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Abstract: A closed-cycle, three-dimensional (3D) computational fluid dynamics (CFD) analysis
campaign was conducted to evaluate the performance of using spark plugs to assist gasoline com-
pression ignition (GCI) combustion during cold idle operations. A conventional spark plug using
single-sided J-strap design was put at a location on the cylinder head to facilitate spray-guided spark
assistance. Ignition was modeled with an L-type energy distribution to depict the breakdown and
the arc-to-glow phases during the energy discharge process. Several key design parameters were
investigated, including injector clocking, number of nozzle holes, spray inclusion angle, number of
fuel injections, fuel split ratio, and fuel injection timings. The study emphasized the region around
the spark gap, focusing on flame kernel formation and development and local equivalence ratio
distribution. Flame kernel development and the ignition process were found to correlate strongly
with the fuel stratification and the flow velocity near the spark gap. The analysis results showed that
the flame kernel development followed the direction of the local flow field. In addition, the local fuel
stratification notably influenced early-stage flame kernel development due to varying injection spray
patterns and the fuel injection strategies. Among these design parameters, the number of nozzle holes
and fuel injection timing had the most significant effects on the engine combustion performance.

Keywords: CFD; spark-assisted; cold start; gasoline compression ignition

1. Introduction

Regulatory demand for reducing vehicle criteria pollutants and CO2 emissions is
increasing around the world. As a result, several advanced engine combustion strategies
that have the potential to achieve clean high-efficiency combustion have been proposed
and extensively studied [1–9]. Gasoline compression ignition (GCI) [10–15] is one of the
most well-known low temperature combustion strategies. GCI has gained attention in
recent years because of its potential to harness gasoline’s low reactivity to enhance partially
premixed compression ignition, whereby high fuel efficiency is achieved while engine-out
NOx and soot emissions are reduced.

However, GCI combustion can be challenging under cold conditions. The implications
of gasoline’s high volatility and low reactivity on spray evaporation, fuel-air mixing, and
ignition under very cold conditions have not been clearly established [16–19]. It is essential
to develop a combustion strategy that allows robust and clean GCI combustion during
cold operation. In our previous work, we investigated the ignitability of different gasoline
fuels and evaluated the influence of pressure and temperature on gasoline autoignition
at different equivalence ratios numerically, without considering any forced ignition assis-
tance [17]. We observed a trend toward lower ignitability as lower reactivity (i.e., lower
cetane) fuels were used. We also generated thermodynamic maps of ignitability for the
fuels at a wide range of operating conditions from cold idle to full warm-up.
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In addition, during cold start operation, forced ignition assistances such as glow plugs
have been commonly used in diesel engines to increase the local temperature and promote
vaporization prior to the mixture preparation process [20]. Our previous studies employed
3D combustion CFD analysis to investigate the effect of a glow plug assistance on gasoline
autoignition and the subsequent combustion process at cold idle in a heavy-duty GCI
engine [21]. We found that combustion efficiency was improved and CA50 was advanced
by increasing the glow plug surface temperature. Moreover, the interaction between the
glow plug and the spray plumes had an effect on promoting combustion. In addition to
glow plug assistance, we also studied spark-assisted cold idle operation by investigating
the influence of spark plug orientation and spark timing on the ignition and combustion
processes [22]. We found that complex flow-geometry interactions in the confined spark
gap volume dictated the early flame kernel development. Specifically, the interaction
between the spray plume and the spark plug electrode could be sensitive to the spark plug
orientation and the spark timing.

Building on previous spark-assistance work, we conducted a thorough evaluation of
the injector spray pattern and the fuel injection strategy to gain insight into their impacts
on flame kernel development, equivalence ratio distribution near the spark gap, and global
combustion characteristics. Particular emphasis was placed on studying the effects of
several key design variables, including injector clocking, number of nozzle holes, spray
inclusion angle, fuel split ratio, and fuel injection timings.

2. Methodology
2.1. Experimental Setup

Combustion simulations were based on the experimental data generated from a
2013 model year Cummins ISX15 on-highway, heavy-duty diesel engine [17,19]. The key
engine specifications and baseline cold idle operating conditions are listed in Table 1. Note
that the cold idle conditions in this work are in point of fact the cold federal test procedure
(FTP) idle at normal ambient temperature.

Table 1. Experimental engine specifications and baseline operating conditions during cold idle.

Engine Specifications

Stroke (mm) 169
Bore (mm) 137

Connecting rod length (mm) 262
Displacement volume (L) 14.9

Number of cylinders 6
Compression ratio 17.3:1
Diesel fuel system 2500 bar common rail

Operating Conditions

Speed (r/min.) 600
Swirl ratio 1

NMEP (kPa) ~100
EGR rate (-) 0

Intake valve closing (◦ATDC) −137
Exhaust valve opening (◦ATDC) 148
Intake manifold pressure (kPa) 113

Intake manifold temperature (◦C) 26
Oil gallery temperature (◦C) 50

Coolant temperature (◦C) 27
Injection pressure (bar) 300

Injection strategy Split
Fueling (mg/cycle/cylinder) 27.6

Split ratio 4:6
SOI1st/SOI2nd (◦ATDC) −30/−16
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2.2. CFD Model Description

The commercial software CONVERGE v2.4 [23] was utilized to carry out the closed-
cycle 3D CFD simulations from intake valve closing (IVC) to exhaust valve opening (EVO).
A 360◦ mesh representing one full cylinder was employed in the simulations. As shown
in Figure 1, a conventional spark plug, with single-sided J-strap design, was placed on
the cylinder head and close to the centrally mounted injector to study the performance of
a spray-guided spark-assistance strategy. The distance between the spark plug and the
injector was about 15 mm; the protruding length from cylinder head to the center of spark
gap was approximately 3.6 mm. Ignition was modeled with an L-type energy distribution
and the details on energy distribution during the breakdown and the arc/glow phases can
be found in our previous work [22].
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Figure 1. Injector and spark plug location through cylinder head.

A Reynolds-averaged Navier–Stokes (RANS)-based renormalization group (RNG) k-ε
turbulence model was used to simulate the in-cylinder flow, while the combustion was
modeled via a detailed chemistry solver that treats each computational cell being as a well-
stirred reactor. The autoignition, and the subsequent combustion process, was simulated
using the reduced primary reference fuel (PRF) mechanism from Liu et al. [24], which con-
tained 44 species and 139 reactions. This reduced PRF mechanism showed good agreement
against experiments when simulating the combustion of a GCI engine [19,25]. NOx emis-
sions were predicted by a reduced mechanism including 4 species and 13 reactions [26,27].
It is worth noting that the simplification on the closure of turbulent-chemistry interaction
by the present combustion model may lead to discrepancies, particularly under the reduced
reactive cold operations [28]. Moreover, spray models based on the Lagrangian discrete
droplet approach were used to simulate the fuel injection process; these spray sub-models
have been extensively validated at wide-ranging operations in previous studies [29–31].
Table 2 lists the primary CONVERGE sub-models used in current study.

The base mesh size for our simulations was 1.4 mm. Adaptive Mesh Refinement
(AMR) activated on velocity and temperature gradients was used to refine the mesh to
0.35 mm across the computational domain. Fixed embedding refinement with a level of
1 was added permanently to accurately predict the flow near the wall, while a level of
2 was enforced on the injector to better capture the spray dynamics. Furthermore, two
spherical embedding levels of 2 and 3 were across the spark gap during spark event to
reduce the mesh size to allow for accurate prediction of the flame kernel development.
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Table 2. CFD details.

Spray, Combustion, and Emission Models

Injection Blob
Drag-law Dynamic

Evaporation Frossling
Collision NTC
Break-up Modified KH-RT

Combustion solver Well-stirred reactor
Fuel surrogate PRF92

Chemical kinetic mechanism Liu et al. [24]
NOx 4 species and 13 reactions [26,27]

Turbulence RNG k-ε
Wall heat transfer O’Rourke and Amsden

Mesh Size

Base 1.4 mm
AMR level 2 on velocity and temperature gradients

Fixed embedding level 1 in head and piston, 2 in injector, 2 and 3 in spark gap

A mesh refinement study with three different minimum mesh sizes (0.35 mm, 0.175 mm,
and 0.0875 mm) surrounding the spark plug was performed. Simulations with minimum
mesh sizes were performed using two to four levels of refinement near the spark plug-
embedded region. For the sake of brevity, Figure 2 depicts only the in-cylinder pressure
and apparent heat release rate (AHRR) results obtained for the different mesh resolutions.
Finally, considering the mesh convergence and computational demands, the 0.175 mm
mesh size was selected as the reference minimum mesh size for the remainder of the study.
Note that CFD model validation against engine experimental results during cold idle has
been performed in Zhao et al. [17,21].
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3. Results and Discussions
3.1. Design Variables

Several design variables on the injector spray pattern and fuel injection strategy were
evaluated in this work, including injector clocking, number of nozzle holes, spray inclusion
angle, fuel split ratio, injection timings, and ∆1 representing the difference between the
spark timing and the first start of injection timing (SOI1st). The investigative range for these
design variables is summarized in Table 3. These parameters were studied one at a time.

Table 3. Design parameters and investigation range.

Parameters Range Baseline

Injector clocking (◦) −20 to 20 0
Number of nozzle holes 7 to 14 8

Spray inclusion angle ϕ (◦) 140 to 156 148
Fuel split ratio 2:8 to 10:0 (single injection) 4:6
SOI1st (◦ATDC) −32 to −21 −30

∆1 (= spark timing − SOI1st)
(◦ATDC) 0 to 3 1

SOI2nd (◦ATDC) −25 to −4 −16

3.2. Effect of Injector Clocking

First, the injector clocking angle was varied from −20 to 20◦, where the negative
sign denoted clockwise rotation and the positive number represented counterclockwise
rotation, as shown in Figure 3. It is also worth mentioning that the swirl motion followed a
clockwise direction. Note that the baseline injector clocking angle was 0◦.
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The global combustion characteristics in terms of combustion efficiency and combus-
tion phasing (CA2, CA10, and CA50) are shown in Figure 4. CA2 and CA10, defined as
the crank angle at which 2 and 10%, respectively, of the total heat release was attained,
delineated the early-stage ignition facilitated by spark assistance. Meanwhile, CA50 was
defined as the crank angle when 50% of the total heat release was reached, associated with
the main combustion occurred in late stage.
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It can be seen that the best combustion efficiency was shown at an injector clocking
angle between −10 and 0◦. Combustion phasing (CA2 to CA50) was also most advanced
within this clocking angle range. Previous work [22] demonstrated that the interaction
between the spark plug electrode and spray plume significantly affected the flame kernel
development and the local fuel–air mixing process, thus influencing the entire subsequent
combustion process. At the current spark plug location, there was no physical interaction
between spray plume and spark plug surface when the injector clocking angle was smaller
than −10 or larger than 10◦.

To further examine the effect of the injector clocking angle on ignition, the flame kernel
development, the equivalence ratio (Φ), and velocity flow fields at an injector clocking
angle range of −10 to 10◦ were characterized (Figure 5). It was clearly evident that the
spray plume and the spark plug interacted differently. The shape of the flame kernel
and the size of the flame region were also different. At the −10◦ injector clocking angle,
the flame kernel grew outside of the spark gap and was guided toward a locally richer
fuel–air mixture region following the swirl motion. The flame region then continued to
expand. Conversely, at the 10◦ injector clocking angle, the flame kernel initially formed
and developed near the spark gap. However, as the flame kernel expanded outside of the
spark gap, it moved into a locally leaner mixture region. The size of the flame region then
became smaller and eventually quenched.
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three different injector clocking angles (−10, 0, and 10◦) at different crank angles (−29 to −25◦ATDC).

In a previous study [22], an ignitable mixture volume, formulated on the cylinder
charge volume of a temperature ranging from 1000 to 1500 K and a Φ ranging from 0.8 to
1.4, was introduced to characterize the early flame development and signify the mixture
that was favorable for ignition. Figure 6 shows the ignitable mixture volume at different
injector clocking cases at 5◦CA after spark timing. Aligned with observations in Figure 5,
the −10◦ clocking angle clearly had the largest ignitable mixture volume because of the
sustainable flame kernel, while a lower ignitable mixture volume was shown in the 5 and
10◦ cases due to the suppressed flame kernel. This resulted in the unfavorable early ignition
near spark gap and late main combustion in the 5 and 10◦ injector clocking cases, in turn
producing the lower combustion efficiencies.
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3.3. Effect of Number of Nozzle Holes

The effect of the number of nozzle holes on flame kernel growth and combustion
performance was evaluated by varying it from 7 to 12 holes. Figure 7 displays a sample
layout of 8- and 12-hole nozzles. For the different number of nozzle holes, the total nozzle
area and total injected mass remained the same. Therefore, as the number of nozzle holes
increased, the nozzle diameter decreased and the injected mass from each nozzle hole also
decreased. Note that the baseline number of nozzle holes was 8.
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Figure 8 shows the effect of the number of nozzle holes on combustion efficiency and
combustion phasing (CA2, CA10, and CA50). In general, combustion efficiency increased
and combustion phasing advanced with the increase in number of nozzle holes. The
12-hole case showed the highest combustion efficiency and the most advanced combustion.
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velocity flow field at various spray inclusion angles. When increasing the spray inclusion
angle from 144 to 148◦, the size of the flame region continuously grew near the spark gap
region due to the spark-assisted early combustion. Correspondingly, combustion efficiency
was enhanced and combustion phasing was advanced. Although the physical interaction
between the spray plume and the spark plug was present, increasing the spray inclusion
angle beyond 150◦ resulted in a large portion of the fuel spray being directed right into the
spark gap area (especially at 156◦), leading to flame kernel suppression and quenching. As
a result, combustion efficiency was lowered along with retarded combustion phasing.
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Figure 13 shows the effect of spray inclusion angle on the ignitable mixture volume at
early ignition stage. When the spray inclusion angle was below 148◦, the flame volume
sustained for a short time but dropped down to zero afterward. The ignitable mixture
volume in the 148◦ case was higher than those for other cases. This was consistent with the
findings described in Figure 12. Early combustion hardly happened in the 150 and 156◦

cases and the ignitable mixture volume was almost zero.

3.5. Effect of Fuel Split Ratio

The effect of fuel split ratio on flame development and mixture distribution near the
spark plug was also investigated. Both single and split injection strategies were studied.
The split ratio was varied from 2:8 to 7:3. As the split ratio varied, the injected mass
and injection duration at both pilot and main injection events also varied. To ensure the
fairness of ignition and combustion progressions in each case, we also varied spark timing
according to the time difference between the pilot injection duration of the target case and
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baseline case. For instance, taking the baseline split ratio of 4:6 as a reference, the spark
timing was advanced when the split ratio was 3:7 but it was retarded when the split ratio
was 7:3.
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Figure 14 shows that a split ratio of 2:8 led to the highest combustion efficiency
(~87%). The 2:8 split ratio also corresponded to the most advanced CA50. In comparison,
the single injection strategy had the lowest combustion efficiency and the most retarded
CA50. This finding aligned with previous investigations [17,21,22], in which split injection
strategies have been commonly employed at cold conditions to improve ignitibility and
stability. Additionally, during cold start in either spark ignition (SI) or compression ignition
(CI) engine, hydrocarbon (HC) emissions decreased with the split injection strategies as
compared to single injection.



Sustainability 2021, 13, 13096 13 of 20
Sustainability 2021, 13, x FOR PEER REVIEW 13 of 21 
 

 
Figure 13. Effect of spray inclusion angle on ignitable mixture volume. 

3.5. Effect of Fuel Split Ratio 
The effect of fuel split ratio on flame development and mixture distribution near the 

spark plug was also investigated. Both single and split injection strategies were studied. 
The split ratio was varied from 2:8 to 7:3. As the split ratio varied, the injected mass and 
injection duration at both pilot and main injection events also varied. To ensure the fair-
ness of ignition and combustion progressions in each case, we also varied spark timing 
according to the time difference between the pilot injection duration of the target case and 
baseline case. For instance, taking the baseline split ratio of 4:6 as a reference, the spark 
timing was advanced when the split ratio was 3:7 but it was retarded when the split ratio 
was 7:3. 

Figure 14 shows that a split ratio of 2:8 led to the highest combustion efficiency 
(~87%). The 2:8 split ratio also corresponded to the most advanced CA50. In comparison, 
the single injection strategy had the lowest combustion efficiency and the most retarded 
CA50. This finding aligned with previous investigations [17,21,22], in which split injection 
strategies have been commonly employed at cold conditions to improve ignitibility and 
stability. Additionally, during cold start in either spark ignition (SI) or compression igni-
tion (CI) engine, hydrocarbon (HC) emissions decreased with the split injection strategies 
as compared to single injection. 

Figure 15 shows three split ratios selected to illustrate the influence of fuel split ratio 
on flame kernel development and equivalence ratio distribution. It was clear that the 
flame kernel formation and flame propagation occurred in all three cases. Figure 16 shows 
that the split ratio of 2:8 had the earliest rise in ignitable mixture volume. 

Figure 13. Effect of spray inclusion angle on ignitable mixture volume.

Sustainability 2021, 13, x FOR PEER REVIEW 14 of 21 
 

  

(a) (b) 

Figure 14. Effect of fuel split ratio on (a) combustion efficiency (ŋc) and (b) combustion phasing (CA2, CA10, and CA50). 

 
Figure 15. Flame kernel development, equivalence ratio (Ф) distribution, and velocity flow field of 
three different fuel split ratios (2:8, 4:6, and 7:3) at different crank angles (−29 to −25°ATDC). 

Figure 14. Effect of fuel split ratio on (a) combustion efficiency (

Sustainability 2021, 13, x FOR PEER REVIEW 16 of 21 
 

  
(a) (b) 

Figure 17. Effect of the start of the first injection timing (SOI1st) on (a) combustion efficiency (ŋc) and (b) combustion phas-
ing (CA2, CA10, and CA50) at Δ1 = 1. 

 
Figure 18. Effect of the start of the first injection timing (SOI1st) on in-cylinder pressure and apparent 
heat release rate (AHRR). 

) and (b) combustion phasing (CA2, CA10, and CA50).

Figure 15 shows three split ratios selected to illustrate the influence of fuel split ratio
on flame kernel development and equivalence ratio distribution. It was clear that the flame
kernel formation and flame propagation occurred in all three cases. Figure 16 shows that
the split ratio of 2:8 had the earliest rise in ignitable mixture volume.
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3.6. Effect of Fuel Injection Strategy

As stated above, the split injection strategy performed better than the single injection
strategy. Thus, it was subjected to further detailed investigation. First, the influence of
the start of the first injection timing (SOI1st) was examined. Spark timing is important for
early flame development. Moreover, the relationship between spark timing and SOI1st is
critical for local fuel–air mixture formation and the subsequent combustion process [21].
Therefore, a parameter, ∆1, that represented the difference between spark timing and SOI1st
was introduced. Our baseline condition was ∆1 = 1, with respect to the SOI1st = −30◦ATDC
and the spark timing = −29◦ATDC.

While keeping ∆1 at 1, the SOI1st was varied from −32 to −21◦ATDC. Note that the
reason for setting the upper boundary of SOI1st to −21◦ATDC was to ensure enough spare
time before the second injection started. Combustion performance characteristics, including
combustion efficiency and combustion phasing, are illustrated in Figure 17. The in-cylinder
pressure and AHRR are shown in Figure 18. Overall, as both spark timing and SOI1st were
retarded, the combustion efficiency increased progressively to near 90%, and the peak
in-cylinder pressure and AHRR also increased. The lower combustion efficiency and more
retarded combustion phasing were attained at SOI1st = −32◦ATDC. This was because a too
early injection resulted in an unfavorable local environment for fuel–air mixing.



Sustainability 2021, 13, 13096 15 of 20Sustainability 2021, 13, x FOR PEER REVIEW 15 of 21 
 

 
Figure 16. Effect of fuel split ratio on ignitable mixture volume. 

3.6. Effect of Fuel Injection Strategy 
As stated above, the split injection strategy performed better than the single injection 

strategy. Thus, it was subjected to further detailed investigation. First, the influence of the 
start of the first injection timing (SOI1st) was examined. Spark timing is important for early 
flame development. Moreover, the relationship between spark timing and SOI1st is critical 
for local fuel–air mixture formation and the subsequent combustion process [21]. There-
fore, a parameter, Δ1, that represented the difference between spark timing and SOI1st was 
introduced. Our baseline condition was Δ1 = 1, with respect to the SOI1st = −30°ATDC and 
the spark timing = −29°ATDC. 

While keeping Δ1 at 1, the SOI1st was varied from −32 to −21°ATDC. Note that the 
reason for setting the upper boundary of SOI1st to −21°ATDC was to ensure enough spare 
time before the second injection started. Combustion performance characteristics, includ-
ing combustion efficiency and combustion phasing, are illustrated in Figure 17. The in-
cylinder pressure and AHRR are shown in Figure 18. Overall, as both spark timing and 
SOI1st were retarded, the combustion efficiency increased progressively to near 90%, and 
the peak in-cylinder pressure and AHRR also increased. The lower combustion efficiency 
and more retarded combustion phasing were attained at SOI1st = −32°ATDC. This was be-
cause a too early injection resulted in an unfavorable local environment for fuel–air mix-
ing. 

To further evaluate the effect of Δ1, it was varied from 0 to 3 at the SOI1st of −30°ATDC. 
Figure 19 shows the effects of Δ1 on (a) combustion efficiency and (b) combustion phasing. 
The highest combustion efficiency and the most advanced combustion phasing were pro-
duced at Δ1 = 1, followed by Δ1 = 2, then Δ1 = 3. When setting the sparking timing equal to 
SOI1st (i.e., Δ1 = 0), due to the lack of localized ignition, the combustion efficiency and com-
bustion phasing remained nearly the same as the one with no spark assistance. 

Figure 16. Effect of fuel split ratio on ignitable mixture volume.

Sustainability 2021, 13, x FOR PEER REVIEW 16 of 21 
 

  
(a) (b) 

Figure 17. Effect of the start of the first injection timing (SOI1st) on (a) combustion efficiency (ŋc) and (b) combustion phas-
ing (CA2, CA10, and CA50) at Δ1 = 1. 

 
Figure 18. Effect of the start of the first injection timing (SOI1st) on in-cylinder pressure and apparent 
heat release rate (AHRR). 

Figure 17. Effect of the start of the first injection timing (SOI1st) on (a) combustion efficiency (

Sustainability 2021, 13, x FOR PEER REVIEW 16 of 21 
 

  
(a) (b) 

Figure 17. Effect of the start of the first injection timing (SOI1st) on (a) combustion efficiency (ŋc) and (b) combustion phas-
ing (CA2, CA10, and CA50) at Δ1 = 1. 

 
Figure 18. Effect of the start of the first injection timing (SOI1st) on in-cylinder pressure and apparent 
heat release rate (AHRR). 

) and (b) combustion phasing
(CA2, CA10, and CA50) at ∆1 = 1.

To further evaluate the effect of ∆1, it was varied from 0 to 3 at the SOI1st of −30◦ATDC.
Figure 19 shows the effects of ∆1 on (a) combustion efficiency and (b) combustion phasing.
The highest combustion efficiency and the most advanced combustion phasing were
produced at ∆1 = 1, followed by ∆1 = 2, then ∆1 = 3. When setting the sparking timing
equal to SOI1st (i.e., ∆1 = 0), due to the lack of localized ignition, the combustion efficiency
and combustion phasing remained nearly the same as the one with no spark assistance.
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) and (b) combustion phasing (CA2, CA10, and CA50) at SOI1st =
−30◦ATDC.

Thereafter, the start of the second injection timing (SOI2nd) was advanced to −23◦ATDC
regarding the baseline condition (SOI2nd = −16◦ATDC), in order to evaluate its effect on
the spark-assisted early ignition. Note that the spark timing and SOI1st remained the same
as the baseline condition (SOI1st = −30◦ATDC; spark timing = −29◦ATDC). Figure 20
shows the effect of SOI2nd on (a) combustion efficiency and (b) combustion phasing. The
highest combustion efficiency occurred at the SOI2nd of −23◦ATDC. This was because the
combustion performance benefited from both the early ignition caused by spark-assistance
and compression-induced autoignition. When further retarding the SOI2nd, the effect of
spark assistance on early ignition was moderated and the autoignition dominated the
combustion process, resulting in deterioration of combustion efficiency from 85 to 75%,
along with the retarded combustion phasing. As the results presented in Figures 17 and 20
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demonstrate, the SOI2nd was less impactful on the combustion characteristics compared to
the SOI1st.
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3.7. Overview of the Spray Pattern and Fuel Injection Strategy Effects on Spark Assistance

Figure 21 provides an overview of combustion efficiency (
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) against seven key design
variables to highlight the relative importance of each design variable. The combustion effi-
ciency values for the two baseline cases (with and without spark assistance) are highlighted
in two dashed black lines.
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Among the parameters investigated in this study, varying the number of nozzle holes
could achieve the most improved combustion efficiency (~89%). With the increase in the
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number of nozzle holes to 12, although the total injected mass remained the same, the
nozzle diameter decreased and the injected mass from each nozzle hole was reduced. The
lower spray momentum led to the most favorable fuel–air mixture formation near spark
gap region, thereby facilitating flame kernel development and flame propagation.

Combustion efficiency exhibited the strongest sensitivity to the SOI1st. Similar to the
influence of the number of nozzle holes, the SOI1st impacted both early ignition and the
main combustion processes. The effect of fuel split ratio was also notable. As seen in
Figure 21, injector clocking, spray inclusion angle, and ∆1 were not as influential as other
parameters on the combustion efficiency.

4. Conclusions

This study performed 3D CFD analysis to evaluate the effects of injector spray pattern
and fuel injection strategy on combustion performance of a spark-assisted heavy-duty GCI
engine during cold idle operations. Based on the simulation results, the major conclusions
are summarized as below:

• Our analysis revealed that the spark assistance with appropriate injector spray pattern
and fuel injection strategy enhanced GCI combustion at cold idle conditions. The
effectiveness of spark-assisted cold starting strategy has been also reported by other
researchers [32–35].

• An injector clocking angle between −10 and 0◦ produced the best synergy between
the spray plume–spark plug interaction and swirl motion on influencing the flame
kernel development and local flow field, resulting in enhanced combustion efficiency.

• Increasing the number of nozzle holes was effective in promoting combustion. Com-
bustion efficiency increased and CA50 advanced. Twelve holes provided the best
performance.

• The spray inclusion angle affected the interaction between the spark plug and spray
plumes and further influenced the combustion process. A spray inclusion angle of
148◦ was found to be most favorable.

• The fuel split ratio affected the fuel–air mixing process and flame kernel growth. Split
injections performed better than a single injection. A split ratio of 2:8 had the highest
combustion efficiency.

• Combustion efficiency was notably sensitive to the SOI1st. The difference between the
spark timing and SOI1st (i.e., ∆1) of 1 showed the best combustion performance.

• The number of nozzle holes and fuel injection timing (SOI1st) had the most significant
effects on the engine combustion performance.
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