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Abstract: With the proposed goals of reaching its “carbon peak” by 2030 and becoming “carbon
neutral” by 2060, China will comprehensively build a diversified, efficient and clean energy system.
The differences in China’s resource endowments have made the development of carbon emission
reduction in the thermal power industry uncoordinated in various regions. Therefore, it is necessary
to optimize the method for measuring thermal power carbon emission efficiency and determine the
impact of regional development imbalances on the carbon emission efficiency of thermal power. For
this article, we used the stochastic frontier analysis method and selected a variety of influencing
factors as technical inefficiency items. After that, we measured the thermal power carbon emission
efficiency in 30 provinces and municipalities (autonomous regions) in China in the past 10 years, and
it was found that the efficiency was increasing yearly and showed obvious spatial differences. The
impact of the clean energy substitution effect on the thermal power carbon emission efficiency cannot
be ignored. After performing a coupled and coordinated analysis on the efficiency of thermal carbon
emission in various regions and its influencing factors, the three indicators of power consumption
intensity, urbanization level and clean energy substitution effect were selected. The weight of the
indicator subsystem was determined in view of the estimation of the technical inefficiency. The
results of the coupling and coordination analysis show that the degree of coupling and coordination
of thermal power carbon emission efficiency is increasing yearly and presents a distribution of “high
in the eastern region and low in the western region”. Therefore, all provinces need to vigorously carry
out clean replacement work to enhance the coordinated development of carbon emission reduction
in the thermal power industry and the level of regional economic development.

Keywords: clean energy substitution; thermal power carbon emission efficiency; stochastic frontier
analysis; coupling and coordination analysis

1. Introduction

In order to reduce greenhouse gas emissions, China has proposed “two alternatives”,
namely “electricity substitution” and “clean energy substitution”. China is vigorously de-
veloping the replacement of fossil energy with clean energy, taking a low-carbon and green
development path, and the country has proposed the goals of reaching a “carbon peak” by
2030 and becoming “carbon neutral” by 2060. At present, 37.6% of China’s overall carbon
emissions come from the power generation industry, of which thermal power carbon emis-
sions are the main source of carbon emissions. Wang, Y. et al. [1] found that the possibility
of reducing carbon emissions by optimizing the power generation structure is decreasing.
Duan, N. et al. [2] found that the energy efficiency of the thermal power industry is af-
fected by the performance of carbon dioxide emissions. The efficiency of carbon emission
reduction and the achievement of carbon emission reduction targets are mainly based on
the development of the thermal power industry [3–6]. Therefore, replacing thermal power
generation with clean energy will become an important way to achieve the “carbon peak
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and neutrality” goal. China has a large land area and abundant resources, leading to large
differences in the development of different provinces. Against the background of clean
energy substitution, the efficiency measurement of thermal power carbon emissions is no
longer simply a matter of pure input and output efficiency; rather, it considers the common
influence of multiple factors and clarifies the coordination relationship between them.

The main measurement methods for thermal power carbon emission efficiency are
concentrated on two approaches: single-factor and multi-factor. Yamaji, K. et al. [7]
converted carbon dioxide productivity into the ratio of the gross national product to total
carbon emissions to measure carbon emission efficiency. Mielnik, O. et al. [8] measured the
carbon emission efficiency by comparing the carbon dioxide emissions produced by each
unit of energy consumption in different provinces. Sun J W [9] used the carbon emissions
per unit GDP growth as an evaluation index of carbon emission efficiency. Using single-
factor indicators to evaluate carbon emission efficiency is easy to understand and easy
to operate, but it also has obvious shortcomings. Therefore, many researchers have used
multi-factor indicators to measure carbon emission efficiency. Sheng, L.A. et al. [10] pointed
out that the change of carbon emission efficiency is determined by multiple influencing
factors. Wang, K. et al. [11] used Slacks-based measures and window analysis methods
to find that the carbon emission efficiency and potential are related to resources. Xu, S.-C.
et al. [12] used the logarithmic average two-dimensional West Asia index decomposition
method to decompose the influencing factors of carbon emission efficiency into energy
structure, energy intensity, economic structure and economic output effect. The Data
Envelopment Analysis (DEA) method can be applied in conjunction with other models
to measure the carbon emission efficiency of various provinces in China [13,14]. Gao, P.
et al. [15] used the super efficiency slack-based model (SBM) to measure carbon emission
efficiency under specific carbon emission and direct carbon emission scenarios. Cheng,
Z. et al. [16] used an improved non-radial directional distance function (NDDF) in the
process of the dynamic evolution analysis of carbon emission efficiency and constructed a
new meta-boundary total factor carbon emission efficiency index (TCEI). The stochastic
frontier analysis (SFA) model is widely used for analyzing the impact of other influencing
factors on carbon emission efficiency [17,18], among which Wang, L. et al. [19] measured
the carbon emission efficiency of multiple countries with the minimum distance method
combined with SFA.

With the popularization of multi-factor carbon emission efficiency measurement meth-
ods, Yan, D. et al. [20] found that the electric power carbon emission efficiency is spatially
different and is determined by a variety of influencing factors. There are many works that
have found a great relationship between energy efficiency, environmental efficiency, ecolog-
ical benefits and the use of clean energy and carbon emission reduction [21–24]. Increasing
numbers of researchers are tending to explore the coupling and coordination relationship
between carbon emission efficiency and its influencing factors. Zhou, D. et al. [25] made
policy recommendations for a coordinated development between provinces and cities
based on the coupling and coordination path between China’s carbon emission efficiency
and industrial structure. Chen, J. et al. [26] analyzed the coupling mechanism between
carbon emissions and the ecological environment and identified the key factors that affect
the degree of coordination. Shen, L. et al. [27] found that the coordinated development of
social economy and carbon emissions is very important for the sustainable development
of cities. Song, Q. et al. [28] constructed a coordinated model of urbanization and carbon
emissions to explore low-carbon development models in the urban phase. Some schol-
ars [29,30] analyzed the coordinated development model between carbon emissions and
various influencing factors, such as the economy, environment, energy, technology, etc.,
and then gave the spatial characteristics of carbon emissions among different provinces.
With the deepening of the research, Chai, J.X. et al. [31] found that the determination of the
weights between the research indicators has a decisive effect on the analysis of coupling
and coordination. Li, W.W. et al. [32] used the entropy weighting method to construct an
objective coupling and coordination analysis method to analyze the urban economy, society
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and environment. Hou, C. and Wang, P. et al. [33,34] combined the coupling coordina-
tion with the entropy method, the non-dimensional method and the principal component
analysis method to establish a coupling coordination model.

This paper aims to analyze the production frontier before analyzing the coupling
relationship between thermal power carbon emission efficiency and its influencing fac-
tors. At present, Andor, M. et al. [35] found that Data Envelopment Analysis (DEA) and
Stochastic Frontier Analysis (SFA) are the most representative methods for this. Many
scholars [36–39] have found that the DEA method did not take random factors into consid-
eration when calculating the efficiency, and that the calculation would be affected by the
quality of the data. Therefore, the statistical data of carbon emission efficiency may produce
large errors. The SFA method not only considers a variety of factors that lead to deviation
from the frontier but also conducts a statistical analysis of the degree of interference of
random factors [40–42], which can provide data support for the subsequent coupling and
coordination analysis. Therefore, this paper drew on the use of the SFA method in previous
studies to estimate carbon emission efficiency. For the first time in the efficiency calculation,
the substitution effect of clean energy and various other effects are combined as random
interference items. In previous studies, the weights of subsystems in the coupling and
coordination analysis were all equally distributed. In this paper, the influence degree of the
random interference items in the SFA method was transformed into the subsystem weights
in the coupling and coordination analysis. Finally, the degree of coupling and coordination
between the influencing factors of thermal power carbon emission efficiency in different
provinces is determined.

The fundamental way for China to achieve carbon peaks in 2030 and carbon neutrality
in 2060 is to reduce carbon dioxide emissions. Based on the background and significance
of the research, this article first puts forward the questions that need to be studied in
combination with the research that has been completed so far. After that, the main theoret-
ical methods used are introduced, including the SFA analysis method and the coupling
coordination analysis method. Next, the SFA input and output factors and influencing
factors are analyzed. Then, this paper uses the SFA efficiency measurement method, con-
sidering the combined impact of the clean energy substitution effect and other factors, to
calculate the thermal power carbon emission efficiency of 30 provinces and municipalities
(autonomous regions) in China from 2009 to 2018. Afterwards, based on the regional
spatial characteristics of thermal power carbon emission efficiency and the estimation of
technical inefficiency, the influencing factor indicators of the coupling and coordination
analysis and the weights of the indicator subsystems are determined. Then, a coupling
analysis of the influencing factors of thermal power carbon emission efficiency is carried
out for each province. Finally, this article presents the degree and difference of coordinated
development in various regions and clarifies the links of coordinated development between
regions, thereby providing a theoretical basis for the planning of inter-provincial power
generation structure and the proposal and implementation of carbon emission reduction
policies. To better explain the content of the article, the chapter structure is shown in
Figure 1.
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Figure 1. The structure of the paper.

2. Materials and Methods
2.1. Stochastic Frontier Analysis

Stochastic Frontier Analysis (SFA) is a method of measuring production efficiency
based on input and output proposed by Aigner, D., Meeusen, W. and others in 1977 [43,44].
This method assumes that individual producers cannot reach the production frontier due to
the interference of random disturbance items and technical inefficiency items. The general
model is

yit = h(xit; β) ∗ exp(vit − uit), i = 1, 2, · · · , n (1)

vit ∼ N
(

0, ρv
2
)

(2)
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uit ∼ N
(

pit, ρu
2
)

(3)

pit =
n

∑
m=1

ηmqit (4)

TE =
E(yit|uit, xit )

E(yit|uit = 0, xit )
= exp(−uit) (5)

where yit represents the output of the i-th product in period t, xit represents the production
factor input of the i-th product in period t, β represents the parameter to be estimated, and
h(x) indicates that the production function represents the forefront of producer technology.
The random disturbance item vit and the technical inefficiency item uit, respectively, rep-
resent the interference of the i-th product in period t. ρv and ρu are the variances of the
normal distribution. pit represents the total impact of the technical inefficiency item on
production, ηm is the parameter to be estimated, and qit represents the degree of impact of
the i-th product on output in period t. The most commonly used method is to express the
technical efficiency by the ratio of the observable output to the output of the corresponding
random frontier. The technical efficiency (TE) is the ratio of the average actual production
efficiency to the average maximum production efficiency.

Based on the related research results, Battese et al. [45] improved the above model and
applied it to the research and development of panel data, improving the SFA method. At
the same time, all the factors that may affect efficiency and the production boundary of an
enterprise can be estimated at the same time, which expands the scope of application of
this method. In order to be more intuitive and concise, they proposed the trans-logarithmic
production function, the general form of which is

ln yit = β0 + β1 ln Kit + β2 ln Lit + β3 ln Cit + β4(ln Kit)
2 + β5(lnLit)

2+

β6(lnCit)
2 + β7 ln Kit × lnLit + β8 ln Kit × ln Cit + β9 ln Lit × ln Cit + vit − uit

(6)

where Kit, Lit, Cit, respectively, represent the capital, labor and resources invested in the
i-th product in period t, vit − uit is the compound residual of the equation, with a variance

of ρ2 = ρv
2 + ρu

2, and the definition is γ = ρu
2

ρ2 ; the closer γ is to 1, the more the actual
deviations in production efficiency are caused by technical inefficiencies.

2.2. Coupling and Coordination Analysis

With the development of social diversification, there are complex, diverse and inter-
connected coupling relationships between different systems, such as resources, economy
and ecology. The analysis of the overall equilibrium level between different systems has
also been incorporated into the content of the regional comprehensive evaluation. There-
fore, the analysis of coupling and coordination has become an effective evaluation tool.
The formula of the traditional dual coupling coordination model is as follows:

P =

{
X×Y

(X + Y)2

} 1
2

(7)

T = ω1X + ω2Y (8)

D =
√

P× T (9)

where X and Y represent two influencing factor subsystems’ comprehensive evaluation
value, P is their coupling degree, T represents their comprehensive development level, ω
represents their importance, usually ω1 = ω2 = 1

2 , and D represents the coupling of their
degree of coordination.

Through the summary of various documents, the calculation of the efficiency of
firepower carbon emissions is affected by multiple influencing factors. Therefore, a multi-
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coupled coordination analysis model is introduced to analyze the degree of coordination.
The specific model is as follows:

P =


n
∏
i=1

Xi(
n
∑

i=1
Xi

)n


1
n

(10)

T =
n

∑
i=1

ωnXn (11)

D =
√

P× T (12)
n

∑
i−1

ωi = 1 (13)

where X1, X2, · · · , Xn represents the comprehensive evaluation value of n subsystems. In
this paper, it specifically refers to the factors with larger coefficients obtained by screening
the coefficients of the variables in the maximum likelihood estimation of the production
function after analyzing all the influencing factors of thermal power carbon emission
efficiency through the SFA method. ω1, ω2, · · · , ωn, respectively, represent their importance
to the system. Normally, it is defined as ω1 = ω2 = · · · = ωn = 1

n . When calculating the
comprehensive development level, if the definition of each subsystem is equally important,
the coordinated development degree formula is simplified, so it is necessary to consider
the definition of the weights of influencing factors in the coupling degree analysis process.

This article considers the difference between the SFA model’s method of measuring
efficiency and other models—that is, the degree of influence of the factors that affect the
carbon emission efficiency can be obtained in the calculation process. The coefficient of
each variable in the maximum likelihood estimate of the production function is used to
determine the weight of each subsystem, and the coupling coordination degree obtained
from this is more in line with the actual level.

In the coupling and coordination analysis, the index construction of influencing factors
is subjective, and it is difficult to compare the research results horizontally. The calculated
coupling coordination degree is the relative value of a certain year in the current region,
which also makes it impossible to compare the results of a region after the expansion year.
In order to solve this problem, based on the obtained coupling degree results of different
influencing factors, the thermal power carbon emission efficiency coupling coordination
degree is classified according to the commonly used coupling coordination degree classifi-
cation method, and the results of different regions and different years are compared and
analyzed. The classification standard is shown in Table 1.

Table 1. Coupling coordination degree division table.

Coordination Phase Coupling and
Coordination

Stage
Division Coordination Level

Low-level coupling stage 0~0.3 0~0.3 Severe imbalance

Antagonistic stage 0.3~0.5 0.3~0.5 Moderate imbalance

Grinding stage 0.5~0.8
0.5~0.6 On the verge of imbalance
0.6~0.7 Primary coordination
0.7~0.8 Intermediate coordination

High-level coupling stage 0.8~1 0.8~1 Highly coordination

2.3. Data Processing Method

To eliminate the difference in the magnitude of data between different regions and
years, some indicators need to be standardized before the analysis of thermal power carbon
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emission efficiency and the coupling degree of its influencing factors. According to the
difference in the impact of variable factors on the carbon emission efficiency, it can be
divided into positive and negative influencing factors, and there will be differences in
the standardization process. According to the formula of coupling degree analysis, the
comprehensive value of each subsystem should be a non-zero number. If the traditional
maximum and minimum standardization method is used, the value will be zero. Therefore,
the following improved processing method is adopted:

Positive influence factors:

Zij =
Aij −min

(
Aj
)

max
(

Aj
)
−min

(
Aj
) × 0.99 + 0.01 (14)

Negative influence factors:

Zij =
max

(
Aj
)
− Aij

max
(

Aj
)
−min

(
Aj
) × 0.99 + 0.01 (15)

where Aij represents the value of the j-th index in the i-th year, Zij represents the normalized
data result, and Aj represents all the values of the j-th index.

3. Analysis of Indicators
3.1. SFA Input–Output Indicators

Among the input factors, capital K is represented by the thermal power installed
capacity, and labor L is represented by the number of people working in thermal power,
thermal power production and supply. This paper regards thermal power carbon emissions
as the input factor resource C in the production process, and the annual thermal power
generation in each region is considered as the output factor in the efficiency measurement
model. In order to determine the carbon emissions in the process of thermal power
generation, this paper assumes that the carbon emissions produced by the combustion
of energy in thermal power generation are all electricity carbon emissions. Based on the
emission factor method provided in the “2006 IPCC National Greenhouse Gas Inventory
Guidelines” [46], the calculation method of fire carbon emissions is as follows:

Ctotal =
n

∑
i=1

ECi·MICi·CCEi·COFi·
44
12

(16)

where Ctotal stands for the total emissions of carbon, ECi is the consumption of the i-th
energy, MICi is the average low calorific value of the i-th energy, CCEi is the energy carbon
content of the i-th energy, and COFi is the carbon oxidation factor of the i-th energy. The
molecular weights of carbon dioxide and carbon are 44 and 12, respectively.

According to general assumptions, it can be considered that the emission factor of a
certain energy type is constant during use. Therefore, this method, as an indirect method of
measuring carbon dioxide emissions, does not represent the true carbon dioxide emissions.
Energy consumption mainly includes eight types of energy: coal, crude oil, kerosene,
gasoline, coke, diesel, fuel oil and natural gas.

3.2. Efficiency Influencing Factors

This paper chooses to analyze seven influencing factors—energy consumption struc-
ture, clean energy substitution effect, economic scale, population scale, industrial structure,
power consumption intensity and urbanization level—and use them as the technical ineffi-
ciency items in the SFA production function. The following is a detailed analysis of the
meaning and calculation formula of these influencing factors:

1. Energy consumption structure
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The carbon emissions produced by different energy sources in electricity production
vary widely. Coal is the main raw material in thermal power generation, and its combustion
and utilization are the main sources of carbon emissions in power production, so the energy
consumption structure directly affects the carbon emission efficiency of thermal power.
This paper chooses the proportion of coal consumption to the total energy consumption in
power production to represent the energy consumption structure.

2. Clean energy substitution effect

Clean energy refers to energy that does not emit pollutants and can be directly used
for production and life. It includes non-fossil energies such as nuclear energy, wind energy,
solar energy, hydropower and biomass energy. As an inevitable requirement of the energy
transition, clean energy substitution not only refers to the transition from low-density
energy consumption to high-density, but also to the decarbonization process of energy
consumption from high carbon emissions to zero carbon emissions. Carbon reduction in
energy production and the replacement of thermal power generation with clean energy
power generation will reduce the total carbon emissions in the process of thermal power
generation, thereby effectively improving the carbon emission efficiency of thermal power.
Therefore, this paper chooses the proportion of clean energy power generation and thermal
power generation to represent the clean energy substitution effect.

3. Economic scale

With the rapid expansion of China’s economy, carbon emissions are increasing every
year due to the continuous increase in energy consumption. Economic development cannot
be at the cost of the environment, so the balanced relationship between the two is an
important prerequisite for sustainable development. Therefore, in the research of thermal
power carbon emission efficiency, GDP per capita is used to represent the size of the
economy.

4. Population size

In recent years, with the continuous growth of the population, the consequent energy
demand, transportation demand, daily necessities demand and cultural goods demand
have gradually increased. The growth of these demands has directly driven the growth of
carbon emissions. China is a populous country, and the impact of population size on the
carbon emission efficiency of thermal power cannot be ignored.

5. Industrial structure

At present, China is undergoing a comprehensive industrial revolution. The industrial
structure has gradually shifted to a higher level, with the center of gravity gradually shifting
from primary industry to secondary and tertiary industries. Secondary industry mainly
includes most of the manufacturing industries in life, and these production activities will
increase carbon emissions. Therefore, this article selects the ratio of the output value of
tertiary industry to the output value of secondary industry to represent the change in the
industrial structure.

6. Power consumption intensity

Electricity consumption intensity is the electric energy consumed by a certain area to
produce a unit of GDP in a certain period of time, and it reflects the efficiency of electric
energy utilization in that area. This paper takes the ratio of total power consumption to
total GDP as the technical inefficiency item included in the SFA production function as
power consumption intensity.

7. Urbanization level

The process of urbanization is generally accompanied by the construction and trans-
formation of a large amount of infrastructure, and the gradual large-scale agglomeration of
population in cities, which leads to an increasing demand for electricity, and the amount of
carbon emissions generated by production activities will gradually increase substantially.
Therefore, the level of urbanization can be used as an influencing factor for the carbon
emission efficiency of thermal power generation. This paper takes the proportion of urban
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population in each region as the standard for the urbanization rate, where the urban
population refers to the population living in cities and market towns, which are mainly
classified according to the people’s place of residence and the industry they are engaged in.

Based on the above analysis and the explanation of each influencing factor, this article
constructs the influencing factor index table as shown in Table 2.

Table 2. Influencing factors index table.

Indicator Name Indicator Meaning Calculation Formula

Energy consumption structure Coal consumption as a percentage of total
energy consumption

Coal consumption/Total energy
consumption

Clean energy substitution effect The ratio of clean energy power generation to
thermal power generation

Clean energy power generation/Thermal
power generation

Economic scale GDP per capita Total GDP/Total population at the end of
the year

Population size Total population at the end of the year in each
region Total population at the end of the year

Industrial structure
The ratio of the output value of the tertiary

industry to the output value of the secondary
industry

Tertiary industry output value/Second
industry output value

Power consumption intensity Electricity consumption per unit of GDP Total electricity consumption/Total GDP

Urbanization level proportion of urban population in each region Urbanization rate

4. Empirical Analysis Results
4.1. Data Source and Processing

China’s clean energy development began in the 21st century, and the “Renewable
Energy Law of the People’s Republic of China” was implemented in 2006. With the
advancement of science and technology, clean energy has developed rapidly. Through data
collection, it is found that the relevant data on clean energy in various regions of China
after 2009 are relatively complete. In order to ensure the reliability of the research, the
data from nearly 10 years after 2009 were selected for research. Based on the previous
calculation method and indicator system construction of thermal power carbon emission
efficiency, considering the availability of data, this paper selected the data of 30 provinces
and municipalities (autonomous regions) in China from 2009 to 2018 for 10 years for
analysis. All variables and data are from the “China Statistical Yearbook”, “China Electric
Power Statistical Yearbook”, “China Energy Statistical Yearbook”, “Provincial Greenhouse
Gas Inventory Compilation Guide” and “China Industrial Statistical Yearbook” [47–51].

After collecting the required data, use Formulas (14) and (15) to process the collected
data based on the characteristics of the indicators. According to the SFA production
function model, we used Frontier4.1 software to filter and process the collected data from
30 provinces and municipalities (autonomous regions) and obtain statistical data on the
thermal power carbon emission efficiency and its influencing factors in various regions
in the past 10 years. In the paper, the environment in which the software was run used
a 64-bit Win11 operating system. The specific results are shown in the following figures
and tables.

4.2. Calculation of Carbon Emission Efficiency of Thermal Power
4.2.1. Production Function Estimation

In this paper, the maximum likelihood estimation results after the efficiency measure-
ment using a software are shown in Table 3.
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Table 3. Maximum likelihood estimates of the production function.

Variable Coefficient Value t Statistic Variable Coefficient Value t Statistic

Constant term −63.718 −5.456 *** LnK * LnL 0.052 0.891
LnK 6.243 5.127 *** LnK * LnC −0.215 −2.668 ***
LnL 2.867 2.049 ** LnL * LnC 0.201 2.609 ***
LnC −6.943 −3.467 *** ρ2 0.022 9.169 ***

(LnK)2 −21.125 −4.974 *** γ 0.802 17.652 ***
(LnL)2 4.995 2.368 ** Log likelihood function 238.136 -
(LnC)2 −14.282 −3.410 *** LR test of unilateral error 263.859 -

Note: *, **, *** indicate passing the t test at 10%, 5% and 1% significance levels, respectively.

According to the results in Table 2, the coefficients of variables other than LnK *
LnL in the model are all statistically significant, and most of them pass the t-test at the
1% significance level. The positive coefficients are the capital variable K and the labor
variable L, indicating that the increase of the two is conducive to the improvement of the
carbon emission efficiency of thermal power. The advancement in technical efficiency, the
increase in the installed capacity thermal power and the increase in the number of people
in related industries represent the expansion of thermal power investment. The increase in
capital and labor has a positive impact on the improvement of carbon emission efficiency,
which is consistent with the actual situation. Meanwhile, the negative coefficient is the
input factor resource variable C, which shows that the increase in the carbon emissions of
thermal power will inhibit the improvement of thermal power carbon emission efficiency.
This paper regards the carbon emissions generated by the various energy sources for the
production of thermal power as the carbon emissions of thermal power, and the increase in
this number has a negative impact on the efficiency of carbon emissions, which is consistent
with the actual situation. The value of γ is 0.8022, which passes the maximum likelihood
test, indicating that the deviation of the carbon emission efficiency of thermal power in
most provinces from the frontier is caused by technical inefficiency. Therefore, it was
advisable in this paper to use the SFA method to measure the carbon emission efficiency of
thermal power generation.

4.2.2. Technical Inefficiency Estimate

The maximum likelihood estimates of the technical inefficiency term are shown in
Table 4.

Table 4. Maximum likelihood estimates of technical inefficiency.

Variable Coefficient
Value t Statistic Variable Coefficient

Value t Statistic

Constant term 0.597 4.212 *** η4 −0.00008 −6.218 ***
η1 −0.005 −0.353 η5 0.001 3.519 ***
η2 0.117 15.479 *** η6 −0.200 −6.064 ***
η3 −0.036 −2.718 *** η7 −0.251 1.929 *

Note: *, *** indicate passing the t test at 10%, and 1% significance level, respectively.

It can be seen from Table 3 that most of the influencing factors are significantly effective.
Of these, the maximum likelihood estimates of the five influencing factors of energy
consumption structure, economic scale, population size, power consumption intensity and
urbanization level are negative. This shows that the impact of these influencing factors on
the carbon emission efficiency of thermal power plants is negative. The more obvious roles
are the intensity of power consumption and the level of urbanization. Power consumption
intensity can roughly indicate the connection between economic development and power
production in a certain area. The increase in power consumption intensity will indicate
that the same level of economic development will consume more power, which will bring
about an increase in carbon emissions and suppress the efficiency of carbon emissions. The
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level of urbanization can reflect the degree of construction in a certain area. The higher the
degree of urbanization, the greater the demand for electricity and other energy sources in
the region, which in turn will increase the carbon emissions of thermal power generation
and inhibit its efficiency. The maximum likelihood estimates of clean energy substitution
effects and the industrial structure are positive. This shows that as clean energy power
generation replaces thermal power generation and the industrial structure gradually shifts
to a higher level, the thermal power carbon emission efficiency improves. The impact of the
clean energy substitution effect is stronger, because clean substitution directly affects carbon
dioxide emissions and improves carbon emission efficiency. Therefore, it is advisable to
incorporate the clean substitution effect into the factors affecting the thermal power carbon
emission efficiency in this paper.

4.2.3. Carbon Emission Efficiency Analysis

In order to more intuitively reflect the regional distribution characteristics of thermal
power carbon emission efficiency, the 30 provinces and municipalities (autonomous regions)
in China are divided into eastern, northeastern, central and western regions based on their
geographic locations, which are represented by “E, NE, C and W”. Using the trans-
logarithmic production function to measure the thermal power carbon emission efficiency,
the carbon emission efficiency of thermal power generation in various regions in the past
ten years can be obtained. The results are shown in Table 5.

Table 5. Summary table of carbon emission efficiency.

District Division 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Mean

Beijing E 0.810 0.831 0.866 0.847 0.841 0.824 0.862 0.881 0.898 0.939 0.860
Tianjin E 0.761 0.845 0.899 0.863 0.860 0.790 0.833 0.831 0.857 0.891 0.843
Hebei E 0.850 0.867 0.879 0.884 0.842 0.860 0.881 0.870 0.875 0.880 0.869
Shanxi C 0.797 0.832 0.859 0.884 0.893 0.883 0.808 0.863 0.872 0.886 0.858

Inner Mongolia C 0.804 0.784 0.836 0.864 0.851 0.897 0.889 0.848 0.867 0.896 0.854
Liaoning NE 0.807 0.829 0.839 0.821 0.801 0.827 0.850 0.850 0.831 0.819 0.827

Jilin NE 0.739 0.615 0.688 0.663 0.698 0.735 0.707 0.708 0.711 0.717 0.698
Heilongjiang NE 0.790 0.809 0.829 0.834 0.779 0.845 0.839 0.833 0.794 0.789 0.814

Shanghai E 0.821 0.848 0.878 0.809 0.820 0.838 0.847 0.846 0.876 0.858 0.844
Jiangsu E 0.962 0.975 0.979 0.987 0.948 0.966 0.986 0.983 0.977 0.976 0.974

Zhejiang E 0.904 0.952 0.967 0.963 0.931 0.899 0.909 0.938 0.951 0.970 0.938
Anhui C 0.925 0.937 0.959 0.979 0.944 0.956 0.931 0.934 0.949 0.958 0.947
Fujian E 0.875 0.897 0.938 0.866 0.892 0.919 0.791 0.868 0.931 0.944 0.892
Jiangxi C 0.750 0.803 0.866 0.779 0.879 0.895 0.903 0.821 0.866 0.879 0.844

Shandong E 0.947 0.958 0.947 0.934 0.918 0.967 0.986 0.980 0.968 0.967 0.957
Henan C 0.857 0.875 0.894 0.970 0.946 0.961 0.958 0.954 0.946 0.957 0.932
Hubei C 0.731 0.778 0.936 0.781 0.881 0.803 0.830 0.820 0.804 0.890 0.825
Hunan C 0.771 0.832 0.854 0.861 0.883 0.829 0.772 0.802 0.832 0.863 0.830

Guangdong E 0.910 0.921 0.932 0.935 0.901 0.918 0.937 0.923 0.926 0.922 0.923
Guangxi W 0.656 0.673 0.684 0.739 0.875 0.957 0.845 0.853 0.855 0.885 0.802
Hainan W 0.592 0.701 0.743 0.723 0.753 0.831 0.805 0.679 0.662 0.709 0.720

Chongqing W 0.727 0.749 0.782 0.768 0.812 0.697 0.633 0.700 0.756 0.793 0.742
Sichuan W 0.649 0.687 0.659 0.630 0.699 0.668 0.667 0.567 0.507 0.630 0.636
Guizhou W 0.761 0.751 0.737 0.702 0.729 0.666 0.814 0.822 0.751 0.781 0.752
Yunnan W 0.359 0.291 0.297 0.390 0.506 0.436 0.495 0.653 0.651 0.692 0.477
Shaanxi C 0.791 0.858 0.871 0.920 0.892 0.910 0.897 0.904 0.905 0.824 0.877
Gansu W 0.733 0.739 0.876 0.863 0.870 0.863 0.839 0.804 0.787 0.872 0.824

Qinghai W 0.667 0.671 0.684 0.750 0.780 0.753 0.614 0.680 0.681 0.690 0.697
Ningxia W 0.722 0.652 0.773 0.780 0.742 0.766 0.769 0.692 0.731 0.755 0.738
Xinjiang W 0.681 0.689 0.708 0.766 0.778 0.826 0.867 0.845 0.820 0.845 0.782

Comparing the average thermal power carbon emission efficiency of the four regions
with the national average efficiency, the results are shown in Figure 2, above. According to
the results, the average carbon emission efficiency of China’s 30 provinces and municipali-
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ties (autonomous regions) in the 10 years from 2009 to 2018 is 0.819, which is a relatively
high level and shows a fluctuating upward trend. According to the regional division, the
distribution of efficiency presents a certain spatial aggregation characteristic. The average
efficiency of the eastern coastal area is 0.900, followed by the central economic development
region at 0.871, which is higher than the nationwide mean. The average efficiencies of
the old industrial clusters in the northeast and the western developed areas are 0.780 and
0.717, respectively, which are both lower than the nationwide mean. At the provincial level,
economically developed areas such as Zhejiang, Jiangsu and Guangdong are more efficient.
These provinces have relatively high levels of economic development and urbanization,
and the development rate of clean substitution and electric power substitution is also at a
leading level. They not only vigorously develop the economy, but are also concentrating on
the protection of the ecological environment and strictly implementing the prevention and
control measures of carbon dioxide and other pollutants, which is conducive to improving
the carbon emission efficiency in the process of thermal power generation. However, the
three provinces of Heilongjiang, Jilin and Liaoning in the old industrial clusters and in
western regions such as Sichuan, Yunnan, Qinghai and Ningxia have a low carbon emission
efficiency. The level of economic development in these provinces has not been high, and
the importance of environmental protection has not been high. In general, the thermal
power carbon emission efficiency decreases in the following order: east, northeast, center
and west. There are big differences between provinces, and the reasons for the differences
are also bound up with the changes in the resources and the environment, the human
environment and the policies and regulations between regions. Therefore, the coupling
relationship between the influencing factors of thermal power carbon emission efficiency
in various provinces needs to be further studied.

Figure 2. Thermal power carbon emission efficiency trend.

4.3. Coupling and Coordination Analysis

According to the previous estimation of the technical inefficiency of thermal power
carbon emission efficiency, it can be found that the intensity of electricity consumption,
the level of urbanization and the clean energy substitution effect have a greater impact on
the deviation of efficiency. Based on the previous hypothesis, the absolute value of the
estimated result of the coefficient value of the technical inefficiency term can represent its
weight. Calculating according to formula (10~13), we can obtain weights of 0.21, 0.35 and
0.44, respectively. After normalizing the data according to the influencing factors in the
direction that promotes efficiency improvement, combined with the size of its weight, the
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coupling and coordination degree of thermal power carbon emission efficiency in each
province in 10 years is finally obtained. Since the data from 10 years are not clear enough
to compare, the data of the coupling coordination degree every two years are selected for
comparison. At the same time, in order to show the spatio-temporal characteristics of the
degree of coupling and coordination, the average value of each region is compared and
analyzed. The final result is shown in Figure 3.

Figure 3. Analysis of the degree of coupling and coordination in different regions.

According to the division rules of the coupling coordination degree in Table 1, the
coupling coordination degree of each region can be obtained within 10 years. In order
to see the changes in the degree of coupling and coordination in different regions more
intuitively, the degree of coupling and coordination in different regions can be drawn on
the data map. Taking into account the number of pictures, this paper selects the coupling
coordination degree every two years to draw a data map to analyze the general trend of
changes. The results are shown in Figure 4, below.

In general, most areas of China have improved the coordination level between their
thermal power carbon emission efficiency and power consumption intensity, urbanization
level and clean substitution effect in the past 10 years, and the degree of coupling coordina-
tion has shown the following pattern: “eastern region > northeastern region > central region
> western region”. In the four typical years, the eastern coastal areas and Beijing, Tianjin
and Liaoning have been in a high-level coupling stage, with a highly coordinated degree
of coupling. These areas are economically developed and resource-rich, and clean energy
can be used efficiently in these regions; in addition, the development of thermal power
carbon emission efficiency is highly coordinated with the power consumption intensity,
urbanization level and clean substitution effect. The central region, the northeastern region
and Xinjiang, in the western region, are in the appropriate stage. Xinjiang has gradually
developed from the degree of coupling coordination to being on the verge of coordination
and to primary coordination. Heilongjiang, Hebei, Anhui and other regions have gradually
developed from primary coordination to intermediate coordination. Inner Mongolia and
Chongqing have gradually developed from primary coordination to high coordination.
Although Xinjiang is rich in clean energy, it cannot be highly coordinated with its develop-
ment level. The carbon emission efficiency of coal-fired power in Heilongjiang and other
places has increased, but the development of its coordination degree has lagged. Except
for Xinjiang, most of the western regions are in the stage of antagonism and low-level
coupling. Qinghai went from severe to moderate disorder, and Gansu went from moderate
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to near disorder. Although these two regions are rich in clean energy, their utilization level
is not high, and their impact on the carbon emission efficiency of thermal power is poorly
coordinated.

Figure 4. Coupling coordination degree analysis map.

5. Conclusions and Suggestions

Aiming at addressing the lack of research on the thermal power carbon emission
efficiency in various regions of China against the background of clean energy substitution,
this paper adopts the SFA method to calculate the thermal power carbon emission efficiency
in 30 provinces and municipalities (autonomous regions) in China from 2009 to 2018.
According to the results of the SFA method, the weights of the influencing factors of the
coupling analysis are determined, and the degree of coupling and coordination of the three
influencing factors of thermal power carbon emission efficiency and power consumption
intensity, urbanization level and clean energy substitution effect is analyzed. The main
conclusions are as follows.

First, through the calculation of the thermal power carbon emission efficiency of
China’s 30 provinces and municipalities (autonomous regions) in the past 10 years, it can
be seen that the deviation of efficiency from the frontier is caused by technical inefficiency.
For the improvement of thermal power carbon emission efficiency, the energy consumption
structure, economic scale, population size, power consumption intensity and urbanization
level play negative roles, and the clean substitution effect and industrial structure play
positive roles.



Sustainability 2021, 13, 13221 15 of 17

Second, the carbon emission efficiency of China’s thermal power has been at a rel-
atively high level and has shown a trend of volatility, increasing year by year. Through
regional statistics, it can be found that China’s thermal power carbon emission efficiency
has obvious spatial differences and shows a decreasing trend in the east, northeast, center
and west.

Third, the intensity of power consumption, the level of urbanization and the replace-
ment effect of clean energy have a greater impact on the deviation of the carbon emission
efficiency of thermal power. In the four typical years, the level of coordination has im-
proved, and the following pattern can be seen: “eastern region > northeastern region >
central region > western region”.

In response to the above conclusions, it is recommended that all provinces vigorously
carry out clean replacement and promote the coordinated development of thermal power
carbon emission efficiency. This can be implemented in terms of the following aspects.

On the one hand, in order to better carry out clean energy substitution and further
optimize the energy system, it is necessary not only to accelerate the clean use of coal and
other fossil energy in energy production and accelerate the withdrawal of high-emission
thermal power units, but also to promote the rapid development of new energy sources
and guide the incremental demand for clean energy in terms of energy production and
consumption.

On the other hand, various provinces must not only adapt measures to local conditions
and vigorously carry out electricity substitution and clean energy substitution in multiple
energy-using fields, such as industry, transportation and agriculture, but also improve
energy utilization efficiency at the technical and market levels to optimize the allocation
of energy resources. The inter-provincial exchanges of talents and technologies should
be strengthened, and the development differences between regions should be narrowed
so that the carbon emission efficiency of thermal power can develop in an all-round and
coordinated manner, and the sustainable development of the “two alternatives” should
be promoted.
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