on 10 October 2019).
- Kyba, C.C.M.; Kuester, T.; Sánchez de Miguel, A.; Baugh, K.; Jechow, A.; Hölker, F.; Bennie, J.; Elvidge, C.D.; Gaston, K.J.; Guanter, L. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlicek, R.F. Smart lighting-Beyond simple illumination. In Proceedings of the 2012 IEEE Photonics Society Summer Topical Meeting Series, Seattle, WA, USA, 9–11 July 2012; pp. 147–148. [Google Scholar] [CrossRef]
- MarketsandMarkets. Market Research Report SE 2506, Smart Lighting Market-Global Forecast To 2025; MarketsandMarkets: Dallas, TX, USA, 2020. [Google Scholar]
- Carli, R.; Dotoli, M.; Cianci, E. An optimization tool for energy efficiency of street lighting systems in smart cities. IFAC-PapersOnLine 2017, 50, 14460–14464. [Google Scholar] [CrossRef]
- Beccali, M.; Bonomolo, M.; Brano, V.L.; Ciulla, G.; Di Dio, V.; Massaro, F.; Favuzza, S. Energy saving and user satisfaction for a new advanced public lighting system. Energy Convers. Manag. 2019, 195, 943–957. [Google Scholar] [CrossRef]
- United Nations, The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 29 April 2021).
- Bishehsari, F.; Levi, F.; Turek, F.W.; Keshavarzian, A. Circadian Rhythms in Gastrointestinal Health and Diseases. Gastroenterology 2016, 151, e1. [Google Scholar] [CrossRef] [Green Version]
- United Nations. The Sustainable Development Goals Report 2020; United Nations: Rome, Italy, 2020; p. 66. ISBN 9789210049603. [Google Scholar] [CrossRef]
- Congiu, T.; Sotgiu, G.; Castiglia, P.; Azara, A.; Piana, A.; Saderi, L.; Dettori, M. Built Environment Features and Pedestrian Accidents: An Italian Retrospective Study. Sustainability 2019, 11, 1064. [Google Scholar] [CrossRef] [Green Version]
- Delbaere, K.; Close, J.C.; Heim, J.; Sachdev, P.S.; Brodaty, H.; Slavin, M.J.; Kochan, N.A.; Lord, S.R. A multifactorial approach to understanding fall risk in older people. J. Am. Geriatr. Soc. 2010, 58, 1679–1685. [Google Scholar] [CrossRef]
- Welsh, B.C.; Farrington, D.P. Effects of Improved Street Lighting on Crime. Campbell Syst. Rev. 2008, 4, 1–51. [Google Scholar] [CrossRef]
- Wanvik, P. Effects of road lighting: An analysis based on Dutch accident statistics 1987–2006. Accid. Anal. Prev. 2009, 41, 123–128. [Google Scholar] [CrossRef]
- Doleac, J.L.; Sanders, N.J. Under the Cover of Darkness: How Ambient Light Influences Criminal Activity. Rev. Econ. Stat. 2015, 97, 1093–1103. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, G.R.; Gaston, K.J.; Visser, M.E.; Elgar, M.A.; Jones, T.M. Artificial light at night as a driver of evolution across urban–rural landscapes. Front. Ecol. Environ. 2018, 16, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Marquenie, J.M.; Wagner, J.; Stephenson, M.T.; Lucas, L. Green Lighting the Way: Managing Impacts from Offshore Platform Lighting on Migratory Birds. In Proceedings of the SPE International Conference on Health, Safety, and Environment, Long Beach, CA, USA, 19 March 2014. [Google Scholar] [CrossRef]
- Hagen, O.; Santos, R.; Schlindwein, M.; Viviani, V. Artificial Night Lighting Reduces Firefly (Coleoptera: Lampyridae) Occurrence in Sorocaba, Brazil. Adv. Entomol. 2015, 3, 24–32. [Google Scholar] [CrossRef] [Green Version]
- CIE. Position Statement on Non-Visual Effects of Light: Recommending Proper Light at the Proper Time; CIE: Hong Kong, China, 2019. [Google Scholar]
- Houser, K.W.; Esposito, T. Human-Centric Lighting: Foundational Considerations and a Five-Step Design Process. Front. Neurol. 2021, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Cupkova, D.; Kajati, E.; Mocnej, J.; Papcun, P.; Koziorek, J.; Zolotova, I. Intelligent human-centric lighting for mental wellbeing improvement. Int. J. Distrib. Sens. Netw. 2019, 15. [Google Scholar] [CrossRef]
- Zhang, R.; Campanella, C.; Aristizabal, S.; Jamrozik, A.; Zhao, J.; Porter, P.; Ly, S.; Bauer, B.A. Impacts of Dynamic LED Lighting on the Well-Being and Experience of Office Occupants. Int. J. Environ. Res. Public Health 2020, 17, 7217. [Google Scholar] [CrossRef] [PubMed]
- Roslyakova, S.V.; Chirimisina, D.A.; Lyubakova, Y.S. Possibilities to integrate wearable biomonitoring sensors into adaptive lighting systems. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd: Bristol, UK, 2020; Volume 944, p. 012029. [Google Scholar] [CrossRef]
- Torrington, J.M.; Tregenza, P.R. Lighting for people with dementia. Light. Res. Technol. 2007, 39, 81–97. [Google Scholar] [CrossRef]
- Figueiro, M.G.; Plitnick, B.A.; Lok, A.; Jones, G.E.; Higgins, P.; Hornick, T.R.; Rea, M.S. Tailored lighting intervention improves measures of sleep, depression, and agitation in persons with Alzheimer’s disease and related dementia living in long-term care facilities. Clin. Interv. Aging 2014, 9, 1527–1537. [Google Scholar] [CrossRef] [Green Version]
- Dinitz, S.; Dynes, R.R.; Clarke, A.C. Deviance: Studies in Definition, Management, and Treatment, 2nd ed.; Oxford University Press: New York, NY, USA, 1975. [Google Scholar]
- Haans, A.; de Kort, Y.A. Light distribution in dynamic street lighting: Two experimental studies on its effects on perceived safety, prospect, concealment, and escape. J. Environ. Psychol. 2012, 32, 342–352. [Google Scholar] [CrossRef]
- Zhong, C.B.; Bohns, V.K.; Gino, F. Good Lamps Are the Best Police: Darkness Increases Dishonesty and Self-Interested Behavior. Psychol. Sci. 2010, 21, 311–314. [Google Scholar] [CrossRef]
- Steidle, A.; Werth, L. In the Spotlight: Brightness Increases Self-Awareness and Reflective Self-Regulation. J. Environ. Psychol. 2014, 39, 8–9. [Google Scholar] [CrossRef]
- Chiou, W.B.; Cheng, Y.Y. In broad daylight, we trust in God! Brightness, the salience of morality, and ethical behavior. J. Environ. Psychol. 2013, 36, 37–42. [Google Scholar] [CrossRef]
- Tähkämö, L.; Nikunen, H.; Bhusal, P. Outdoor Lighting Promoting Well-Being. Int. J. Inf. Technol. 2016, 4, 59–71. [Google Scholar]
- Lorenc, T. Fear of crime and the environment: Systematic review of UK qualitative evidence. BMC Public Health 2013, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graja, S.; Lopes, P.; Chanel, G. Impact of Visual and Sound Orchestration on physiological arousal and tension in a horror game. IEEE Trans. Games 2020, 1. [Google Scholar] [CrossRef]
- Van Rijswijk, L.; Haans, A. Illuminating for Safety: Investigating the Role of Lighting Appraisals on the Perception of Safety in the Urban Environment. Environ. Behav. 2018, 50, 889–912. [Google Scholar] [CrossRef] [PubMed]
- Peña-García, A.; Hurtado, A.; Aguilar-Luzón, M. Impact of public lighting on pedestrians’ perception of safety and well-being. Saf. Sci. 2015, 78, 142–148. [Google Scholar] [CrossRef]
- Narendran, N.; Freyssinier, J.; Zhu, Y. Energy and user acceptability benefits of improved illuminance uniformity in parking lot illumination. Light. Res. Technol. 2016, 48, 789–809. [Google Scholar] [CrossRef]
- Rea, M.; Bullough, J.; Brons, J. Parking lot lighting based upon predictions of scene brightness and personal safety. Light. Res. Technol. 2017, 49, 293–304. [Google Scholar] [CrossRef]
- Nikunen, H.; Korpela, K.M. The effects of scene contents and focus of light on perceived restorativeness, fear and preference in nightscapes. J. Environ. Plan. Manag. 2012, 55, 465–466. [Google Scholar] [CrossRef]
- Hartig, T.; Staats, H. Restorative environments. J. Environ. Psychol. 2003, 23. [Google Scholar] [CrossRef]
- Menardo, E.; Brondino, M.; Hall, R.; Pasini, M. Restorativeness in Natural and Urban Environments: A Meta-Analysis. Psychol. Rep. 2021, 124, 417–437. [Google Scholar] [CrossRef]
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet 2008, 372, 1655–1660. [Google Scholar] [CrossRef] [Green Version]
- Wilson, E.O. Biophilia and the conservation ethic. In Evolutionary Perspectives on Environmental Problems; Routledge: London, UK, 1984; pp. 250–258. [Google Scholar]
- Safranek, S.; Collier, J.M.; Wilkerson, A.; Davis, R.G. Energy impact of human health and wellness lighting recommendations for office and classroom applications. Energy Build. 2020, 226, 110365. [Google Scholar] [CrossRef]
- Silvester, J.; Konstantinou, E. Lighting, Well-Being and Work Performance: A Review of the Literature; Technical report; City University: London, UK, 2010. [Google Scholar]
- Solt, J. Changing perspectives on daylight: Science, technology and culture. In Sponsored Supplement to Science/AAS; Science/AAAS Custom Publishing Office: Washington, DC, USA, 2017; Volume 358, pp. 1–45. [Google Scholar]
- Vandewalle, G.; Maquet, P.; Dijk, D.J. Light as a modulator of cognitive brain function. Trends Cogn. Sci. 2009, 13, 429–438. [Google Scholar] [CrossRef]
- Yannis, G.; Kondyli, A.; Mitzalis, N. Effect of lighting on frequency and severity of road accidents. Proc. Inst. Civ. Eng. Transp. 2013, 166, 271–281. [Google Scholar] [CrossRef]
- Grubisic, M.; Haim, A.; Bhusal, P.; Dominoni, D.M.; Gabriel, K.M.A.; Jechow, A.; Kupprat, F.; Lerner, A.; Marchant, P.; Riley, W.; et al. Light Pollution, Circadian Photoreception, and Melatonin in Vertebrates. Sustainability 2019, 11, 6400. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.; Peirson, S.; Berson, D.; Brown, T.; Cooper, H.; Czeisler, C.; Figueiro, M.; Gamlin, P.; Lockley, S.; O’Hagan, J.; et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2013, 37. [Google Scholar] [CrossRef] [PubMed]
- Figueiro, M.G.; Bierman, A.; Plitnick, B.; Rea, M.S. Preliminary evidence that both blue and red light can induce alertness at night. BMC Neurosci. 2009, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Plitnick, B.; Figueiro, M.; Wood, B.; Rea, M. The effects of red and blue light on alertness and mood at night. Light. Res. Technol. 2010, 42, 449–458. [Google Scholar] [CrossRef]
- Wardono, P.; Hibino, H.; Koyama, S. Effects of Interior Colors, Lighting and Decors on Perceived Sociability, Emotion and Behavior Related to Social Dining. Procedia-Soc. Behav. Sci. 2012, 38, 362–372. [Google Scholar] [CrossRef] [Green Version]
- Aan het Rot, M.; Moskowitz, D.; Young, S. Exposure to bright light is associated with positive social interaction and good mood over short time periods: A naturalistic study in mildly seasonal people. J. Psychiatr. Res. 2008, 42, 311–319. [Google Scholar] [CrossRef]
- Koval, I.V.; Bystryantseva, N.V.; Kolgushkina, S.V.; Lekus, E.U. Identification of a tool for evaluation of lighting. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 944, p. 012018. [Google Scholar] [CrossRef]
- Viikari, M.; Puolakka, M.; Halonen, L.; Rantakallio, A. Road lighting in change: User advice for designers. Light. Res. Technol. 2012, 44, 171–185. [Google Scholar] [CrossRef]
- Bozorg Chenani, S.; Maksimainen, M.; Tetri, E.; Kosonen, I.; Luttinen, T. The effects of dimmable road lighting: A comparison of measured and perceived visibility. Transp. Res. Part F Traffic Psychol. Behav. 2016, 43, 141–156. [Google Scholar] [CrossRef]
- Eloholma, M.; Ketomäki, J.; Orreveteläinen, P.; Halonen, L. Visual performance in night-time driving conditions. Ophthalmic Physiol. Opt. 2006, 26, 254–263. [Google Scholar] [CrossRef]
- Wolska, A.; Sawicki, D. Evaluation of discomfort glare in the 50+ elderly: Experimental study. Int. J. Occup. Med. Environ. Health 2014, 27, 444–459. [Google Scholar] [CrossRef]
- Jianyou, Y.; Shuya, S.; Xiaocong, W.; Zhizhong, L.; Jianbo, W.; Yanxin, C.; Shengshen, G. Simulation and Analysis of glare effect of two lane tunnel lighting under symmetrical lighting arrangement. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd: Bristol, UK, 2021; Volume 636, p. 012003. [Google Scholar] [CrossRef]
- CIE. ILV: International Lighting Vocabulary, 2nd ed.; CIE S 017/E; CIE: Hong Kong, China, 2020. [Google Scholar]
- Giovannini, L.; Favoino, F.; Lo Verso, V.R.M.; Serra, V.; Pellegrino, A. GLANCE (GLare ANnual Classes Evaluation): An approach for a simplified spatial glare evaluation. Build. Environ. 2020, 186, 107375. [Google Scholar] [CrossRef]
- Hamedani, Z.; Solgi, E.; Hine, T.; Skates, H.; Isoardi, G.; Fernando, R. Lighting for work: A study of the relationships among discomfort glare, physiological responses and visual performance. Build. Environ. 2020, 167, 106478. [Google Scholar] [CrossRef]
- Hamedani, M.; Dulley, B.; Murdoch, I. Glaucoma and glare. Eye 2020. [Google Scholar] [CrossRef]
- Clear, R. Discomfort glare: What do we actually know? Light. Res. Technol. 2013, 45, 141–158. [Google Scholar] [CrossRef] [Green Version]
- Akashi, Y.; Muramatsu, R.; Kanaya, S. Unified Glare Rating (UGR) and subjective appraisal of discomfort glare. Int. J. Light. Res. Technol. 1996, 28, 199–206. [Google Scholar] [CrossRef]
- Bullough, J.; Brons, J.; Qi, R.; Rea, M. Predicting discomfort glare from outdoor lighting installations. Light. Res. Technol. 2008, 40, 225–242. [Google Scholar] [CrossRef]
- Żagan, W.; Zalewski, S.; Słomiński, S.; Kubiak, K. Methods for designing and simulating optical systems for luminaires. Bull. Pol. Acad. Sci. Tech. Sci. 2020, 68. [Google Scholar] [CrossRef]
- Sammarco, J.J.; Mayton, A.G.; Rubinstein, E.N. LED Area Lighting to Reduce Glare for Roof Bolter Operators. Mining Metall. Explor. 2020, 1–10. [Google Scholar] [CrossRef]
- Zielinska-Dabkowska, K.M.; Xavia, K. Global Approaches to Reduce Light Pollution from Media Architecture and Non-Static, Self-Luminous LED Displays for Mixed-Use Urban Developments. Sustainability 2019, 11, 3446. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, A.J. Visual stimuli, light and lighting are common triggers of migraine and headache. J. Light Vis. Environ. 2010, 34, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Astanei, D.; Munteanu, F.; Nemes, C.; Ciobanu, A.; Ionescu, M.; Adochitei, M. Light flicker detection using high-speed imaging. In Proceedings of the 2017 International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 6–9 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Davis, J.; Hsieh, Y.H.; Lee, H.C. Humans perceive flicker artifacts at 500 Hz. Sci. Rep. 2015, 5, 7861. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, A.; Veitch, J.; Lehman, B. LED lighting flicker and potential health concerns: IEEE standard PAR1789 update. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010; pp. 171–178. [Google Scholar] [CrossRef]
- Niemeyer, J.E. Viruses and circadian rhythms. Lab Anim. 2017, 46, 7. [Google Scholar] [CrossRef] [Green Version]
- Hower, I.M.; Harper, S.A.; Buford, T.W. Circadian rhythms, exercise, and cardiovascular health. J. Circadian Rhythm. 2018, 16. [Google Scholar] [CrossRef]
- Edgar, R.S.; Stangherlin, A.; Nagy, A.D.; Nicoll, M.P.; Efstathiou, S.; O’Neill, J.S.; Reddy, A.B. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc. Natl. Acad. Sci. USA 2016, 113, 10085–10090. [Google Scholar] [CrossRef] [Green Version]
- Wyse, C.A.; Selman, C.; Page, M.; Coogan, A.; Hazlerigg, D. Circadian desynchrony and metabolic dysfunction; did light pollution make us fat? Med. Hypotheses 2011, 77, 1139–1144. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.G.; Brainard, G.C.; Blask, D.E.; Lockley, S.W.; Motta, M.E. Adverse Health Effects of Nighttime Lighting: Comments on American Medical Association Policy Statement. Am. J. Prev. Med. 2013, 45, 343–346. [Google Scholar] [CrossRef]
- Dolsen, M.R.; Wyatt, J.K.; Harvey, A.G. Sleep, circadian rhythms, and risk across health domains in adolescents with an evening circadian preference. J. Clin. Child Adolesc. Psychol. 2019, 48, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Carrier, J. The role of sleep and circadian rhythms in health: A snapshot of key research interrogations. Pathol. Biol. Paris 2014, 62, 231–232. [Google Scholar] [CrossRef]
- Khaper, N.; Bailey, C.D.; Ghugre, N.R.; Reitz, C.; Awosanmi, Z.; Waines, R.; Martino, T.A. Implications of disturbances in circadian rhythms for cardiovascular health: A new frontier in free radical biology. Free Radic. Biol. Med. 2018, 119, 85–92. [Google Scholar] [CrossRef]
- Konturek, P.; Brzozowski, T.; Konturek, S. Gut clock: Implication of circadian rhythms in the gastrointestinal tract. J. Physiol. Pharmacol. 2011, 62, 139. [Google Scholar]
- Varcoe, T.J. Timing is everything: Maternal circadian rhythms and the developmental origins of health and disease. J. Physiol. 2018, 596, 5493. [Google Scholar] [CrossRef] [Green Version]
- Jagannath, A.; Taylor, L.; Wakaf, Z.; Vasudevan, S.R.; Foster, R.G. The genetics of circadian rhythms, sleep and health. Hum. Mol. Genet. 2017, 26, R128–R138. [Google Scholar] [CrossRef]
- Ray, S.; Reddy, A.B. COVID-19 management in light of the circadian clock. Nat. Rev. Mol. Cell Biol. 2020, 21, 494–495. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.R.D.; Guerreiro, R.D.C.; Andrade, H.D.A.; Stieler, E.; Silva, A.; de Mello, M.T. Does the compromised sleep and circadian disruption of night and shiftworkers make them highly vulnerable to 2019 coronavirus disease (COVID-19)? Chronobiol. Int. 2020, 37, 607–617. [Google Scholar] [CrossRef]
- Brown, G.M. Light, melatonin and the sleep-wake cycle. J. Psychiatry Neurosci. 1994, 19, 345. [Google Scholar]
- Lockley, S. Circadian Rhythms: Influence of Light in Humans; Elsevier: Amsterdam, The Netherlands, 2009; Volume 2, pp. 971–988. [Google Scholar] [CrossRef]
- Esposito, E.; Cuzzocrea, S. Antiinflammatory activity of melatonin in central nervous system. Curr. Neuropharmacol. 2010, 8, 228–242. [Google Scholar] [CrossRef] [Green Version]
- Phillips, A.J.; Vidafar, P.; Burns, A.C.; McGlashan, E.M.; Anderson, C.; Rajaratnam, S.M.; Lockley, S.W.; Cain, S.W. High sensitivity and interindividual variability in the response of the human circadian system to evening light. Proc. Natl. Acad. Sci. USA 2019, 116, 12019–12024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brainard, G.C.; Hanifin, J.P.; Greeson, J.M.; Byrne, B.; Glickman, G.; Gerner, E.; Rollag, M.D. Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor. J. Neurosci. 2001, 21, 6405–6412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore-Ede, M.; Heitmann, A.; Guttkuhn, R. Circadian potency spectrum with extended exposure to polychromatic white LED Light under workplace conditions. J. Biol. Rhythm. 2020, 35, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Burgess, H.J.; Savic, N.; Sletten, T.; Roach, G.; Gilbert, S.S.; Dawson, D. The relationship between the dim light melatonin onset and sleep on a regular schedule in young healthy adults. Behav. Sleep Med. 2003, 1, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Cajochen, C. Alerting effects of light. Sleep Med. Rev. 2007, 11, 453–464. [Google Scholar] [CrossRef]
- Peña-García, A.; Sędziwy, A. Optimizing lighting of rural roads and protected areas with white light: A compromise among light pollution, energy savings, and visibility. Leukos 2020, 16, 147–156. [Google Scholar] [CrossRef]
- Wang, R.; Zhai, X. Handbook of Energy Systems in Green Buildings; Springer: Berlin, Germany, 2018; Volume 160. [Google Scholar]
- Farrington, D.P.; Welsh, B.C. Improved street lighting and crime prevention. Justice Q. 2002, 19, 313–342. [Google Scholar] [CrossRef]
- Chalfin, A.; Hansen, B.; Lerner, J.; Parker, L. Reducing Crime through Environmental Design: Evidence from a Randomized Experiment of Street Lighting in New York City. Working Paper 25798, 2019. [CrossRef] [Green Version]
- Arvate, P.; Falsete, F.O.; Ribeiro, F.G.; Souza, A.P. Lighting and homicides: Evaluating the effect of an electrification policy in rural Brazil on violent crime reduction. J. Quant. Criminol. 2018, 34, 1047–1078. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Road Safety 2018; Licence: CC BYNC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- CIE. Road Lighting as an Accident Countermeasure; CIE 093; CIE: Hong Kong, China, 1992. [Google Scholar]
- Jackett, M.; Frith, W. Quantifying the impact of road lighting on road safety—A New Zealand Study. IATSS Res. 2013, 36, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Beyer, F.R.; Ker, K. Street lighting for preventing road traffic injuries. Cochrane Database Syst. Rev. 2009. [Google Scholar] [CrossRef] [Green Version]
- Bhagavathula, R.; Gibbons, R.B.; Edwards, C.J. Relationship between Roadway Illuminance Level and Nighttime Rural Intersection Safety. Transp. Res. Rec. 2015, 2485, 8–15. [Google Scholar] [CrossRef]
- Easa, S.M.; Reed, M.J.; Russo, F.; Dabbour, E.; Mehmood, A.; Curtis, K. Effect of Increasing Road Light Luminance on Night Driving Performance of Older Adults. Int. J. Eng. Appl. Sci. 2010, 6, 41–48. [Google Scholar] [CrossRef]
- Reed, M.; Easa, S.M. Effect of luminance on night driving performance of younger-old and older-old adults. Int. J. Res. Rev. Appl. Sci. 2011, 7, 218–227. [Google Scholar]
- Ndjiongue, A.R.; Ferreira, H.C. An overview of outdoor visible light communications. Trans. Emerg. Telecommun. Technol. 2018, 29, e3448. [Google Scholar] [CrossRef]
- Kumar, N.; Terra, D.; Lourenço, N.; Nero Alves, L.; Aguiar, R.L. Visible light communication for intelligent transportation in road safety applications. In Proceedings of the 2011 7th International Wireless Communications and Mobile Computing Conference, Istanbul, Turkey, 4–8 July 2011; pp. 1513–1518. [Google Scholar] [CrossRef]
- World Health Organization; FIA Foundation for the Automobile and Society; Global Road Safety Partnership; World Bank. Pedestrian Safety: A Road Safety Manual for Decision-Makers and Practitioners; World Health Organization: Geneva, Switzerland, 2013; p. xvi. 114p. [Google Scholar]
- Uttley, J.; Fotios, S. The effect of ambient light condition on road traffic collisions involving pedestrians on pedestrian crossings. Accid. Anal. Prev. 2017, 108, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, N.A.; Chu, X.; Guttenplan, M. Crossing Locations, Light Conditions, and Pedestrian Injury Severity. Transp. Res. Rec. 2006, 1982, 141–149. [Google Scholar] [CrossRef]
- Maynard, W.S. Prevention through Design-Slips, Trips and Falls. In Proceedings of the Paper presented at the Professional Development Conference and Exposition, Las Vegas, NV, USA, June 2013; Available online: https://onepetro.org/ASSPPDCE/proceedings-abstract/ASSE13/All-ASSE13/ASSE-13-717/77496 (accessed on 30 June 2013).
- Black, A.; Wood, J. Vision and falls. Clin. Exp. Optom. 2005, 88, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Fotios, S.; Uttley, J. Illuminance required to detect a pavement obstacle of critical size. Light. Res. Technol. 2018, 50, 390–404. [Google Scholar] [CrossRef] [Green Version]
- Fotios, S.; Mao, Y.; Uttley, J.; Cheal, C. Road lighting for pedestrians: Effects of luminaire position on the detection of raised and lowered trip hazards. Light. Res. Technol. 2020, 52, 79–93. [Google Scholar] [CrossRef]
- Cheng, T.J.; Yang, B.; Holloway, C.; Tyler, N. Effect of environmental factors on how older pedestrians detect an upcoming step. Light. Res. Technol. 2018, 50, 405–415. [Google Scholar] [CrossRef]
- United Nations; Department of Economic and Social Affairs; Population Division. World Population Ageing: 2017 Highlights; 2017; ISBN 9789211515510. Available online: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Highlights.pdf (accessed on 30 December 2017).
- Van der Pols, J.; Bates, C.; McGraw, P.; Thompson, J.; Reacher, M.; Prentice, A.; Finch, S. Visual acuity measurements in a national sample of British elderly people. Br. J. Ophthalmol. 2000, 84, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalke, H.; Little, J.; Niemann, E.; Camgoz, N.; Steadman, G.; Hill, S.; Stott, L. Colour and lighting in hospital design. Opt. Laser Technol. 2006, 38, 343–365. [Google Scholar] [CrossRef]
- Van den Berg, T.J.; van Rijn, L.; Kaper-Bongers, R.; Vonhoff, D.; Völker-Dieben, H.; Grabner, G.; Nischler, C.; Emesz, M.; Wilhelm, H.; Gamer, D.; et al. Disability Glare in the Aging Eye. Assessment and Impact on Driving. J. Optom. 2009, 2, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Shikder, S.; Mourshed, M.; Price, A. Therapeutic lighting design for the elderly: A review. Perspect. Public Health 2012, 132, 282–291. [Google Scholar] [CrossRef]
- Yamagishi, M.; Yamaba, K.; Kubo, C.; Nokura, K.; Nagata, M. Effects of LED lighting characteristics on visual performance of elderly people. Gerontechnology 2008, 7, 243. [Google Scholar] [CrossRef]
- Rall, E.; Hansen, R.; Pauleit, S. The added value of public participation GIS (PPGIS) for urban green infrastructure planning. Urban For. Urban Green. 2019, 40, 264–274. [Google Scholar] [CrossRef]
- Zissis, G. Energy Consumption and Environmental and Economic Impact of Lighting: The Current Situation. In Handbook of Advanced Lighting Technology; Karlicek, R., Sun, C.C., Zissis, G., Ma, R., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–13. [Google Scholar] [CrossRef]
- Yoomak, S.; Jettanasen, C.; Ngaopitakkul, A.; Bunjongjit, S.; Leelajindakrairerk, M. Comparative study of lighting quality and power quality for LED and HPS luminaires in a roadway lighting system. Energy Build. 2018, 159, 542–557. [Google Scholar] [CrossRef]
- Pattison, M.; Hansen, M.; Bardsley, N.; Elliott, C.; Lee, K.; Pattison, L.; Tsao, J. 2019 Lighting R&D Opportunities; Technical report; US Department of Energy: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Azevedo, I.L.; Morgan, M.G.; Morgan, F. The transition to solid-state lighting. Proc. IEEE 2009, 97, 481–510. [Google Scholar] [CrossRef]
- Wang, Y.; Alonso, J.M.; Ruan, X. A Review of LED Drivers and Related Technologies. IEEE Trans. Ind. Electron. 2017, 64, 5754–5765. [Google Scholar] [CrossRef]
- Lasance, C.J.; Poppe, A. Thermal Management for LED Applications; Solid State Lighting Technology and Application Series; Springer Science Business Media: New York, NY, USA, 2014; Volume 2. [Google Scholar] [CrossRef]
- Ur Rahman, T.; Raza, S.; Saeed, M.; Jameel, S. An Emerging White LED Technology and associated Thermal Issues—A Review. J. Appl. Emerg. Sci. 2019, 9, 106–120. [Google Scholar] [CrossRef]
- Ma, H.K.; Hsieh, C.H.; Liao, S.K. Study of an innovative multiple fan system with one piezoelectric actuator embedded in a circular heat sink. In Proceedings of the 2017 33rd Thermal Measurement, Modeling Management Symposium (SEMI-THERM), San Jose, CA, USA, 13–17 March 2017; pp. 6–12. [Google Scholar] [CrossRef]
- Chen, W.; Fan, J.; Qi, G.; Sun, C.; Yang, W.; Cao, S. Optical and Thermal Designs of LED Matrix Module used in Automotive Headlamps. In Proceedings of the 2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Shenzhen, China, 25–27 November 2019; pp. 220–224. [Google Scholar]
- Chang, H.; Pao, C. Flip Light Emitting Diode Chip and Method of Fabricating the Same. U.S. Patent 8,735,189, 27 May 2014. [Google Scholar]
- Penning, J.; Stober, K.; Taylor, V.; Yamada, M. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications; Technical report; U.S. Department of Energy: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Kostic, A.; Kremic, M.; Djokic, L.; Kostic, M. Light-emitting diodes in street and roadway lighting—A case study involving mesopic effects. Light. Res. Technol. 2013, 45, 217–229. [Google Scholar] [CrossRef]
- Juntunen, E.; Sarjanoja, E.M.; Eskeli, J.; Pihlajaniemi, H.; Österlund, T. Smart and dynamic route lighting control based on movement tracking. Build. Environ. 2018, 142, 472–483. [Google Scholar] [CrossRef]
- Sánchez Sutil, F.; Cano-Ortega, A. Smart public lighting control and measurement system using LoRa network. Electronics 2020, 9, 124. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.; Kyttä, M. Key issues and research priorities for public participation GIS (PPGIS): A synthesis based on empirical research. Appl. Geogr. 2014, 46, 122–136. [Google Scholar] [CrossRef]
- Martirano, L. A smart lighting control to save energy. In Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems, Prague, Czech Republic, 15–17 September 2011; Volume 1, pp. 132–138. [Google Scholar] [CrossRef]
- Pandharipande, A.; Newsham, G.R. Lighting controls: Evolution and revolution. Light. Res. Technol. 2018, 50, 115–128. [Google Scholar] [CrossRef]
- Pracki, P.; Skarżyński, K. A Multi-Criteria Assessment Procedure for Outdoor Lighting at the Design Stage. Sustainability 2020, 12, 1330. [Google Scholar] [CrossRef] [Green Version]
- Petritoli, E.; Leccese, F.; Pizzuti, S.; Pieroni, F. Smart lighting as basic building block of smart city: An energy performance comparative case study. Measurement 2019, 136, 466–477. [Google Scholar] [CrossRef]
- Hegedüs, J.; Hantos, G.; Poppe, A. Embedded multi-domain LED model for adaptive dimming of streetlighting luminaires. In Proceedings of the 2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Budapest, Hungary, 21–23 September 2016; pp. 208–212. [Google Scholar] [CrossRef]
- Lau, S.P.; Merrett, G.V.; Weddell, A.S.; White, N.M. A traffic-aware street lighting scheme for Smart Cities using autonomous networked sensors. Comput. Electr. Eng. 2015, 45, 192–207. [Google Scholar] [CrossRef]
- Carli, R.; Dotoli, M. A dynamic programming approach for the decentralized control of energy retrofit in large-scale street lighting systems. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1140–1157. [Google Scholar] [CrossRef]
- Dai, Q.; Shan, Q.; Lam, H.; Hao, L.; Lin, Y.; Cui, Z. Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting. Opt. Express 2016, 24, 20049–20059. [Google Scholar] [CrossRef]
- Ellis, E.; Gonzalez, E.; Kratzer, D.; McEachron, D.; Yeutter, G. Auto-tuning Daylight with LEDs: Sustainable Lighting for Health and Wellbeing. ARCC Conf. Repos. 2014. [Google Scholar] [CrossRef]
- Tingzhu, W.; Lu, Y.; Guo, Z.; Zheng, L.; Zhu, H.; Xiao, Y.; Shih, T.M.; Lin, Y.; Chen, Z. Improvements of mesopic luminance for light-emitting-diode-based outdoor light sources via tuning scotopic/photopic ratios. Opt. Express 2017, 25, 4887–4897. [Google Scholar] [CrossRef]
- Matheus, L.E.M.; Vieira, A.B.; Vieira, L.F.; Vieira, M.A.; Gnawali, O. Visible light communication: Concepts, applications and challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3204–3237. [Google Scholar] [CrossRef]
- Garratt, M.J.; Jenkins, S.R.; Davies, T.W. Mapping the consequences of artificial light at night for intertidal ecosystems. Sci. Total. Environ. 2019, 691, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Bierman, A. Will switching to LED outdoor lighting increase sky glow? Light. Res. Technol. 2012, 44, 449–458. [Google Scholar] [CrossRef]
- CIE. Guide on the Limitation of the Effects of Obtrusive Light from Outdoor Lighting Installations; Second Edition: CIE 150; CIE: Hong Kong, China, 2017. [Google Scholar]
- Bennie, J.; Duffy, J.P.; Davies, T.W.; Correa-Cano, M.E.; Gaston, K.J. Global trends in exposure to light pollution in natural terrestrial ecosystems. Remote Sens. 2015, 7, 2715–2730. [Google Scholar] [CrossRef] [Green Version]
- Jechow, A.; Kolláth, Z.; Lerner, A.; Hänel, A.; Shashar, N.; Hölker, F.; Kyba, C. Measuring light pollution with fisheye lens imagery from a moving boat, a proof of concept. arXiv 2017, arXiv:1703.08484. [Google Scholar] [CrossRef]
- Tabaka, P. Pilot Measurement of Illuminance in the Context of Light Pollution Performed with an Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 2124. [Google Scholar] [CrossRef]
- Bouroussis, C.A.; Topalis, F.V. Assessment of outdoor lighting installations and their impact on light pollution using unmanned aircraft systems—The concept of the drone-gonio-photometer. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107155. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.; Zhang, Q.; Sánchez de Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Kinzey, B.R.; Perrin, T.E.; Miller, N.J.; Kocifaj, M.; Aube, M.; Lamphar, H.A. An Investigation of LED Street Lighting’s Impact on Sky Glow; Technical report; Pacific Northwest National Lab (PNNL): Richland, WA, USA, 2017. [Google Scholar] [CrossRef]
- Katz, Y.; Levin, N. Quantifying urban light pollution—A comparison between field measurements and EROS-B imagery. Remote Sens. Environ. 2016, 177, 65–77. [Google Scholar] [CrossRef]
- Simons, A.L.; Yin, X.; Longcore, T. High correlation but high scale-dependent variance between satellite measured night lights and terrestrial exposure. Environ. Res. Commun. 2020, 2, 021006. [Google Scholar] [CrossRef]
- Kocifaj, M.; Wallner, S.; Solano-Lamphar, H.A. An asymptotic formula for skyglow modelling over a large territory. Mon. Not. R. Astron. Soc. 2019, 485, 2214–2224. [Google Scholar] [CrossRef]
- Aubé, M.; Simoneau, A.; Muñoz-Tuñón, C.; Díaz-Castro, J.; Serra-Ricart, M. Restoring the night sky darkness at Observatorio del Teide: First application of the model Illumina version 2. Mon. Not. R. Astron. Soc. 2020, 497, 2501–2516. [Google Scholar] [CrossRef]
- Duriscoe, D.M. Measuring anthropogenic sky glow using a natural sky brightness model. Publ. Astron. Soc. Pac. 2013, 125, 1370. [Google Scholar] [CrossRef] [Green Version]
- Mouritsen, H.; Larsen, O.N. Migrating songbirds tested in computer-controlled Emlen funnels use stellar cues for a time-independent compass. J. Exp. Biol. 2001, 204, 3855–3865. [Google Scholar] [CrossRef]
- Dacke, M.; Baird, E.; Byrne, M.; Scholtz, C.H.; Warrant, E.J. Dung beetles use the Milky Way for orientation. Curr. Biol. 2013, 23, 298–300. [Google Scholar] [CrossRef] [Green Version]
- CIE. Guidelines for Minimizing Urban Sky Glow Near Astronomical Observatories: CIE 001; CIE: Hong Kong, China, 1980. [Google Scholar]
- Sutherland, W.J.; Bardsley, S.; Bennun, L.; Clout, M.; Côté, I.M.; Depledge, M.H.; Dicks, L.V.; Dobson, A.P.; Fellman, L.; Fleishman, E.; et al. Horizon scan of global conservation issues for 2011. Trends Ecol. Evol. 2011, 26, 10–16. [Google Scholar] [CrossRef]
- Mitchell, D.; Gallaway, T. Dark sky tourism: Economic impacts on the Colorado Plateau Economy, USA. Tour. Rev. 2019, 74, 930–942. [Google Scholar] [CrossRef]
- Mauck, B.; Gläser, N.; Schlosser, W.; Dehnhardt, G. Harbour seals (Phoca vitulina) can steer by the stars. Anim. Cogn. 2008, 11, 715–718. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2020. In Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Stanford, L.L.; Spacie, A. Biological Monitoring of Aquatic Systems; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Gruber, N.; Clement, D.; Carter, B.R.; Feely, R.A.; van Heuven, S.; Hoppema, M.; Ishii, M.; Key, R.M.; Kozyr, A.; Lauvset, S.K.; et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 2019, 363, 1193–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.; Green, E.; Zhao, Y.; van Ooijen, G.; Olmedo, M.; Qin, X.; Xu, Y.; Pan, M.; Valekunja, U.; Feeney, K.; et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 2012, 485, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Dvornyk, V.; Vinogradova, O.; Nevo, E. Origin and evolution of circadian clock genes in prokaryotes. Proc. Natl. Acad. Sci. USA 2003, 100, 2495–2500. [Google Scholar] [CrossRef] [Green Version]
- Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 2014, 12, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.H.; B, F.R. Zooplankton diel vertical migration—A review of proximate control. Oceanogr. Mar. Biol. 2009, 47, 77–110. [Google Scholar]
- Witman, S. World’s biggest oxygen producers living in swirling ocean waters. J. Geophys. Res. Ocean. 2017. [Google Scholar] [CrossRef]
- Tamir, R.; Eyal, G.; Cohen, I.; Loya, Y. Effects of light pollution on the early life stages of the most abundant northern red sea coral. Microorganisms 2020, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Becker, A.; Whitfield, A.K.; Cowley, P.D.; Järnegren, J.; Næsje, T.F. Potential effects of artificial light associated with anthropogenic infrastructure on the abundance and foraging behaviour of estuary-associated fishes. J. Appl. Ecol. 2013, 50, 43–50. [Google Scholar] [CrossRef]
- Dwyer, R.G.; Bearhop, S.; Campbell, H.A.; Bryant, D.M. Shedding light on light: Benefits of anthropogenic illumination to a nocturnally foraging shorebird. J. Anim. Ecol. 2013, 82, 478–485. [Google Scholar] [CrossRef]
- Delhey, K.; Peters, A. Conservation implications of anthropogenic impacts on visual communication and camouflage. Conserv. Biol. 2017, 31, 30–39. [Google Scholar] [CrossRef]
- Maggi, E.; Bongiorni, L.; Fontanini, D.; Capocchi, A.; Dal Bello, M.; Giacomelli, A.; Benedetti-Cecchi, L. Artificial light at night erases positive interactions across trophic levels. Funct. Ecol. 2020, 34, 694–706. [Google Scholar] [CrossRef]
- Davies, T.W.; McKee, D.; Fishwick, J.; Tidau, S.; Smyth, T. Biologically important artificial light at night on the seafloor. Sci. Rep. 2020, 10, 12545. [Google Scholar] [CrossRef]
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Onorati, M.; Vignoli, L. The darker the night, the brighter the stars: Consequences of nocturnal brightness on amphibian reproduction. Biol. J. Linn. Soc. 2017, 120, 961–976. [Google Scholar] [CrossRef]
- Dananay, K.L.; Benard, M.F. Artificial light at night decreases metamorphic duration and juvenile growth in a widespread amphibian. Proc. R. Soc. B Biol. Sci. 2018, 285, 20180367. [Google Scholar] [CrossRef] [PubMed]
- Thawley, C.J.; Kolbe, J.J. Artificial light at night increases growth and reproductive output in Anolis lizards. Proc. R. Soc. B Biol. Sci. 2020, 287, 20191682. [Google Scholar] [CrossRef] [Green Version]
- Swindall, J.E.; Ober, H.K.; Lamont, M.M.; Carthy, R.R. Informing sea turtle outreach efforts to maximize effectiveness. Wildl. Soc. Bull. 2019, 43, 436–446. [Google Scholar] [CrossRef]
- Perry, G.; Buchanan, B.W.; Fisher, R.N.; Salmon, M.; Wise, S.E. Effects of artificial night lighting on amphibians and reptiles in urban environments. Urban Herpetol. 2008, 3, 239–256. [Google Scholar]
- Patrício-Roberto, G.B.; Campos, M.J.O. Aspects of Landscape and Pollinators—What is Important to Bee Conservation? Diversity 2014, 6, 158–175. [Google Scholar] [CrossRef] [Green Version]
- Goulson, D.; Lye, G.; Darvill, B. Decline and Conservation of Bumble Bees. Annu. Rev. Entomol. 2008, 53, 191–208. [Google Scholar] [CrossRef]
- Macgregor, C.J.; Pocock, M.J.; Fox, R.; Evans, D.M. Pollination by nocturnal L epidoptera, and the effects of light pollution: A review. Ecol. Entomol. 2015, 40, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Grubisic, M.; van Grunsven, R.; Kyba, C.; Manfrin, A.; Hölker, F. Insect declines and agroecosystems: Does light pollution matter? Ann. Appl. Biol. 2018, 173, 180–189. [Google Scholar] [CrossRef]
- Owens, A.C.; Cochard, P.; Durrant, J.; Farnworth, B.; Perkin, E.K.; Seymoure, B. Light pollution is a driver of insect declines. Biol. Conserv. 2020, 241, 108259. [Google Scholar] [CrossRef]
- Schumann, K.; Wittig, R.; Thiombiano, A.; Becker, U.; Hahn, K. Impact of land-use type and harvesting on population structure of a non-timber forest product-providing tree in a semi-arid savanna, West Africa. Biol. Conserv. 2011, 144, 2369–2376. [Google Scholar] [CrossRef]
- Grenis, K.; Murphy, S.M. Direct and indirect effects of light pollution on the performance of an herbivorous insect. Insect Sci. 2019, 26, 770–776. [Google Scholar] [CrossRef]
- Minnaar, C.; Boyles, J.G.; Minnaar, I.A.; Sole, C.L.; McKechnie, A.E. Stacking the odds: Light pollution may shift the balance in an ancient predator–prey arms race. J. Appl. Ecol. 2015, 52, 522–531. [Google Scholar] [CrossRef] [Green Version]
- Elgert, C.; Hopkins, J.; Kaitala, A.; Candolin, U. Reproduction under light pollution: Maladaptive response to spatial variation in artificial light in a glow-worm. Proc. R. Soc. B 2020, 287, 20200806. [Google Scholar] [CrossRef] [PubMed]
- Underwood, C.N.; Davies, T.W.; Queirós, A.M. Artificial light at night alters trophic interactions of intertidal invertebrates. J. Anim. Ecol. 2017, 86, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Boom, M.P.; Spoelstra, K.; Biere, A.; Knop, E.; Visser, M.E. Pollination and fruit infestation under artificial light at night: Light colour matters. Sci. Rep. 2020, 10, 1–6. [Google Scholar]
- Gaston, K.J.; Bennie, J.; Davies, T.W.; Hopkins, J. The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biol. Rev. 2013, 88, 912–927. [Google Scholar] [CrossRef] [PubMed]
- Singhal, R.; Kumar, M.; Bose, B. Ecophysiological responses of artificial night light pollution in plants. Russ. J. Plant Physiol. 2019, 66, 190–202. [Google Scholar] [CrossRef]
- Bennie, J.; Davies, T.W.; Cruse, D.; Gaston, K.J. Ecological effects of artificial light at night on wild plants. J. Ecol. 2016, 104, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Škvareninová, J.; Tuhárska, M.; Škvarenina, J.; Babálová, D.; Slobodníková, L.; Slobodník, B.; Středová, H.; Mind’aš, J. Effects of light pollution on tree phenology in the urban environment. Morav. Geogr. Rep. 2017, 25, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Blümel, M.; Dally, N.; Jung, C. Flowering time regulation in crops—What did we learn from Arabidopsis? Curr. Opin. Biotechnol. 2015, 32, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, Y. Florigen and anti-florigen: Flowering regulation in horticultural crops. Breed. Sci. 2018, 68, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Raven, J.; Cockell, C. Influence on Photosynthesis of Starlight, Moonlight, Planetlight, and Light Pollution (Reflections on Photosynthetically Active Radiation in the Universe). Astrobiology 2006, 6, 668–675. [Google Scholar] [CrossRef]
- ChiLing, C.; YunHam, S.; ChiaJen, L.; YahnChir, L. Effect of night illumination on growth and yield of soybean. J. Taiwan Agric. Res. 2009, 58, 146–154. [Google Scholar]
- Reuter, D.N.; Stewart, C.N., Jr.; Lenaghan, S.C. Lighting the Way: Advances in Engineering Autoluminescent Plants. Trends Plant Sci. 2020, 25, 1176–1179. [Google Scholar] [CrossRef]
- CEN. EN 13201-1-5 Standards for Road lighting all parts. In European Standards; CEN: Tokyo, Japan, 2014. [Google Scholar]
- CEN. EN 12464-2:2014 Light and lighting. Lighting of work places. In European Standards; CEN: Tokyo, Japan, 2014. [Google Scholar]
- CEN. EN 12193:2018 Light and lighting. In European Standards; CEN: Tokyo, Japan, 2018. [Google Scholar]
- CIE. Guide for Floodlighting; Cie 094; CIE: Hong Kong, China, 1993. [Google Scholar]
- Haddock, J.K.; Threlfall, C.G.; Law, B.; Hochuli, D.F. Light pollution at the urban forest edge negatively impacts insectivorous bats. Biol. Conserv. 2019, 236, 17–28. [Google Scholar] [CrossRef]
- Barentine, J.C.; Kundracik, F.; Kocifaj, M.; Sanders, J.C.; Esquerdo, G.A.; Dalton, A.M.; Foott, B.; Grauer, A.; Tucker, S.; Kyba, C.C. Recovering the city street lighting fraction from skyglow measurements in a large-scale municipal dimming experiment. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107120. [Google Scholar] [CrossRef]
- Briscoe, A.D.; Chittka, L. The Evolution of Color Vision in Insects. Annu. Rev. Entomol. 2001, 46, 471–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhassan, A.I.; Farrell, R.M.; Saifaddin, B.; Mughal, A.; Wu, F.; DenBaars, S.P.; Nakamura, S.; Speck, J.S. High luminous efficacy green light-emitting diodes with AlGaN cap layer. Opt. Express 2016, 24, 17868–17873. [Google Scholar] [CrossRef] [PubMed]
- Wiltschko, R.; Stapput, K.; Bischof, H.J.; Wiltschko, W. Light-dependent magnetoreception in birds: Increasing intensity of monochromatic light changes the nature of the response. Front. Zool. 2007, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoker, F.; Jechow, A.; Schroer, S.; Gessner, M.O. Nachtliches Licht und Lichtverschmutzung in und um Gewässer. In Handbuch Angewandte Limnologie: Grundlagen-Gewässerbelastung-Restaurierung-Aquatische Okotoxikologie-Bewertung-Gewässerschutz; Wiley Online Library: Hoboken, NJ, USA, 2014; pp. 1–26. [Google Scholar]
- Kyba, C.; Ruby, A.; Kuechly, H.; Kinzey, B.; Miller, N.; Sanders, J.; Barentine, J.; Kleinodt, R.; Espey, B. Direct measurement of the contribution of street lighting to satellite observations of nighttime light emissions from urban areas. Light. Res. Technol. 2020. [Google Scholar] [CrossRef]
- Kuechly, H.U.; Kyba, C.C.; Ruhtz, T.; Lindemann, C.; Wolter, C.; Fischer, J.; Hölker, F. Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sens. Environ. 2012, 126, 39–50. [Google Scholar] [CrossRef]
- Zielińska-Da̧bkowska, K.; Gen Schieck, A.F. Designing digital displays and interactive media in today’s cities by night. Do we know enough about attracting attention to do so? In Conscious Cities Anthology 2018: Human-Centred Design, Science, and Technology; pp. 1–8. Available online: https://theccd.org/article/45/designing-digital-displays-and-interactive-media-in-todays-cities-by-night-do-we-know-enough-about-attracting-attention-to-do-so/ (accessed on 31 December 2018). [CrossRef]
- Korõtko, T.; Rosin, A.; Varjas, T.; Ahmadiahangar, R. Awareness of BSR Municipalities about Sustainable Urban Lighting and Green Public Procurements. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020; pp. 1–6. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares, P.; Ingi, D.; Araújo, L.; Pinho, P.; Bhusal, P. Reviewing the Role of Outdoor Lighting in Achieving Sustainable Development Goals. Sustainability 2021, 13, 12657. https://doi.org/10.3390/su132212657
Tavares P, Ingi D, Araújo L, Pinho P, Bhusal P. Reviewing the Role of Outdoor Lighting in Achieving Sustainable Development Goals. Sustainability. 2021; 13(22):12657. https://doi.org/10.3390/su132212657
Chicago/Turabian StyleTavares, Pedro, Dmitrii Ingi, Luiz Araújo, Paulo Pinho, and Pramod Bhusal. 2021. "Reviewing the Role of Outdoor Lighting in Achieving Sustainable Development Goals" Sustainability 13, no. 22: 12657. https://doi.org/10.3390/su132212657
APA StyleTavares, P., Ingi, D., Araújo, L., Pinho, P., & Bhusal, P. (2021). Reviewing the Role of Outdoor Lighting in Achieving Sustainable Development Goals. Sustainability, 13(22), 12657. https://doi.org/10.3390/su132212657