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Abstract: There have been manifold thrilling studies strikingly conducted in recent years to explore
factors influencing student acceptance of massive open online courses (MOOCs). The principal
goal was to determine future prediction and sustainable use of MOOCs for providing pervasive
quality education services. This has led to the examination of different theoretical models tested on
varying sample sizes for factor exploration. However, existing studies have reflected heterogeneous
results caused by divergent sources not observed in the literature using the multiple correspondence
analysis (MCA). This study aimed to apply the data science method of MCA to explore hidden
associations amongst factors influencing student acceptance of MOOCs and heterogeneity sources
of theoretical models and sample sizes to blur the literature hiatus. Results based on data extracted
from 54 primary studies published from 2015 to 2021 with a total of 19,638 valid student responses
generally conclude the existence of four main levels of associations. The four associations were
respectively composed of single, blended, extended and complex theories and each level is associated
with distinct categories and a combination cloud of similar categories. Moreover, results indicated
that very small sample size is the most unusual under the basic assumption that none of the variables
are correlated. It is practically germane to confirm hidden associations in a dataset of influencing
factors to help reach a much greater understanding of the application and performance of MOOCs
for sustainable education services.

Keywords: burt matrix; indicator matrix; multiple correspondences; online course; sample size;
technology acceptance; theoretical model

1. Introduction

The technology of massive open online courses (MOOCs) has become a recent educa-
tional innovation for sustainable online education services that have gained widespread
popularity across the world [1]. MOOCs have been described as online distance-learning
courses that provide free educational resources to registered students in various disci-
plines [2]. MOOC is generally recognized as one of the most recent developmental phases
of open educational resources that have tremendously transformed higher education in-
stitutions and significantly minimized the spiraling costs of learning. It is reshaping the
quality of teaching and learning experiences for students and it provides a wide diversity of
high-quality courses and valuable learning materials for the diverse needs of students [3].
It can motivate students for learning [4], allow for free sharing of learning materials [5],
support interactivity with the aid of various communication tools and provide numerous
opportunities for students to seamlessly collaborate [6]. The use of MOOCs can provide
students with pervasive access to a diverse spectrum of learning resources, thereby promot-
ing student-centered instructions [7]. MOOC can improve the quality of learning pedagogy,
help accelerate collaboration, ensure social cohesion and promote sustainable development
growth [8,9].
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However, it comes naturally with some inherent challenges despite its rapid devel-
opment and numerous intrinsic benefits. The challenges include lack of standardization
and flexibility [10], incapacity to provide real-time feedback to students [5], inability to
obtain sustainable financial revenue [6] and inadequate learning time for students [11]. In
addition, it is difficult to implement a teaching process affording the specific characters of
students using MOOCs because of a huge number of participants and the teacher cannot
identify the characters of individual students through face-to-face interaction [12]. These
challenges have contributed to a low degree of student participation after enrolment in
MOOCs [1,13,14] and acceptance rates by students are universally low [15,16]. The aver-
age completion rate of MOOCs is less than ten percent and the dropout rate is generally
very high [6]. The situation can lead to uncertainty regarding the efficacy, sustainability
and performance of MOOC as a learning platform [7]. Moreover, scholars have ascribed
the dropout rates of MOOCs to inadequate control of a learning environment, lack of
background knowledge and skills, conflict in a discussion forum among students and the
feeling of complete isolation [11,17]. However, there has been a contention that the success
of MOOCs should not be solely evaluated by course completion and drop-out rates because
students enroll for various motives. They may, for instance, enroll to satisfy their curiosity,
advance their careers, plan for the future, acquire skills and connect with people to improve
knowledge without intending to finish the entire course [3,5,18]. Moreover, scholars have
espoused that the success of MOOCs should rather be based on the learning behaviors
of students such as their acceptance [3,19,20]. This proposition makes it propitious to
investigate factors influencing student acceptance of MOOCs.

Different studies have used diverse theoretical models, sample sizes and analysis meth-
ods to expose numerous significant factors influencing student acceptance of MOOCs [1,21].
MOOC was proposed as a form of sustainable higher education by exploring the theory
of task-technology fit (TTF) and technology acceptance model (TAM) to create a novel
paradigm of education [22]. However, no consensus has been generally reached as to
which factors best influence student acceptance of MOOCs. The one reason for the lack of
consensus may be the curb of the existing studies in examining other salient determinants
through the exploration of associations that remains a gap in the literature. It has been
demonstrated through meta-analysis research that theoretical models and sample sizes
are the significant sources of heterogeneity in factors influencing student acceptance of
MOOCs [23]. The practical implications of utilizing an appropriate sample size [24] and
relevant theory [25] in research are widely appreciated. The cardinal objective of this study
was to apply multiple correspondence analysis (MCA) to examine associations among
factors influencing student acceptance of MOOCs and heterogeneity sources of theoretical
models and sample sizes. The unique contributions of this study to the body of knowledge
and practice are three-fold as explicated below.

1. A comprehensive review of the related studies on factors influencing student accep-
tance of MOOCs.

2. The extraction of useful qualitative data from the reviewed studies in a format suitable
for advanced statistical analysis.

3. The application of MCA to expose hidden associations in the extracted qualitative
data to help improve the understanding of student acceptance of MOOCs.

The remainder of this paper is succinctly organized as follows. Section 2 describes the
research methods and materials. Section 3 presents the study results. Section 4 discusses
the study results. The paper is ultimately concluded in Section 5 with a brief remark.

2. Materials and Methods

MCA is an exploratory data science method for discovering geometrical representa-
tions of categorical data in multiple dimensional spaces [26]. The present study uses the
method to explore the geometrical representation of the data associated with factors influ-
encing student acceptance of MOOCs and sources of heterogeneity. The study methods
present three phases based on literature review, data codification and data analysis.
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2.1. Literature Review

A literature search was executed with the support of the widely used scholastic
databases of Scopus, Web of Science and Google Scholar to retrieve pertinent quantitative
studies. The search parameters were based on simple keywords of the form “MOOC
acceptance” and “Factors of MOOC acceptance” to focus the searching within each database.
The studies should intrinsically contain useful information to be declared pertinent to
this study. The useful information includes the authors of a study, year of publication,
country of study, student sample, a most significant factor, path coefficient analysis, the
acceptance behavior of students, method of data analysis and the theoretical model of factor
exploration. Different studies have tested the strengths of numerous theoretical models
on various sample sizes to expose factors influencing student acceptance of MOOCs. The
theoretical models so far reported in the literature for this purpose can be categorized into
four groups of single, blended, extended and complex theories. The category of single
models is made up of studies that have used the basic information system theories for factor
exploration. The blended model agglutinates two or more basic theories to explain factors
influencing student acceptance of MOOCs. The extended model incorporates other useful
factors into a single model while the complex model integrates other factors into a blended
model. The basic theories include student online learning readiness (SOLR) [27], unified
theory of acceptance and use of technology (UTAUT) [28], uses and gratification theory
(UGT) [29], expectation-confirmation model (ECM) [30], theory of consumption value
(TCV) [31], theory of task-technology fit (TTF) [32], distance learning theory (DLT) [33],
technology user environment (TUE) [34], self-efficacy theory (SET) [35], stimulus organism
response model (SORM) [36], Triandis model (TRAM) [37], technology acceptance model
(TAM) [38], attachment theory (ATT) [39], social technical system theory (STST) [40], self-
regulation theory (SRT) [41], self-determination theory (SDT) [42,43], social cognitive theory
(SCT) [44], theory of planned behavior (TPB) [45], theory of information systems success
(ISS) [46], subjective task value theory (STVT) [47] and service quality (SERVQUAL) [48].

Different authors have used single theories to investigate factors influencing stu-
dent acceptance of MOOCs. SOLR was used to predict communication competency,
self-management of learning, social competency and technological competency as factors
influencing student readiness to accept MOOCs [4]. The same theory was used to iden-
tify computer self-efficacy as the most significant factor predicting student readiness for
MOOCs [49]. UTAUT was used to show that performance expectancy, effort expectancy,
social influence and facilitating conditions are significant factors influencing the behavioral
intention of students to use MOOCs [50]. The same theory was applied to report that
behavioral intention has a significant effect on student usage of MOOCs [51]. UGT was
applied to show that openness, subjective norms, student satisfaction and performance
expectancy are significant factors influencing the continuance intention of students to use
MOOCs [7]. ECM was used to identify perceived usefulness and student satisfaction as the
significant factors influencing the continuance intention of students to use MOOCs [52].
The same theory was used to reveal student satisfaction as the most significant factor of
continuance intention to use MOOCs [53]. TCV was tested to discover perceived functional
value as the most significant factor influencing the continuance intention of students to use
MOOCs [54]. TTF was applied to discover vividness of course content, teacher knowledge
and interactivity as significant factors influencing the behavioral intention of students to use
MOOCs [55]. DLT was applied to show that intellectual capital is the strongest determinant
of the behavioral intention of students to use MOOCs [20]. TUE was developed to show
that self-regulation, perceived usefulness, performance-to-cost value, lack of accessibility,
tradition and social norms and lack of information significantly influenced the intention
of students to adopt MOOCs [34]. SET was adapted to show that perceived usefulness
and perceived enjoyment are significant factors influencing the continuance intention of
students to use MOOCs [56]. The authors in [14] drew upon the SORM to demonstrate that
engagement on platform significantly influenced the continuance intention of students to
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use MOOCs. TRAM was used to show that behavioral intention and facilitating conditions
are significant factors influencing the actual usage of MOOCs by students [6].

Many extant studies have mainly blended TAM, ECM, TPB, ISS and SDT with other
theories for factor exploration. They include the blending of TAM and IDT to discover
student attitude as the most significant factor of MOOC usage intention [10]. TAM and
UTAUT exposed performance expectancy, effort expectancy, social influence, computer
self-efficacy, student attitude and facilitating conditions as significant factors of student
acceptance of MOOCs [15]. TAM and SST unveiled student attitude, perceived convenience
and perceived gain as significant factors of MOOC usage intention [57]. TAM and ISS
revealed course quality and perceived usefulness as significant factors of continuance
intention of students to use MOOCs [58]. TAM and TPB divulged behavioral intention,
perceived behavioral control and subjective norms as significant factors of MOOC usage
by students [59]. TAM and SCT disclosed perceived ease of use and perceived usefulness
as significant factors influencing continuance intention of students to use MOOCs [1].
TAM, ECM and SDT unveiled student satisfaction as the most significant factor influencing
continuance intention to use MOOCs [19]. TAM, SDT and SERVQUAL exposed student
satisfaction and autonomous motivation as significant factors influencing the behavioral
intention to use MOOCs [60]. ECM and TTF revealed perceived usefulness and student
satisfaction as significant factors influencing continuance intention to use MOOCs [61].
ECM and STV unveiled intrinsic value, utility value, anxiety and risk of arbitrary learning
as significant factors influencing the continuance intention of students to use MOOCs [62].
ECM and SET were used to demonstrate that continuous learning willingness was signif-
icantly influenced by self-efficacy and student satisfaction with MOOCs [63]. SDT and
TPB revealed student attitude and perceived behavioral control as significant factors of
behavioral intention to use MOOCs [64]. SDT and SRT unveiled intrinsic motivation and
conscientiousness as significant factors influencing the continuance intention of students to
use MOOCs [65]. SDT and TUE disclosed intrinsic motivation, social recognition, perceived
value and perceived usefulness as significant factors of the behavioral intention of stu-
dents to adopt MOOCs [3]. ATT and STST unveiled functional attachment and emotional
attachment as significant factors of continuance intention of students to use MOOCs [66].

The widely used TAM, UTAUT and ECM theories among others have been extended
with the incorporation of supplementary factors by different authors. TAM was tested with
computer self-efficacy, perceived convenience, learning tradition and self-regulated learn-
ing to predict the behavioral intention of students to adopt MOOCs [2]. It was used with
knowledge access, knowledge storage, knowledge application and knowledge sharing to
predict student acceptance of MOOCs [5]. It was applied with coercive pressures, mimetic
pressures and normative pressures to examine the adoption of MOOCs by students [67]. It
was validated with social influence, course quality, collaboration and perceived enjoyment
to predict the behavioral intention of students to use MOOCs [68]. It was applied with
perceived quality, perceived enjoyment and usability to investigate factors influencing
the effective use of MOOCs by students [13]. It was tested with the perception of time to
explore factors influencing student acceptance of MOOCs [11]. It was used with reputation,
student habit, subjective norm and conformity tendency to examine factors influencing
behavioral intention to use MOOCs [69]. It was corroborated with perceived learner control,
electronic learning self-efficacy and personal innovativeness to examine factors influencing
the behavioral intention of students to adopt MOOCs [70].

UTAUT was used with student attitude and computer self-efficacy to identify fac-
tors influencing student usage of MOOCs [16]. It was tested with instructional quality,
computer self-efficacy and service quality to investigate factors influencing student usage
of MOOCs [18]. It was applied with web quality and self-efficacy to examine factors
influencing the behavioral intention of students to use MOOCs [71]. It was corroborated
with motivation, course design, interest, course delivery, media, interactivity and assess-
ment to investigate factors influencing student usage of MOOCs [72]. It was used with
perceived value to examine factors influencing student adoption of MOOCs [73]. It was
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validated with perceived course quality and perceived satisfaction to predict student usage
of MOOCs in the regime of coronavirus pandemic [74].

ECM was used with curriculum organization, video quality, learning evaluation,
learning analysis and socialized interaction to explore factors influencing the continuance
intention of students to use MOOCs [75]. It was applied with knowledge outcome, perfor-
mance proficiency and social influence to investigate factors influencing the continuance
intention of students to use MOOCs [76]. It was tested with perceived reputation, per-
ceived openness and perceived enjoyment to discover factors influencing the continuance
intention of students to use MOOCs [77]. It was validated with task technology fit to
explore factors influencing the continuance intention of students to use MOOCs [78]. It
was extended with attitude and curiosity to discover that the continuance intention of
students to use MOOCs was significantly influenced by attitude and curiosity [79]. SORM
was extended with the features of technological and environmental to discover that flow
experience is a significant factor influencing the continuance intention of students to use
MOOCs [80].

The complex model has recorded a few studies that have investigated the extension
of blended theories for factor exploration. ECM and TAM with the factors of MOOC
performance and student habit were used to understand the psychological processes
underlying the continuance intention of students to participate in MOOCs [81]. TTF and
SDT with social motivation were used to examine factors influencing student adoption
of MOOCs [21]. UTAUT and TTF with student satisfaction were used to explore factors
influencing the continuance intention of students to use MOOCs [82]. TAM and TTF with
social motivation and MOOC features were used to investigate the continuance intention
of students to use MOOCs [83]. In a study of MOOC performance, the modified ISS and
ECM with gamification perception were combined to indicate that perceived usefulness,
student satisfaction and gamification perception significantly influenced the continuance
intention of students to use MOOCs [84].

The comprehensive review of literature has shown the dearth of research on the
application of MCA to explore associations among factors influencing student acceptance of
MOOCs and heterogeneity sources. Table 1 summarizes the characteristics of data extracted
from the 54 reviewed articles based on the variables of authors of an article (author),
year of article publication (year), country of study (country), sample size (sample), most
significantly influencing factors (factor), path coefficient (path), type of MOOC acceptance
behavior (accept), data analysis method (method) and theoretical model applied for factor
exploration (theory). An inclusive review of 54 studies on factors influencing student
acceptance of MOOCs across 14 different countries of the world has been conducted to
harvest pertinent data. This approach of soliciting research data from the published articles
has been judged to be novel for obtaining reliable and validated scientific evidence in a
format that is readily amenable to MCA [85].

The data in Table 1 show that about 40.74% of the studies were conducted in China,
followed by Malaysia (14.81%) and Taiwan (7.41%). The same volume of works was
recorded by South Korea, Australia and India (5.56%), Spain, Jordan and Saudi Arabia
(3.70%) while the same volume of works was recorded by Turkey, Brazil, Ghana, Pakistan
and Iran (1.85%). The sample size of respondents across studies ranged from 101 to 1344
with a mean of 360.70, a standard deviation of 243.33 and a total of 19,638 students. There
are 28 significant factors identified across the 54 studies with the most significant one
selected per study. The most significant factor has the highest path coefficient [23] and
path coefficient (path) scores vary from 0.222 to 0.861. Structural analysis tools allow for
the estimate of complex causal relationships among factors to test the path coefficients
for statistical significance [86]. Four categories of MOOC acceptance behaviors (accept)
were identified from the literature review as continual, intention, readiness and usage.
The data analysis methods were mainly structural equation modeling (SEM), multiple
regression analysis (MRA) and hierarchical regression analysis (HRA) as indicated by the



Sustainability 2021, 13, 13451 6 of 21

method variable. The theoretical models are indicated by the theory variable as previously
delineated.

Table 1. Dataset of influencing factors and heterogeneity sources.

Author Year Country Sample Factor Path Accept Method Theory

[1] 2018 China 247 Perceived usefulness 0.739 Continual SEM Blended
[2] 2020 Jordan 403 Perceived usefulness 0.394 Intention SEM Extended
[3] 2020 India 798 Intrinsic motivation 0.582 Intention SEM Blended
[4] 2020 Jordan 468 Social competency 0.340 Readiness SEM Single
[5] 2020 Turkey 540 Behavioral intention 0.823 Usage SEM Extended
[6] 2020 Iran 234 Facilitating conditions 0.309 Usage SEM Single
[7] 2018 Taiwan 854 Student satisfaction 0.561 Continual SEM Single
[10] 2019 Malaysia 1148 Student attitude 0.709 Intention SEM Blended
[11] 2019 Australia 209 Student attitude 0.363 Intention SEM Extended
[13] 2019 China 668 Perceived usefulness 0.290 Usage SEM Extended
[14] 2021 China 294 Engagement on platform 0.662 Continual SEM Single
[15] 2021 Saudi Arabia 169 Facilitating condition 0.334 Usage SEM Extended
[16] 2021 Saudi Arabia 150 Computer self-efficacy 0.263 Usage MRA Blended
[18] 2020 Ghana 204 Facilitating conditions 0.378 Usage SEM Extended
[19] 2018 South Korea 166 Student satisfaction 0.861 Continual SEM Blended
[20] 2020 Taiwan 203 Intellectual capital 0.531 Intention SEM Single
[21] 2018 Pakistan 414 Behavioral intention 0.222 Usage SEM Complex
[34] 2019 China 827 Self-regulation 0.366 Intention HRA Single
[49] 2019 Malaysia 413 Computer self-efficacy 0.314 Ready SEM Single
[50] 2018 Malaysia 200 Social influence 0.488 Usage MRA Single
[51] 2021 Malaysia 400 Behavioral intention 0.847 Usage SEM Single
[52] 2019 Malaysia 368 Student satisfaction 0.600 Continual SEM Single
[53] 2019 China 300 Student satisfaction 0.662 Continual SEM Single
[54] 2021 Brazil 101 Perceived functional value 0.801 Continual SEM Single
[55] 2017 China 246 Teacher knowledge 0.323 Intention SEM Single
[56] 2018 Malaysia 251 Perceived enjoyment 0.465 Continual SEM Single
[57] 2018 Taiwan 357 Student attitude 0.498 Intention SEM Blended
[58] 2017 China 294 Course quality 0.392 Continual SEM Blended
[59] 2017 Taiwan 272 Behavioral intention 0.455 Usage SEM Blended
[60] 2021 Spain 210 Student satisfaction 0.540 Intention SEM Blended
[61] 2018 South Korea 237 Perceived usefulness 0.311 Continual SEM Blended
[62] 2018 China 294 Utility value 0.341 Continual SEM Blended
[63] 2018 China 216 Computer self-efficacy 0.551 Continual SEM Blended
[64] 2016 China 400 Perceived behavioral control 0.742 Intention SEM Blended
[65] 2020 Spain 212 Intrinsic motivation 0.435 Continual SEM Blended
[66] 2018 China 257 Functional attachment 0.404 Continual SEM Blended
[67] 2015 China 247 Perceived ease of use 0.610 Intention SEM Extended
[68] 2020 Malaysia 111 Student attitude 0.576 Intention SEM Extended
[69] 2019 China 285 Subjective norm 0.319 Intention SEM Extended
[70] 2017 China 214 Perceived usefulness 0.440 Intention SEM Extended
[71] 2019 India 168 Computer self-efficacy 0.265 Intention MRA Extended
[72] 2020 Malaysia 400 Behavioral intention 0.543 Usage SEM Extended
[73] 2018 India 310 Performance expectancy 0.273 Intention SEM Extended
[74] 2021 China 283 Student satisfaction 0.453 Intention SEM Extended
[75] 2018 China 271 Student satisfaction 0.528 Continual SEM Extended
[76] 2017 China 435 Knowledge outcome 0.495 Continual SEM Extended
[77] 2015 South Korea 316 Perceived reputation 0.239 Continual SEM Extended
[78] 2017 China 234 Task technology fit 0.558 Continual SEM Extended
[79] 2020 Australia 160 Student attitude 0.695 Continual SEM Extended
[80] 2020 China 374 Flow experience 0.610 Continual SEM Extended
[81] 2020 Australia 1344 Student habit 0.571 Continual SEM Complex
[82] 2020 China 464 Student satisfaction 0.481 Continual SEM Complex
[83] 2017 China 252 Student attitude 0.509 Continual SEM Complex
[84] 2021 China 586 Gamification perception 0.365 Continual SEM Complex

All paths (Path) are significant at probability level < 0.05.

2.2. Data Codification

The data for this study were extracted from 54 reviewed articles on factors influencing
student acceptance of MOOCs (Table 1). The qualitative data for the MCA was coded as a
subset of the characteristics of the extracted data. The variables used in the MCA are theory,
sample and factor. The theory variable presents 4 categories coded as 1, 2, 3 and 4 for
single, blended, extended and complex theories respectively. The sample variable presents
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4 categories that were coded as 1, 2, 3 and 4 for a study with 101 to 411, 412 to 722, 723
to 1033 and 1034 to 1344 student participants to denote very small, small, large and very
large samples respectively. The factor variable has 28 categories coded as 1, 2, . . . , 28. The
variables of theory and sample were found in a meta-analysis study to be the significant
sources of heterogeneity effects, but year, country and type were not [23]. Heterogeneity
refers to the variation in the outcome of a research and it can determine the difficulty in
drawing valid conclusions [87]. Moreover, it can help reach a much greater understanding
of factors influencing student acceptance of MOOCs. Table 2 shows the labels, categories
and definitions of variable categories of influencing factors and heterogeneity sources.

Table 2. Description of variable categories.

Label Category Definition

C01 Single theory The basic theory that relates two or more factors to explain MOOC acceptance behavior
C02 Blended theory The theory that agglutinates two or more single theories to explain MOOC acceptance behavior
C03 Extended theory The theory that incorporates two or more factors to a blended theory to explain MOOC acceptance behavior
C04 Complex theory The theory that incorporates two or more factors to an extended theory to explain MOOC acceptance behavior
C05 Very small sample A sample of 101 to 411 students participating in MOOC acceptance research
C06 Small sample A sample of 412 to 722 students participating in MOOC acceptance research
C07 Large sample A sample of 723 to 1033 students participating in MOOC acceptance research
C08 Very large sample A sample of 1034 to 1344 students participating in MOOC acceptance research
C09 Behavioral intention The subjective probability of an individual to perform a certain behavior [59].
C10 Course quality Knowledgeability, the authority of course content and attitude of lecturers toward teaching students with MOOCs [58].
C11 Computer self-efficacy A subjective assessment of the skill level of a person to effectively use MOOCs to perform learning tasks [18].
C12 Perceived enjoyment Positive affection for interactive functions is provided within MOOCs [56].

C13 Engagement on
platform

The effective involvement of a student with the learning process that results from his/her interactions with other students
and professors in MOOCs [14].

C14 Functional attachment The ability of MOOC providers to provide the users with online interactive support that is conducive for students to be
immersed in MOOCs [66].

C15 Facilitating conditions The degree to which an individual believes that technical and non-technical infrastructures exist to support the use of
MOOCs [15].

C16 Flow experience The state of deep absorption in an intrinsically enjoyable activity while engaging within MOOCs [80].

C17 Intellectual capital The degree to which an individual perceives the capability of knowing the knowledge shared by a teacher through
exchanging knowledge in MOOCs [20].

C18 Intrinsic motivation The performance of an activity for the good of a student without receiving any reward, but mainly for satisfaction and
enjoyment of MOOCs [60].

C19 Knowledge outcome Perception of students on the subject matter that will be provided to make them feel satisfied with learning using
MOOCs [76].

C20 Perceived behavioral
control

The degree to which a student perceives how easy or difficult it would be using MOOCs, based on the resources and
opportunities that are available to students [88].

C21 Perceived functional
value The appreciation is derived from an alternative capacity for functional, utilitarian, or physical performance [31].

C22 Perceived ease of use The degree to which a student believes that using MOOCs would be free of superfluous effort [67].
C23 Performance expectancy The perception of students that using MOOCs will improve their learning performance [73].
C24 Perceived reputation MOOC platforms are associated with highly regarded, influential and trustworthy institutions of higher education [77].
C25 Perceived usefulness The degree to which students consider that MOOCs can be an effective device for enhancing academic performance [2].
C26 Student attitude The degree to which a student perceives a positive or negative feeling related to the use of MOOCs [83].

C27 Social competence Represent skills, capacities and a sense of control that is necessary for managing social situations, developing and sustaining
relationships through MOOCs [4].

C28 Self-regulation The ability of a student to control goals setting, task strategies, time management and environment structuring help students
to succeed in their learning process [89].

C29 Student habit The habitual use of MOOCs to lessen cognitive effort in activating the preceding actions in performing a complicated
behavior and continuing participation in the environment [81].

C30 Social influence The degree to which a student perceives that other people believe he or she should use MOOCs [73].
C31 Student satisfaction Perception of students about enjoyment, happiness and accomplishment in learning in MOOCs [27].

C32 Subjective norm The degree to which a student perceives that most people who are important to him or her think he should or should not use
MOOCs [90].

C33 Task technology fit The degree to which the technology of MOOCs helps a student in performing an assignment [78].
C34 Teacher knowledge MOOC courses can be evaluated with a higher quality that can lead to further revisit intention of students [55].

C35 Utility value The external incentives that learning with MOOCs can help students get job opportunities, job promotions, or salary
increases [62].

C36 Gamification perception Gamification is a way to increase the motivation and engagement of students to improve their course performance [84].

Label is the unique identifier for a category.

2.3. Data Analysis

The variables of theory, sample and factor pertinent to this study were captured in
a dataset of influencing factors and heterogeneity sources (Table 1) to focus on a mean-
ingful analysis that is consistent with MCA. The analysis of the subset of the dataset of
influencing factors and heterogeneity sources was performed using the MCA to explore
hidden associations. In more detail, MCA is an extension of the correspondence analysis
(CA) to multiple variables, a generalization of the principal component analysis (PCA) to
analyze manifold categorical variables and display hidden associations among categorical
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variables, or observations. It applies to qualitative variables in a similar way that PCA
is amenable to quantitative variables. It finds the eigenvalue decomposition of the nor-
malized covariance matrix of observations with the associated variables [91]. The method
works by performing a series of mathematical transformations to compute the principal
coordinates of the variable categories and observations in an optimal representation space
based on inertia or eigenvalue criterion. The inertia in MCA is related to the eigenvalue in
the parlance of PCA that measures how much categorical information is accounted for by
each principal dimension. The higher the eigenvalue, the larger the amount of the total
variance amongst categorical variables on that principal dimension [92].

MCA is a correspondence analysis performed on an indicator matrix or a Burt matrix
with both matrices central to the analysis. The indicator matrix displays all observations
in the form of a disjunctive map of variables. Each indicator variable along the matrix
column represents one level of a categorical variable. Each observation along with the
matrix takes a binary score of 1 or 0 depending on whether it does or does not belong to the
category. The Burt matrix is a square symmetric map consisting of all cross-tabulations for
all combinations of variables. It is more efficient than the indicator matrix for eigenvalue
decomposition because its dimensions depend on the number of variable categories and
not on the number of observations as in the case of the indicator matrix. It is a useful
device for visualizing and analyzing the associations among categorical variables because
it contains the counts of co-occurrences for all combinations of categories. The solutions
computed by the method can be described by a bi-dimensional or biplot that plots most of
the variable categories close together with unassociated ones plotted far apart [92].

The biplot graphical representation makes it easy to perceive, summarize, visualize
and interpret a large complex dataset of categorical variables. It simplifies the structure
of the inherent associations amongst variable categories and observations. The variable
categories are data points on the graph such that categories close to the mean value are
plotted near the graph origin and those that are more distant are plotted farther away
from the origin. The variable categories with a similar distribution are close to each
other through the formation of combination clouds of points [92,93]. The categories with
different distributions are plotted at some distance apart and the resulting dimensions are
interpreted by the locations of the points on the graph. The loadings of the points over the
dimensions are important indicators. However, in general, a biplot is insufficient to explain
most of the variances, but the first two dimensions usually contain higher eigenvalues than
others [92,94].

MCA can be interpreted using two strategies which are factor analytical and cluster
analytical [26]. In factor analytical strategy, one tries to label the principal dimensions, while
clusters of categories are found using the cluster analytical strategy. This study follows
the direction of factor analytical strategy using the materials provided by the MultipleCar
toolbox [91] and the MCORRAN2 Matlab code [95]. The MCORRAN2 was used to generate
the discrimination measures of the variable categories, while the MultipleCar toolbox was
applied for other computations. A toolbox is a general software suitable for computing
correspondence analysis with the aid of a graphical user interface [91]. The rotation
of principal coordinates was performed using the widely known varimax orthogonal
transformation to maximize the simplicity of interpretations of principal dimensions.
The weighted scheme with default parameter was used to give an impressive Bentler
simplicity index after rotation [96]. The simplicity indices of the principal coordinates of
variables and principal coordinates of observations before rotation were 0.021 and 0.011
respectively. These simplicity indices of principal coordinates of variables and observations
were increased to 0.901 and 0.874 respectively after rotation. This result implies that
simplified principal coordinates of variables and observations were obtained using the
varimax rotation algorithm with default parameter setting.
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3. Results

MCA locates the variable categories in Euclidean space and the principal inertia is
usually expressed as a percentage of the total inertia. The inertia values quantify the
amount of variation that is accounted for by the corresponding principal dimensions. The
higher the inertia, the larger the amount of the total variance among the variables on that
principal dimension. Table 3 shows the result of the adjusted principal inertias based on
the eigenvalues of the Burt matrix of non-trivial inertias, and cumulative inertia. The total
inertia is 0.924, total principal inertia is 81.800% and cumulative inertia is 81.800%. The core
bottleneck of inertias of dimensions is that they depend on the degree of associations among
variable categories and can be seriously inflated. The previous study has suggested an
adjusted version of inertia that was inspired by the joint correspondence analysis (JCA) to
allow for higher and more meaningful percentages for the maps [97]. The average adjusted
explained variance is 4.3%, which suggests that dimensions explaining less variance should
be excluded from the map. This rule is equivalent to the criterion of one-eigenvalue of
Kaiser’s rule in exploratory factor analysis [91]. This study, therefore, found 5 dimensions
or axes that explained 81.800% of the total inertia based on the adjusted inertia.

Table 3. The adjusted principal inertias are based on the eigenvalues of the Burt matrix.

Axis. Eigenvalue Percentage
Inertia Cumulative Percentage

1 0.3563 31.6 31.6
2 0.2262 20.0 51.6
3 0.1918 17.0 68.6
4 0.0867 7.7 76.3
5 0.0565 5.0 81.3
6 0.0064 0.6 81.8
7 0.0000 0.0 81.8
8 0.0000 0.0 81.8
9 0.0000 0.0 81.8

10 0.0000 0.0 81.8
11 0.0000 0.0 81.8
12 0.0000 0.0 81.8
13 0.0000 0.0 81.8
14 0.0000 0.0 81.8
15 0.0000 0.0 81.8
16 0.0000 0.0 81.8
17 0.0000 0.0 81.8
18 0.0000 0.0 81.8
19 0.0000 0.0 81.8
20 0.0000 0.0 81.8
21 0.0000 0.0 81.8
22 0.0000 0.0 81.8

Total eigenvalue = 0.924, cumulative percentage = 81.800%.

The scree plot of eigenvalues against the number of principal dimensions is shown
in Figure 1. The plot is generally used to visually determine the number of dimensions to
retain in the MCA. The elbow of the plot, according to the scree test is where the eigenvalues
tend to level off, which is 6 in this scenario. The significant number of dimensions to retain
is therefore 5 to the left of the elbow to further confirm visually that 5 dimensions should
be retained for the subsequent MCA analysis.
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Figure 1. Scree plot of eigenvalues against the number of dimensions.

The MCA faithfully analyzed a total of 3 variables, 36 corresponding variable cate-
gories and 54 observations to give an overall solution with 22 dimensions (Table 3). The
indices of associations are total inertia of 11.000 and Cramer’s V statistic of 0.561 to indi-
cate that 5 dimensions provide a satisfactory model fit with large association effects [98].
Moreover, the result shows the decomposition of total inertia into 22 axes to explain the
total inertia of 0.924. The first, second, third, fourth and fifth dimensions accounted for
31.600%, 20.000%, 17.000%, 7.700%, 5.000%, respectively and together they accounted for
81.800% of the total inertia. The specification of the 5 dimensions is therefore sufficient for
the MCA analysis because they account for a high proportion of the total inertia.

Table 4 shows the descriptive statistical result of variable categories by frequency,
percentage and mass. The extended theory (C03) reflected the highest frequency of 37.04%
within the theory variable, followed by the blended theory (C02) (27.78%), single theory
(C01) (25.93%) while the complex theory (C04) reflected the least frequency (9.25%). This
result indicates that blended theories are commonly used, but complex theories are least
applied among the studies that investigated factors influencing student acceptance of
MOOCs. Similarly, a very small sample (C05) reflected the highest frequency of 75.93%
within the variable of the sample, followed by the small sample (C06) (14.81%), large
sample (C07) (5.56%) while very large sample (C08) reflected the least frequency (3.70%).
This result indicates that very small samples have been widely used, but very large samples
are rarely used by researchers to explore factors influencing student acceptance of MOOCs.
The factor of student satisfaction (C31) reflected the highest frequency of 14.81% within
the factor variable, followed by student attitude (C26) (11.11%), behavioral intention
(C09) (9.26%), perceived usefulness (C25) (9.26%), computer self-efficacy (C11) (7.41%),
facilitating conditions (C15) (5.56%), intrinsic motivation (C18) (3.70%) while the other
factors reflected the least frequency (1.85%). This result indicates that student satisfaction,
student attitude, behavioral intention and perceived usefulness are widely used factors for
exploring student acceptance of MOOCs.
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Table 4. Descriptive statistics of categories.

Variable Label Frequency Percentage Mass

Theory

C01 14 25.93 0.0864
C02 15 27.78 0.0926
C03 20 37.04 0.1235
C04 5 9.26 0.0309

Sample

C05 41 75.93 0.2531
C06 8 14.81 0.0494
C07 3 5.56 0.0185
C08 2 3.70 0.0123

Factor

C09 5 9.26 0.0309
C10 1 1.85 0.0062
C11 4 7.41 0.0247
C12 1 1.85 0.0062
C13 1 1.85 0.0062
C14 1 1.85 0.0062
C15 3 5.56 0.0185
C16 1 1.85 0.0062
C17 1 1.85 0.0062
C18 2 3.70 0.0123
C19 1 1.85 0.0062
C20 1 1.85 0.0062
C21 1 1.85 0.0062
C22 1 1.85 0.0062
C23 1 1.85 0.0062
C24 1 1.85 0.0062
C25 5 9.26 0.0309
C26 6 11.11 0.0370
C27 1 1.85 0.0062
C28 1 1.85 0.0062
C29 1 1.85 0.0062
C30 1 1.85 0.0062
C31 8 14.81 0.0494
C32 1 1.85 0.0062
C33 1 1.85 0.0062
C34 1 1.85 0.0062
C35 1 1.85 0.0062
C36 1 1.85 0.0062

Label is the unique identifier for a category.

The mass of a variable category is the total of the Burt matrix of relative frequencies or
probability. The very small sample category has the highest mass of 0.2531 to account for
the 25.31% of the study data, while several factor categories have the lowest mass of 0.0062
to account for 0.62% of the study data. Previous studies that have used very small samples
and extended theories are common, while those that recorded a low mass of 0.0062 are
sporadic according to the study data.

Table 5 shows the contributions of the rotated coordinates based on the diagnostic
indices of correlation (Corr) and contribution (Cont). Correlation represents the contribu-
tions of axes to points by squared correlations of points with the axes. The contribution
represents the influence of points on the axes. The highest correlation values for the dimen-
sions are 0.660, 0.482, 0.440, 0.234 and 0.318 respectively. This result means that dimension
one accounts for most of the inertia of theory for complex theory and contributes to the
inertia of sample for a very small sample, small sample, very large sample and factor for
student habit and gamification perception. Dimension two accounts for most of the inertia
of theory for single theory and contributes to the inertia of extended theory, sample for very
small sample, large sample and factor for self-regulation. Dimension three accounts for
most of the inertia of theory for blended theory and contributes to the inertia of extended
theory, sample for small sample, very large sample and factor for intrinsic motivation and
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student habit. Dimension four accounts for most of the inertia of theory for blended theory
and contributes to the inertia of single theory, sample for a very small sample, small sample,
very large sample and factor for intrinsic motivation and student habit. Dimension five
accounts for most of the inertia of sample for large sample and contributes to the inertia
of theory for extended theory and factor for self-regulation. In terms of the contributions,
the complex theory, large sample and blended theory contribute the most to the inertia of
dimensions.

Table 5. Contributions of rotated coordinates.

Dimension

1 2 3 4 5

Variable Label Corr Cont Corr Cont Corr Cont Corr Cont Corr Cont

Theory

C01 0.068 0.023 0.482 0.183 0.075 0.030 0.200 0.093 0.059 0.030
C02 0.031 0.010 0.012 0.004 0.440 0.170 0.234 0.106 0.124 0.061
C03 0.007 0.002 0.375 0.121 0.124 0.042 0.006 0.002 0.318 0.136
C04 0.660 0.273 0.019 0.009 0.001 0.000 0.003 0.002 0.001 0.000

Sample

C05 0.337 0.037 0.243 0.030 0.021 0.003 0.107 0.016 0.049 0.008
C06 0.261 0.101 0.022 0.010 0.360 0.163 0.173 0.093 0.011 0.006
C07 0.045 0.020 0.450 0.218 0.050 0.025 0.063 0.037 0.249 0.160
C08 0.372 0.163 0.000 0.000 0.275 0.141 0.120 0.073 0.008 0.005

Factor

C09 0.027 0.011 0.000 0.000 0.048 0.023 0.025 0.014 0.004 0.002
C10 0.005 0.002 0.004 0.002 0.033 0.017 0.019 0.012 0.040 0.027
C11 0.003 0.001 0.001 0.001 0.000 0.000 0.019 0.011 0.046 0.029
C12 0.008 0.004 0.017 0.008 0.004 0.002 0.048 0.030 0.024 0.016
C13 0.008 0.004 0.017 0.008 0.004 0.002 0.048 0.030 0.024 0.016
C14 0.005 0.002 0.004 0.002 0.033 0.017 0.019 0.012 0.040 0.027
C15 0.012 0.005 0.011 0.006 0.011 0.006 0.043 0.026 0.014 0.009
C16 0.003 0.001 0.024 0.012 0.003 0.002 0.004 0.003 0.031 0.021
C17 0.008 0.004 0.017 0.008 0.004 0.002 0.048 0.030 0.024 0.016
C18 0.021 0.009 0.048 0.024 0.124 0.064 0.161 0.097 0.027 0.018
C19 0.016 0.007 0.004 0.002 0.089 0.046 0.044 0.027 0.019 0.013
C20 0.005 0.002 0.004 0.002 0.033 0.017 0.019 0.012 0.040 0.027
C21 0.008 0.004 0.017 0.008 0.004 0.002 0.048 0.030 0.024 0.016
C22 0.003 0.001 0.024 0.012 0.003 0.002 0.004 0.003 0.031 0.021
C23 0.003 0.001 0.024 0.012 0.003 0.002 0.004 0.003 0.031 0.021
C24 0.003 0.001 0.024 0.012 0.003 0.002 0.004 0.003 0.031 0.021
C25 0.003 0.001 0.055 0.026 0.001 0.000 0.027 0.015 0.002 0.001
C26 0.024 0.010 0.050 0.023 0.064 0.031 0.016 0.009 0.011 0.006
C27 0.008 0.004 0.049 0.025 0.089 0.047 0.003 0.002 0.037 0.024
C28 0.023 0.010 0.323 0.163 0.005 0.003 0.004 0.003 0.227 0.151
C29 0.423 0.189 0.006 0.003 0.166 0.087 0.136 0.084 0.012 0.008
C30 0.008 0.004 0.017 0.008 0.004 0.002 0.048 0.030 0.024 0.016
C31 0.003 0.001 0.036 0.016 0.000 0.000 0.000 0.000 0.000 0.000
C32 0.003 0.001 0.024 0.012 0.003 0.002 0.004 0.003 0.031 0.021
C33 0.003 0.001 0.024 0.012 0.003 0.002 0.004 0.003 0.031 0.021
C34 0.008 0.004 0.017 0.008 0.004 0.002 0.048 0.030 0.024 0.016
C35 0.005 0.002 0.004 0.002 0.033 0.017 0.019 0.012 0.040 0.027
C36 0.188 0.084 0.013 0.007 0.056 0.029 0.076 0.047 0.009 0.006

Label is the unique identifier for a category, corr = correlation and cont = contribution.

Table 6 shows the inertia, quality and rotated principal coordinates of the study data.
The inertia of a category is the proportion of the total inertia that the category contributes
and quality is the dimensionality of the solution. The very small sample category was found
to deviate from its expected value and contributed 0.70% to the total inertia. This result
indicates that a very small sample is the most unusual under the basic assumption that
none of the variables are correlated. The highest quality value of 0.885 was recorded for the
single theory category, while the lowest quality value of 0.039 was recorded for the student
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satisfaction category. This result indicates that single theory was best represented by the five
dimensions, while student satisfaction has the poorest representation. The interpretation
of the rotated principal coordinates has been suggested instead of the unrotated principal
coordinates because they give straightforward explanations for dimensions greater than
two [91,99]. The result of the rotated principal coordinates of variables with salient values
in the asterisk mark is shown in Table 6. Salient coordinates are those with squared values
larger than the mean [91,99].

Table 6. Rotated principal coordinates of variables with salient values.

Contributions Dimensions

Variable Label Inertia Quality 1 2 3 4 5

Theory

C01 0.022 0.885 −1.454 * 0.072 0.142 −0.593 0.194
C02 0.022 0.841 0.613 1.166 * −0.652 0.097 0.130
C03 0.019 0.830 0.466 −1.021 −0.048 0.313 0.223
C04 0.027 0.684 0.369 0.386 1.752 * 0.115 −1.826 *

Sample

C05 0.007 0.756 −0.099 −0.057 −0.366 0.253 0.170
C06 0.026 0.827 0.283 0.140 2.148 * 0.076 0.191
C07 0.029 0.857 0.442 0.193 −0.369 −3.766 * 0.131
C08 0.029 0.776 0.234 0.324 −0.535 0.164 −4.438 *

Factor

C09 0.027 0.104 0.202 0.055 0.940 0.246 0.183
C10 0.030 0.101 0.548 1.908 * −0.873 0.688 0.433
C11 0.028 0.068 0.034 0.708 0.080 0.370 0.458
C12 0.030 0.100 −2.283 * 0.141 −0.248 0.086 0.098
C13 0.030 0.100 −2.283 * 0.141 −0.248 0.086 0.098
C14 0.030 0.101 0.548 1.908 * −0.873 0.688 0.433
C15 0.029 0.091 −0.398 −1.074 −0.400 0.236 0.159
C16 0.030 0.066 0.545 −1.682 * −0.476 0.311 0.190
C17 0.030 0.100 −2.283 * 0.141 −0.248 0.086 0.098
C18 0.029 0.382 1.630 * 1.419 * −0.854 −2.098 * 0.353
C19 0.030 0.172 1.325 * −1.124 * 2.314 * 0.017 0.870
C20 0.030 0.101 0.548 1.908 * −0.873 0.688 0.433
C21 0.030 0.100 −2.283 * 0.141 −0.248 0.086 0.098
C22 0.030 0.066 0.545 −1.682 * −0.476 0.311 0.190
C23 0.030 0.066 0.545 −1.682 * −0.476 0.311 0.190
C24 0.030 0.066 0.545 −1.682 * −0.476 0.311 0.190
C25 0.027 0.088 0.702 −0.134 −0.077 0.403 0.423
C26 0.027 0.164 0.441 −0.197 −0.523 0.390 −0.807
C27 0.030 0.186 −1.503 * 0.698 2.542 * −0.209 0.778
C28 0.030 0.582 −0.119 −0.837 −0.210 −5.487 * −0.061
C29 0.030 0.744 −0.084 0.046 0.033 0.027 −6.279 *
C30 0.030 0.100 −2.283 * 0.141 −0.248 0.086 0.098
C31 0.026 0.039 −0.203 0.116 0.072 −0.399 0.088
C32 0.030 0.066 0.545 −1.682 * −0.476 0.311 0.190
C33 0.030 0.066 0.545 −1.682 * −0.476 0.311 0.190
C34 0.030 0.100 −2.283 * 0.141 −0.248 0.086 0.098
C35 0.030 0.101 0.548 1.908 * −0.873 0.688 0.433
C36 0.030 0.343 0.875 1.032 3.982 * 0.126 −0.674

Table value in asterisk (*) indicates salient value and label is the unique identifier for a category.

Dimension one contrasts the factors identified from single theories to be perceived
enjoyment, engagement on platform, intellectual capital, perceived functional value, so-
cial competence, social influence and teacher knowledge from the theories that identified
intrinsic motivation and knowledge outcome as significant factors influencing student ac-
ceptance of MOOCs. Dimension two contrasts the factors identified from blended theories
to be course quality, functional attachment, intrinsic motivation, perceived behavioral con-
trol, utility value, from the theories that identified facilitating conditions, flow experience,
knowledge outcome, perceived ease of use, performance expectancy, perceived reputation,
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subjective norm and task technology fit as significant factors influencing student accep-
tance of MOOCs. Dimension three describes the factors identified using complex theories
tested on a small sample to be knowledge outcome, social competence and gamification
perception as significant factors influencing student acceptance of MOOCs. Dimension four
describes the factors tested on a large sample to be intrinsic motivation and self-regulation
as significant factors influencing student acceptance of MOOCs. Dimension five describes
the factors identified using complex theories tested on a very large sample to be student
habit as a significant factor influencing student acceptance of MOOCs. The five dimensions
could be labeled respectively as single theory factors, blended theory factors, complex
theory with small sample factors, large sample factors and complex theory with very large
sample factors.

The focus of MCA is to provide an insight into a dataset through information visual-
ization and it presents a useful application for visualizing associations amongst variable
categories [92]. The first and second dimensions are usually plotted to examine the associa-
tions amongst variable categories [94]. The categories that are farther from the origin of the
biplot are more discriminating, but the closer they are to the origin, the less distinct they are
in general. That is unassociated variable categories are plotted far apart on the biplot and
categories that are relatively closer from a combination cloud [93]. The present study has
achieved a significant result about the discrimination measures obtained for the variables
included in the MCA (Figure 2). It is highlighted as observed in the figure that the variable
category of student habit becomes the most discriminating element of dimension one
(x = −5.538; y = 0.704). Similarly, this can be said for the variable category of self-regulation
(x = 1.294; y = 5.134) with regards to dimension two. The points farther away from the
plot origin are more influential and those at the opposite sides of the plot indicate that a
component contrasts these variable categories. The variable categories of student habit
and self-regulation are more influential while dimension two highly contrasts the variable
category of student habit from the category of self-regulation.
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Figure 2. Discrimination measures of the variables.

The biplot correspondence graph for the different contemplated variable categories of
dimensions 1 and 2 accounts for approximately 51.60% of the explained inertia (Figure 3).
The categories of different variables are associated when they are closed to each other, but
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categories of the same variable that are closed to each other are said to be similar. The biplot
constructs the coordinates of the variable categories to visually observe the associations in
data and interpret the principal components of the categories [92]. This result generally
indicates the existence of associations through closeness and similarities by a combination
cloud of variable categories. The biplot of the points that form the three variables of this
study permits an organized structure to be drawn around four main levels of associations.
The first is composed of single theories. It is associated with factors of social competence
and a combination cloud of factors of teacher knowledge, social influence, perceived
functional value, intellectual capital, engagement on platform and perceived enjoyment.
The second is fulfilled by blended theories. It is more associated with factors of computer
self-efficacy, gamification perception, intrinsic motivation and a combination cloud of
factors of utility value, perceived behavioral control, functional attachment and course
quality. The third is formed by extended theories. It is associated with factors of facilitating
conditions, self-regulation, knowledge outcome and a combination cloud of factors of task
technology fit, subjective norm, perceived reputation, performance expectancy, perceived
ease of use and flow experience. It can be observed that student sample, that is very small
sample, small sample, large sample, or very large sample does not play a discriminating
role in these three associations. The last is formed by complex theories. It is more associated
with very small sample, small sample, large sample, very large sample, factors of perceived
usefulness, student attitude and a combination cloud of factors of student satisfaction,
student habit and behavioral intention.
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4. Discussions

The overarching objective of this study was to use the data science method of MCA
to explore hidden associations among factors influencing student acceptance of MOOCs
and heterogeneity sources. This has led to the development of an appropriate dataset
based on a comprehensive review of related studies. The dataset was processed using the
MultipleCar toolbox [91] and MCORRAN2 Matlab code [95], which are general software
suitable for implementing correspondence analysis. The theory, sample and factor are the
core variables of the dataset that were considered for the MCA to detect hidden associations.
The number of observations in a study often refers to as sample size is an important research
consideration. Sample size influences the precision, robustness and validity of the findings
from research. The larger the sample size, the more robust is likely to be the study result,
but it should not be either too small or too large. On one hand, very small samples can
undermine the validity and prevent the generalization of findings. On the other hand, very
large samples tend to amplify small differences into statistically significant differences and
emphasize insignificant statistical differences [24]. Theoretical models in research offer the
footing to establish credibility and application of a wrong theory can lead to erroneous
interpretations, judgments and weedy conclusions. However, the selection of the right
theory for research can enhance robustness, relevance and impactful findings [25].

This study has used MCA for the first time to investigate hidden associations among
the variables of theory, sample and factor. The MCA enables the exploration of hidden
associations among variable categories and observations not observed in the literature.
It has helped in this study, to detect useful insights about hidden associations among
the factors influencing student acceptance of MOOCs, theoretical models applied in the
previous studies for factor exploration and sample sizes of students who participated in
the different studies. The work reported in this paper is an important assignment that
has been overlooked in the literature as evidence from the comprehensive review of the
existing studies. Previous studies have improved the understanding of the application of
MCA for factor exploration. Meta-regression analysis was used to show that “theoretical
model” and “sample size” were statistically significant sources of heterogeneity in factors
influencing student acceptance of MOOCs [23]. However, the investigation of associations
among influencing factors and sources of heterogeneity that could have yielded significant
insights was not previously found.

The MCA has helped this study address the literature chasm and further enrich
the existing studies on MOOCs in the niche area of technology acceptance. There are
some important findings from this study as elucidated as follows. Complex theories that
combine two or more supplementary factors are rarely applied, but blended theories are
commonly used for exploring factors influencing student acceptance of MOOCs. This
study has found five previous studies in the literature that have used complex theories
for exploring significant factors influencing student acceptance of MOOCs [21,53,81,82,84].
Very small samples usually between 101 and 411 are widely used, but very large samples
are rarely used for exploring factors influencing student acceptance of MOOCs. The studies
that have used very small samples constitute about 75.93% and the examples of such
studies with less than 200 samples include [15,16,19,71,79,84]. Student satisfaction [7,19,
52,53,60,74,75,82], student attitude [10,11,57,68,79,83], behavioral intention [5,21,51,59,72]
and perceived usefulness [1,2,13,61,70] are the widely used factors for exploring student
acceptance of MOOCs. The student satisfaction factor was shown in meta-analysis research
to be the main significant factor influencing student acceptance of MOOCs [23]. A very
small sample of students is the most unusual under the basic assumption that none of the
variables are correlated. The single theory was best represented by the five dimensions,
whilst student satisfaction has the poorest representation. The five dimensions found for
dimension reduction were easily interpreted and labeled as single theory factors, blended
theory factors, complex theory with small sample factors, large sample factors and complex
theory with very large sample factors. The salient coordinates in the first and second
dimensions suggest that these two dimensions are bipolar and the other three are unipolar.
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The bipolar dimensions contrast the influencing factors that are on the opposite sides of
the dimensions [91]. The simplified principal coordinates of variables and observations
were obtained using the widely known varimax rotation algorithm as recommended by
the previous authors [91,99].

The results of this study generally conclude the existence of four main levels of
associations. The first is formed by factors identified by single theories. It is associated
with social competence and a combination cloud of factors of teacher knowledge, social
influence, perceived functional value, intellectual capital, engagement on platform and
perceived enjoyment. The second describes the factors identified by blended theories. It is
more associated with computer self-efficacy, gamification perception, intrinsic motivation
and a combination cloud of factors of utility value, perceived behavioral control, functional
attachment and course quality. The third is composed of factors identified by extended
theories. It is associated with facilitating conditions, self-regulation, knowledge outcome
and a combination cloud of factors of task technology fit, subjective norm, perceived
reputation, performance expectancy, perceived ease of use and flow experience. The last is
formed by factors identified by complex theories. It is associated with very small sample,
small sample, large sample, very large sample, factors of perceived usefulness, student
attitude and a combination cloud of factors of student satisfaction, student habit and
behavioral intention that explain student behaviors toward MOOC acceptance.

5. Conclusions

Different studies on the applications of MCA have been conducted in multitudinous
fields over the past few decades. However, no one has focused on its unique application
for exploring factors influencing student acceptance of MOOCs, which is the overarching
objective of the research reported in this paper. It is pragmatic to explore hidden associ-
ations in a database of influencing factors to increase the understanding of multifarious
heterogeneously conflicting factors of MOOC acceptance. The understanding of student
acceptance of MOOCs will lead to better prediction of the use of the innovative educa-
tion model and its associated information resources. In addition, it can lead to increased
personal control of knowledge and better productivity of the education system.

The one discernible limitation of the present study is that reviewed articles were
limited to 54 studies because of the criteria used to initiate the literature search. The search
parameters might have excluded a significant number of studies that could have enriched
the study findings. This intrinsic limitation could be addressed in future research by using
other methodological techniques with less limiting article selection criteria to accommodate
for expansion of information and generate more suitable data for analysis. Second, this
study has focused mainly on student acceptance of MOOCs but extending the study to
capture the perceptions of teachers could have yielded more perceptive findings. Future
studies may examine the acceptance of MOOCs by teachers for a more comprehensive
understanding of their usage. Moreover, future research can compare the acceptance of
MOOCs by students with acceptance by teachers to discover more useful insights. This kind
of research would be able to depict whether hidden associations exist in the perceptions of
students and teachers on their acceptance of MOOCs. Nonetheless, this correspondence
analysis study has provided valuable information regarding hidden associations amongst
the factors influencing student acceptance of MOOCs.

More specifically, this study has found some important outcomes through the unique
application of MCA. These outcomes include the following. A very small sample is the
most unusual under the basic assumption that none of the variables are correlated. The
simplified principal coordinates of variables and observations were obtained using the
widely known varimax rotation algorithm. Five principal dimensions were found in this
study that explained 81.800% of the total inertia based on the adjusted inertia. A single
theory was best represented by the five dimensions, while student satisfaction has the
poorest representation. The variable categories of student habit and self-regulation are
more influential while dimension two highly contrasts the variable category of student
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habit from the category of self-regulation. The study has found the existence of four
main levels of associations composed of single, blended, extended and complex theories
respectively. Each level is associated with distinct variable categories and a combination
cloud of similar variable categories.

Future work will investigate the behavior and performance of the cluster analytical
strategy on the same data of this study for further insights that are not exposed by the
factor analytical strategy.
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