Quantitative Analysis of Farmers Perception of the Constraints to Sunflower Production: A Transverse Study Approach Using Hierarchical Logistic Model (HLM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Analytical Framework
2.3.1. Principal Component Analysis (PCA)
- Determine the mean vector for all data
- Subtract the means vector from each of the data points:
- Assume is an orthonormal data matrix. Then we have the covariance matrix
- Calculate the covariance matrix’s eigenvalues and eigenvectors, then structure them in descending sequence of eigenvalues.
- To generate the matrix with columns forming an orthogonal system, select K eigenvectors matching the K highest eigenvalues. The main components, or K vectors, form a subspace that is identical to the orthonormal data matrix.
- Make an orthonormal data matrix projection to the subspace that is found.
- The dimensions of the data points on the new space make up the new data.
2.3.2. Hierarchical Logistic Model (HLM)
3. Summary Statistics
Descriptive Statistics
4. Result
4.1. Aggregation of Factors and Determination of the Dimension of Farmers Perceived Interest in Constraints to Sunflower Production
4.2. Determinants of Smallholder Sunflower Farmers Perceived Interest in Innovation, Finance, and Crop Management Practice
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, S.; Brzeska, J.; Keyzer, M.; Halsema, A. Subsistence to Profit: Transforming Smallholder Farms; International Food Policy Research Institute: Washington, DC, USA, 2013. [Google Scholar]
- Mbaya, E.; Tihanyi, K.; Karaan, M.; Van Rooyen, J. (Eds.) Case Studies of Emerging Farmers and Agribusinesses in South Africa, 1st ed.; Sun Media: Stellenbosch, South Africa, 2011; ISBN 978-1-920338-66. [Google Scholar]
- Aliber, M.; Kirsten, M.; Maharajh, R.; Nhlapo-Hlope, J.; Nkoane, O. Overcoming Underdevelopment in South Africa’s Second Economy. Dev. South Afr. 2006, 23, 45–61. [Google Scholar] [CrossRef]
- Davison, C.; Paradza, G. Institute for Poverty, Land and Agrarian Studies (PLAAS). Institute for Poverty, Land and Agrarian Studies, University of the Western Cape: Cape Town, South Africa. Available online: https://www.PLAAS_WorkingPaper27ChikazungaParadza.Pdf. (accessed on 16 April 2021).
- Louw, A.; Chikazunga, D.; Jordaan, D.; Bienabe, E. Restructuring Food Markets in South Africa Dynamics in Context of the Tomato Sub Sector; Department of Agricultural Economics, Extension and Rural Development University of Pretoria: Pretoira, South Africa, 2006. [Google Scholar]
- Matlou, M. Challenges and Constraints for Small-Scale Farmers. Available online: https://www.arc.agric.za/arc-iscw/News%20Articles%20Library/Challenges%20and%20constraints%20for%20small-scale%20farmers.pdf (accessed on 22 April 2021).
- Jahari, C.; Kilama, B.; Dube, S.; Paremoer, T. Growth and Development of the Oilseeds-Edible-Oils Value Chain in Tanzania and South Africa. CCRED Working Paper No. 3. 2018. Available online: https://ssrn.com/abstract=3115940or (accessed on 20 April 2021). [CrossRef]
- A Profile of the South. African Sunflower Market. Value Chain. Available online: https://www.dalrrd.gov.za/doaDev/sideMenu/Marketing/Annual%20Publications/Commodity%20Profiles/field%20crops/Sunflower%20Market%20Value%20Chain%20Profile%202019.pdf (accessed on 19 November 2020).
- Ferdi, M.; Gerhard, V.D.B. The Future of Sunflower Production in South Africa. Available online: https://www.grainsa.co.za/the-future-of-sunflower-production-in-south-africa (accessed on 18 February 2021).
- Driving A Sunflower Value Chain in Malawi: Challenges and Opportunities. Available online: https://saiia.org.za/research/driving-a-sunflower-value-chain-in-malawi-challenges-and-opportunities/ (accessed on 2 January 2021).
- Adeleke, B.S.; Babalola, O.O. Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Sci. Nutr. 2020, 8, 4666–4684. [Google Scholar] [CrossRef] [PubMed]
- Lekunze, J.; Antwi, M.A.; Oladele, O.I. Socio-Economic Constraints to Sunflower Production in Bojanala Farming Community of the North-West Province, South Africa. Life Sci. J. 2011, 8, 502–506. [Google Scholar]
- Mathagu, H.; Belete, A.; Oluwatayo, I.; Nesamvuni, A. Market Participation of Smallholder Sunflower Farmers in Sekhukhune District of Limpopo Province, South Africa. Agri. Res. Technol. OAJ 2018, 15, 555938. [Google Scholar]
- Statistics South Africa. Community Survey 2016 in Brief; Statistics South Africa: Pretoria, South Africa, 2016. Available online: http://www.statssa.gov.za/?page_id=6283 (accessed on 27 April 2021).
- Tlholoe, M.M. Smallholder Livestock Farmers’ Willingness to Buy Index-Based Insurance in South Africa: Evidence from Ngaka Modiri Molema District Municipality, North West Province. Master’s Dissertation, North-West University, Potchefstroom, South Africa, 2016. [Google Scholar]
- Harpe, S.E. How to Analyze Likert and Other Rating Scale Data. Curr. Pharm. Teach. Learn. 2015, 7, 836–850. [Google Scholar] [CrossRef]
- Mahmoudi, M.R.; Heydari, M.H.; Qasem, S.N.; Mosavi, A.; Band, S.S. Principal Component Analysis to Study the Relations between the Spread Rates of COVID-19 in High Risks Countries. Alex. Eng. J. 2021, 60, 457–464. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2002; ISBN 978-0-387-95442-4. [Google Scholar]
- Paragas, E.J.S.; Barrios, E.B. Multilevel Principal Component Regression Model for High Dimensional Data: A Simulation Study. Available online: https://psa.gov.ph/content/multilevel-principal-component-regression-model-high-dimensional-data-simulation-study (accessed on 10 May 2021).
- Mishra, S.; Sarkar, U.; Taraphder, S.; Datta, S.; Swain, D.; Saikhom, R.; Panda, S.; Laishram, M. Principal Component Analysis. Int. J. Livest. Res. 2017, 7, 60–78. [Google Scholar] [CrossRef]
- Paul, L.C.; Suman, A.A.; Sultan, N. Methodological Analysis of Principal Component Analysis (PCA) Method. Int. J. Comput. Eng. Manag. 2013, 16, 32–38. [Google Scholar]
- Wong, G.Y.; Mason, W.M. The Hierarchical Logistic Regression Model for Multilevel Analysis. J. Am. Stat. Assoc. 1985, 80, 513–524. [Google Scholar] [CrossRef]
- Alia, D.Y.; Kacthova, A.; Woods, T.A. Assessing the Performance of Food Co-ops in the US; Southern Agricultural Economics Association: San Antonio, TX, USA, 2016. [Google Scholar]
- Feldstain, A.; Woltman, H.; MacKay, J.; Rocci, M. Introduction to Hierarchical Linear Modeling. Tutor. Quant. Methods Psychol. 2012, 8, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Kondo, E. Market Participation Intensity Effect on Productivity of Smallholder Cowpea Farmers: Evidence from The Northern Region of Ghana. RAAE 2019, 22, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Mugandani, R.; Mafongoya, P. Behaviour of Smallholder Farmers towards Adoption of Conservation Agriculture in Zimbabwe. Soil Use Manag. 2019, 35, 561–575. [Google Scholar] [CrossRef]
- Manda, J.; Alene, A.D.; Tufa, A.H.; Feleke, S.; Abdoulaye, T.; Omoigui, L.O.; Manyong, V. Market Participation, Household Food Security, and Income: The Case of Cowpea Producers in Northern Nigeria. Food Energy Secur. 2020, 9, e211. [Google Scholar] [CrossRef] [PubMed]
- Wale, E.; Chipfupa, U.; Nolwazi, H. Towards Identifying Enablers and Inhibitors to On-Farm Entrepreneurship: Evidence from Smallholders in KwaZulu-Natal, South Africa. Heliyon 2021, 7, e05660. [Google Scholar] [CrossRef] [PubMed]
- Sinyolo, S.; Mudhara, M.; Wale, E. The Role of Social Grants on Commercialization among Smallholder Farmers in South Africa: Evidence from a Continuous Treatment Approach. Agribusiness 2019, 35, 457–470. [Google Scholar] [CrossRef]
- Peterson, R.A. A Meta-Analysis of Variance Accounted for and Factor Loadings in Exploratory Factor Analysis. Mark. Lett. 2000, 11, 261–275. [Google Scholar] [CrossRef]
- Osborne, J.W. What Is Rotating in Exploratory Factor Analysis? Pract. Assess. Res. Eval. 2015, 20, 2. [Google Scholar] [CrossRef]
- Danso-Abbeam, G.; Bosiako, J.A.; Ehiakpor, D.S.; Mabe, F.N. Adoption of Improved Maize Variety among Farm Households in the Northern Region of Ghana. Cogent Econ. Financ. 2017, 5, 1416896. [Google Scholar] [CrossRef]
- Msangi, H.; Mdoe, N. Examining the Inverse Relationship between Farm Size and Technical Efficiency in Tanzanian Agriculture. Master’s Dissertation, Sokoine University of Agriculture, Morogoro, Tanzania, 2016. [Google Scholar]
Socio-Economic Attributes | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
Age | 21 | 90 | 52.55 | 12.324 |
Household size | 0 | 20 | 5.76 | 2.556 |
Hectare dedicated for sunflower | 1 | 1241 | 113.39 | 140.23 |
Tons produce | 1 | 908 | 82.12 | 114.64 |
Variables | Frequency | Percent (%) | ||
Gender | ||||
Male | 79.1 | 136 | ||
Female | 20.9 | 36 | ||
Marital Status | ||||
Single | 21.5 | 37 | ||
Married | 61.0 | 105 | ||
Divorced | 2.9 | 5 | ||
Widowed | 9.3 | 16 | ||
Education Level | ||||
Educated | 89.5 | 154 | ||
Not Educated | 10.5 | 18 | ||
Land size | ||||
Less than 1 hectare | 10 | 5.8 | ||
1–100 ha | 93 | 54.1 | ||
101–200 ha | 50 | 29.1 | ||
201–300 ha | 11 | 6.4 | ||
Above 300 ha | 8 | 4.7 | ||
Means of Transport | ||||
Private vehicle | 134 | 77.9 | ||
Hires transport | 38 | 22.1 | ||
Market Outlet | ||||
NWK | 142 | 82.6 | ||
NWK/Others | 30 | 17.2 | ||
Market Distance | ||||
0–30 km | 92 | 53.5 | ||
31–60 km | 52 | 30.2 | ||
61–90 km | 24 | 14.0 | ||
Above 90 km | 4 | 2.3 | ||
Access to Grant (Subsides) | ||||
Yes | 101 | 58.7 | ||
No | 71 | 41.3 | ||
Cooperative membership | ||||
Yes | 47 | 27.3 | ||
No | 125 | 72.7 | ||
Farming system | ||||
Dry land | 143 | 83.14 | ||
Irrigated | 29 | 16.86 | ||
Livestock owned | ||||
Yes | 114 | 66.28 | ||
No | 58 | 33.72 | ||
Land tenure system | ||||
Communal | 81 | 47.1 | ||
Others | 91 | 52.9 |
Variables | Strongly Agree | Agree | Neutral | Disagree | Strongly Disagree |
---|---|---|---|---|---|
Poor road infrastructure (Q1) | 43.6 | 26.2 | 4.1 | 12.2 | 14.0 |
Lack of diverse market for sunflower (Q3) | 29.1 | 62.8 | 2.3 | 4.1 | 1.7 |
Imperfect credit market (Q2) | 30.8 | 32.0 | 3.5 | 17.4 | 16.3 |
High cost of transport (Q4) | 33.1 | 35.5 | 3.5 | 16.9 | 11.0 |
Distance to market (Q5) | 32.0 | 23.8 | 2.3 | 23.8 | 18.0 |
Poor yield of sunflower crop (Q6) | 32.0 | 14.0 | 8.1 | 18.0 | 27.9 |
Unequal land allocation (Q7) | 33.7 | 21.5 | 7.6 | 16.3 | 20.9 |
Sparse information of crop (Q8) | 31.4 | 36.6 | 6.4 | 12.8 | 12.8 |
Lack of production facilities (Q9) | 34.9 | 31.4 | 4.1 | 14.0 | 15.7 |
Poor market competition (Q10) | 29.1 | 36.0 | 4.7 | 16.9 | 13.4 |
Lack of storage infrastructure (Q11) | 33.7 | 51.7 | 1.7 | 6.4 | 6.4 |
Post-harvest loss (Q12) | 34.3 | 47.7 | 2.9 | 9.9 | 5.2 |
Natural disaster ([drought], Q13) | 33.7 | 54.5 | 4.1 | 5.2 | 3.5 |
High theft (Q14) | 30.2 | 57.6 | 1.7 | 4.7 | 5.8 |
Problem of pest and diseases ([sclerotinia], Q15) | 30.2 | 57.6 | 3.5 | 4.7 | 4.1 |
Unequal access to grant ([subsidies and inputs], Q16) | 64.5 | 34.3 | 1.2 | 0 | 0 |
Lack of farmland fencing (Q17) | 57.6 | 29.1 | 2.9 | 2.3 | 8.1 |
Variable | KMO |
---|---|
Poor road infrastructure (Q1) | 0.8762 |
Lack of diverse market for sunflower (Q3) | 0.8467 |
Imperfect credit market (Q2) | 0.8285 |
High cost of transport (Q4) | 0.8206 |
Distance to market (Q5) | 0.8437 |
Poor yield of sunflower crop (Q6) | 0.8535 |
Unequal land allocation (Q7) | 0.9144 |
Sparse information of crop (Q8) | 0.8729 |
Lack of production facilities (Q9) | 0.8436 |
Poor market competition (Q10) | 0.8612 |
Lack of storage infrastructure (Q11) | 0.8605 |
Post-harvest loss (Q12) | 0.7978 |
Natural disaster ([drought], Q13) | 0.8911 |
High theft (Q14) | 0.7807 |
Problem of pest and diseases ([sclerotinia], Q15) | 0.7884 |
Unequal access to grant ([subsidies and inputs], Q16) | 0.4456 |
Lack of farmland fencing (Q17) | 0.6514 |
Overall | 0.8398 |
Components | Eigenvalue | Difference | % of Variance | Cumulative |
---|---|---|---|---|
Comp1 | 5.74 | 4.40 | 0.34 | 0.38 |
Comp2 | 1.34 | 0.17 | 0.08 | 0.42 |
Comp3 | 1.17 | 0.08 | 0.07 | 0.48 |
Comp4 | 1.09 | 0.13 | 0.06 | 0.55 |
Comp5 | 0.96 | 0.02 | 0.06 | 0.60 |
Comp6 | 0.93 | 0.16 | 0.05 | 0.66 |
Comp7 | 0.77 | 0.01 | 0.04 | 0.70 |
Comp8 | 0.76 | 0.05 | 0.04 | 0.75 |
Comp9 | 0.71 | 0.03 | 0.04 | 0.79 |
Comp10 | 0.67 | 0.05 | 0.04 | 0.83 |
Comp11 | 0.63 | 0.13 | 0.04 | 0.87 |
Comp12 | 0.49 | 0.05 | 0.03 | 0.89 |
Comp13 | 0.45 | 0.04 | 0.03 | 0.92 |
Comp14 | 0.40 | 0.05 | 0.02 | 0.95 |
Comp15 | 0.36 | 0.71 | 0.02 | 0.97 |
Comp16 | 0.28 | 0.06 | 0.02 | 0.99 |
Comp17 | 0.22 | 0.01 | 1.00 |
Description and Variables | Comp1 | Comp2 | Comp3 | Comp4 | Unexplained |
---|---|---|---|---|---|
Poor road infrastructure (Q1) | 0.25 | −0.12 | 0.31 | −0.18 | 0.46 |
Imperfect credit market (Q2) | 0.23 | −0.09 | 0.07 | −0.27 | 0.59 |
Lack of diverse market for sunflower (Q3) | 0.29 | −0.21 | 0.04 | −0.14 | 0.41 |
High cost of transport (Q4) | 0.27 | −0.16 | 0.29 | −0.05 | 0.44 |
Distance to market (Q5) | 0.27 | −0.18 | 0.26 | 0.10 | 0.45 |
Poor yield of sunflower crop (Q6) | 0.29 | 0.01 | 0.16 | 0.16 | 0.45 |
Unequal land allocation (Q7) | 0.27 | 0.08 | 0.12 | 0.10 | 0.54 |
Sparse information of crop (Q8) | 0.26 | −0.22 | −0.31 | 0.13 | 0.42 |
Lack of production facilities (Q9) | 0.31 | −0.03 | 0.01 | 0.20 | 040 |
Poor market competition (Q10) | 0.28 | −0.20 | −0.12 | 0.05 | 0.46 |
Lack of storage infrastructure (Q11) | 0.25 | 0.07 | −0.26 | 0.22 | 0.48 |
Post-harvest loss (Q12) | 0.23 | 0.20 | −0.38 | 0.20 | 0.46 |
Natural disaster ([drought, wildfire and flood], Q13) | 0.18 | 0.33 | 0.04 | −0.05 | 0.67 |
High sunflower products theft (Q14) | 0.21 | 0.45 | −0.09 | −0.35 | 0.33 |
Problem of Sclerotinia sclerotiorum Diseases (Q15) | 0.20 | 0.24 | −0.45 | −0.12 | 0.43 |
Unequal access to grant ([subsidies and inputs], Q16) | −0.03 | 0.34 | 0.29 | 0.69 | 0.22 |
Lack of farmland fencing (Q17) | 0.10 | 0.46 | 0.33 | −0.24 | 0.42 |
Innovation | Farm Finance | Crop Management Practice | |||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | |
Fixed Effect Constant | 0.5085 | 0.6037 ** | 0.3431 | 0.1433 ** | 0.0401 | 0.2485 | 0.1109 ** | 0.2097 *** | −0.0234 |
(0.1159) | (0.3075) | (0.2669) | (0.0467) | (0.1000) | (0.2314) | (0.0395) | (0.0463) | (0.2211) | |
Muncipality | −0.0311 | 0.0088 | 0.0401 | 0.0267 | −0.0374 ** | −0.0374 ** | |||
(0.0982) | (0.0328) | (0.0344) | (0.0232) | (0.0177) | (0.0183) | ||||
Age | −0.0065 ** | 0.0052 ** | −0.0003 | ||||||
(0.0026) | (0.0023) | (0.0023) | |||||||
Household Size | −0.0376 ** | 0.0012 | −0.0082 | ||||||
(0.0125) | (0.0113) | (0.0110) | |||||||
Farm size | −0.0005 ** | 0.0001 | −0.0001 | ||||||
(0.0002) | (0.0001) | (0.0002) | |||||||
Marital status | −0.0369 | −0.0133 | 0.0271 | ||||||
(0.0627) | (0.5668) | (0.0553) | |||||||
Education | −0.1218 | 0.1599 * | 0.0219 | ||||||
(0.1019) | (0.0921) | (0.0897) | |||||||
Market outlet | −0.3141 | −0.0682 | 0.0999 | ||||||
(0.0817) | (0.0739) | (0.0721) | |||||||
Gender | 0.1561 | 0.1137 *** | −0.0268 | ||||||
(0.0395) | (0.0357) | (0.0349) | |||||||
Cooperative Membership | 0.1384 ** | 0.1176 ** | 0.0018 | ||||||
(0.0679) | (0.0613) | (0.0598) | |||||||
Farm system | 0.1305 | −0.1459 | 0.1377 * | ||||||
(0.0887) | (0.0801) | (0.0781) | |||||||
Random effect Var (_cons) | 0.0472 | 0.0707 | 0.0016 | 0.0042 | 0.0048 | 0.0019 | 0.0025 | 1.44 × 10−2 | 2.63 × 10−2 |
(0.0480) | (0.0730) | (0.0119) | (0.008) | (0.0123) | (0.0908) | (0.0042) | (2.93 × 102) | (5.83 × 10−2) | |
AIC | 247.3 | 252.1 | 243.9 | 145.3 | 150.8 | 211.5 | 121.2 | 126.2 | 203.7 |
BIC | 256.7 | 264.7 | 291.1 | 154.7 | 163.4 | 258.7 | 130.7 | 138.8 | 250.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abafe, E.A.; Oduniyi, O.S.; Tekana, S.S. Quantitative Analysis of Farmers Perception of the Constraints to Sunflower Production: A Transverse Study Approach Using Hierarchical Logistic Model (HLM). Sustainability 2021, 13, 13331. https://doi.org/10.3390/su132313331
Abafe EA, Oduniyi OS, Tekana SS. Quantitative Analysis of Farmers Perception of the Constraints to Sunflower Production: A Transverse Study Approach Using Hierarchical Logistic Model (HLM). Sustainability. 2021; 13(23):13331. https://doi.org/10.3390/su132313331
Chicago/Turabian StyleAbafe, Ejovi Akpojevwe, Oluwaseun Samuel Oduniyi, and Sibongile Sylvia Tekana. 2021. "Quantitative Analysis of Farmers Perception of the Constraints to Sunflower Production: A Transverse Study Approach Using Hierarchical Logistic Model (HLM)" Sustainability 13, no. 23: 13331. https://doi.org/10.3390/su132313331
APA StyleAbafe, E. A., Oduniyi, O. S., & Tekana, S. S. (2021). Quantitative Analysis of Farmers Perception of the Constraints to Sunflower Production: A Transverse Study Approach Using Hierarchical Logistic Model (HLM). Sustainability, 13(23), 13331. https://doi.org/10.3390/su132313331