Optimization of Chitosan Surface Response Methodology (Natural and Commercial) Used for Chromium Ion Removal from Wastewater across Different Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Chitosan from Shrimp’s Shells
2.2. Preparation of Grafted (Commercial and Natural) Chitosan
2.3. Preparation of Chromium Solution
2.4. Batch Experiment
- -
- Ci is the initial liquid-phase concentration of Cr+6, (mg/L).
- -
- Ce is the equilibrium liquid-phase concentration of Cr+6,(mg/L).
- -
- V the volume of the solution (L).
- -
- m is the weight of the adsorbent used (g).
2.5. Optimization of Cr+6 Removal (%) by Response Surface Methodology
3. Results and Discussion
3.1. Effect of Different Parameters on the Removal Ratio of Cr+6
3.2. Adsorption Isotherms
3.3. Adsorption Kinetics for Different Types of Adsorbent Used
3.4. Optimisation Using Response Surface Methodology (RSM)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Tawil, R.S.; El-Wakeel, S.T.; Abdel-Ghany, A.E.; Abuzeid, H.A.; Selim, K.A.; Hashem, A.M. Silver/quartz nanocomposite as an adsorbent for removal of mercury (II) ions from aqueous solutions. Heliyon 2019, 5, e02415. [Google Scholar] [CrossRef] [PubMed]
- Baby, R.; Saifullah, B.; Hussein, M.Z. Palm Kernel Shell as an effective adsorbent for the treatment of heavy metal contaminated water. Sci. Rep. 2019, 9, 18955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egbosiuba, T.C.; Abdulkareem, A.S.; Kovo, A.S.; Afolabi, E.A.; Tijani, J.O.; Bankole, M.T.; Bo, S.; Roos, W.D. Adsorption of Cr(VI), Ni(II), Fe(II) and Cd(II) ions by KIAgNPs decorated MWCNTs in a batch and fixed bed process. Sci. Rep. 2021, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Alim, S.A.; Rao, T.S.; Miditana, S.R.; Lakshmi, K.V.D. Efficient and recyclable visible light-active nickel–phosphorus co-doped TiO2 nanocatalysts for the abatement of methylene blue dye. J. Nanostruct. Chem. 2020, 10, 211–226. [Google Scholar] [CrossRef]
- Gomathi, T.; Sudha, P.N. Removal of Chromium (VI) from aqueous solution using chitosan—Starch blend. Der Pharm. Lett. 2012, 4, 240–248. [Google Scholar]
- Suleiman, A.K.; Aly, O.I.; Mahdi, E.M.; Mohamed, G.G.; Mohamed, A. Removal of Chromium (VI) from Aqueous Solutions Using Composite Nanofibers. Egypt. J. Chem. 2021, 64, 525–531. [Google Scholar] [CrossRef]
- Thinh, N.N.; Hanh, P.T.B.; Ha, L.T.T.; Anh, L.N.; Hoang, T.V.; Hoang, V.D.; Dang, L.H.; Van Khoi, N.; Lam, T.D. Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution. Mater. Sci. Eng. C 2013, 33, 1214–1218. [Google Scholar] [CrossRef] [PubMed]
- Parlayıcı, Ş.; Pehlivan, E. Removal of Chromium(VI) from Aqueous Solution Using Chitosan Doped with Carbon Nanotubes. Mater. Today Proc. 2019, 18, 1978–1985. [Google Scholar] [CrossRef]
- Han, G.; Wen, S.; Wang, H.; Feng, Q. Surface sulfidization mechanism of cuprite and its response to xanthate adsorption and flotation performance. Miner. Eng. 2021, 169, 106982. [Google Scholar] [CrossRef]
- Haghighizadeh, M.; Zare, K.; Aghaie, H.; Monajjemi, M. Preparation and characterization of Chicory leaf powder and its application as a nano-native plant sorbent for removal of Acid Blue 25 from aqueous media: Isotherm, kinetic and thermodynamic study of the adsorption phenomenon. J. Nanostruct. Chem. 2020, 10, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Santhosh, C.; Nivetha, R.; Kollu, P.; Srivastava, V.; Sillanpää, M.; Grace, A.N.; Bhatnagar, A. Removal of cationic and anionic heavy metals from water by 1D and 2D-carbon structures decorated with magnetic nanoparticles. Sci. Rep. 2017, 7, 14107. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Yu, N.; Wang, X.; Wang, Y.; Wang, L.; Li, X.; Hu, X. Adsorption Properties of Granular Activated Carbon-Supported Titanium Dioxide Particles for Dyes and Copper Ions. Sci. Rep. 2018, 8, 6463. [Google Scholar] [CrossRef]
- Pietrelli, L.; Francolini, I.; Piozzi, A.; Sighicelli, M.; Silvestro, I.; Vocciante, M. applied sciences Chromium (III) Removal from Wastewater by Chitosan Flakes. Appl. Sci. 2020, 10, 1925. [Google Scholar] [CrossRef] [Green Version]
- Khorrami, M.; Najafpour, G.D.; Younesi, H.; Hosseinpour, M.N. Production of Chitin and Chitosan from Shrimp Shell in Batch Culture of Lactobacillus plantarum. Chem. Biochem. Eng. Q. 2012, 26, 217–223. [Google Scholar]
- Tatode, A.A.; Patil, A.T.; Umekar, M.J. Application of response surface methodology in optimization of paclitaxel liposomes prepared by thin film hydration technique. Int. J. Appl. Pharm. 2018, 10, 62–69. [Google Scholar] [CrossRef]
- El Essawy, N.A.; Ali, S.M.; Farag, H.A.; Konsowa, A.H.; Elnouby, M.; Hamad, H.A. Green synthesis of graphene from recycled PET bottle wastes for use in the adsorption of dyes in aqueous solution. Ecotoxicol. Environ. Saf. 2017, 145, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Eweida, B.Y.; El-Moghazy, A.Y.; Pandey, P.K.; Amaly, N. Fabrication and simulation studies of high-performance anionic sponge alginate beads for lysozyme separation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 619, 126556. [Google Scholar] [CrossRef]
- Pajootan, E.; Arami, M.; Rahimdokht, M. Application of Carbon Nanotubes Coated Electrodes and Immobilized TiO2 for Dye Degradation in a Continuous Photocatalytic-Electro-Fenton Process. Ind. Eng. Chem. Res. 2014, 53, 16261–16269. [Google Scholar] [CrossRef]
- Huang, R.; Yang, B.; Liu, Q. Removal of chromium(VI) Ions from aqueous solutions with protonated crosslinked chitosan. J. Appl. Polym. Sci. 2013, 129, 908–915. [Google Scholar] [CrossRef]
- Box, G.E.P.; Behnken, D.W. Some New Three Level Designs for the Study of Quantitative Variables. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Shokoohi, R.; Samadi, M.T.; Amani, M.; Poureshgh, Y. Modeling and optimization of removal of cefalexin from aquatic solutions by enzymatic oxidation using experimental design. Braz. J. Chem. Eng. 2018, 35, 943–956. [Google Scholar] [CrossRef]
Code of Variable | Variables Name | Levels | ||
---|---|---|---|---|
+1 | 0 | −1 | ||
X1 | Dose (mg) | 5 | 3 | 1 |
X2 | Concentration (ppm) | 100 | 60 | 20 |
X3 | Time (h) | 5 | 3 | 1 |
Materials | Pseudo-First Order qt = qe[1 − exp(−k1pt)] | Pseudo-Second Order qt = k2pqe2t/(1 + qek2pt) | Elovich qt = β ln(α β t) | |||
---|---|---|---|---|---|---|
Parameters | R2 | Parameters | R2 | Parameters | R2 | |
CC | qe =3.27 mg g−1, k1p = 0.4561 h−1 | 0.9956 | qe = 13.41 mg g−1, k2p = 0.0318 g mg−1 h−1 | 0.9806 | β = 3.2117 g mg−1, α = 1.072 mg g−1 h−1 | 0.9756 |
CGN | qe = 2.75 mg g−1, k1p = 0.3467 h−1 | 0.9636 | qe = 13.07 mg g−1, k2p = 0.0414 g mg−1 h−1 | 0.9829 | β = 3.1872 g mg−1, α = 1.34 mg g−1 h−1 | 0.9686 |
NC | qe =2.09 mg g−1, k1p = −0.3828 h−1 | 0.7159 | qe = 13.69 mg g−1, k2p = 0.027 g mg−1 h−1 | 0.9797 | β = 3.2759 g mg−1, α = 0.96 mg g−1 h−1 | 0.978 |
NGC | qe = 2.531 mg g−1, k1p = 0.242 h−1 | 0.9883 | qe = 12.7 mg g−1, k2p = 0.042 g mg−1 h−1 | 0.9908 | β = 3.0653 g mg−1, α = 1.38 mg g−1 h−1 | 0.9833 |
Trial | Dose(mg) (X1) | Conc.(ppm) (X2) | Time (h) (X3) | Cr+6 Removal (%) Using CC | Cr+6 Removal (%) Using GCC | Cr+6 Removal (%) Using NC | Cr+6 Removal(%) Using GNC | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Measured | Predicted | Measured | Predicted | Measured | Predicted | Measured | Predicted | ||||
1 | 3 | 20 | 1 | 59.7 | 60.469 | 61.4 | 62.166 | 58.5 | 59.186 | 62.9 | 61.267 |
2 | 3 | 60 | 3 | 90.6 | 90.613 | 93.2 | 93.184 | 88.9 | 88.88 | 92.2 | 92.18 |
3 | 5 | 60 | 5 | 93.5 | 94.148 | 94.6 | 95.142 | 92.8 | 93.259 | 95.7 | 94.200 |
4 | 3 | 60 | 3 | 90.6 | 90.613 | 93.2 | 93.184 | 88.9 | 88.884 | 92.2 | 92.186 |
5 | 5 | 20 | 3 | 99.7 | 99.067 | 99.82 | 99.259 | 98.4 | 97.921 | 99.15 | 100.63 |
6 | 3 | 20 | 1 | 59.7 | 60.469 | 61.4 | 62.166 | 58.5 | 59.186 | 62.9 | 61.267 |
7 | 5 | 60 | 1 | 40.1 | 39.212 | 48.6 | 47.606 | 37.9 | 36.982 | 46.36 | 48.122 |
8 | 1 | 100 | 3 | 74.18 | 74.849 | 84.91 | 85.424 | 72.88 | 73.313 | 78.95 | 77.425 |
9 | 3 | 60 | 3 | 90.6 | 90.613 | 93.2 | 93.184 | 88.9 | 88.884 | 92.2 | 92.186 |
10 | 1 | 20 | 3 | 94.56 | 93.659 | 99.65 | 98.669 | 94.95 | 94.047 | 95.15 | 96.925 |
11 | 5 | 100 | 3 | 77.2 | 78.138 | 86.02 | 86.955 | 76.6 | 77.457 | 84.95 | 83.135 |
12 | 3 | 100 | 1 | 49.93 | 49.966 | 51.2 | 51.157 | 48.4 | 48.357 | 52.6 | 52.560 |
13 | 3 | 100 | 5 | 96.5 | 95.000 | 98.6 | 97.018 | 96.2 | 94.779 | 87.2 | 90.425 |
14 | 1 | 60 | 5 | 88.35 | 89.264 | 93.21 | 94.172 | 88.28 | 89.165 | 92.86 | 91.070 |
15 | 1 | 60 | 1 | 36.02 | 35.398 | 47.03 | 46.455 | 33.55 | 33.058 | 40.36 | 41.832 |
Adsorbents | R-Squared (r2) | Adjusted R-Squared | Predicted R-Squared |
---|---|---|---|
CC | 0.992 | 0.98 | 0.88 |
GCC | 0.998 | 0.997 | 0.88 |
NC | 0.992 | 0.99 | 0.88 |
GNC | 0.98 | 0.97 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheta, M.; Yousry, B.; Zattot, A.; Taha, N.A. Optimization of Chitosan Surface Response Methodology (Natural and Commercial) Used for Chromium Ion Removal from Wastewater across Different Parameters. Sustainability 2021, 13, 13494. https://doi.org/10.3390/su132313494
Sheta M, Yousry B, Zattot A, Taha NA. Optimization of Chitosan Surface Response Methodology (Natural and Commercial) Used for Chromium Ion Removal from Wastewater across Different Parameters. Sustainability. 2021; 13(23):13494. https://doi.org/10.3390/su132313494
Chicago/Turabian StyleSheta, Mai, Basant Yousry, Ahmed Zattot, and Nahla A. Taha. 2021. "Optimization of Chitosan Surface Response Methodology (Natural and Commercial) Used for Chromium Ion Removal from Wastewater across Different Parameters" Sustainability 13, no. 23: 13494. https://doi.org/10.3390/su132313494
APA StyleSheta, M., Yousry, B., Zattot, A., & Taha, N. A. (2021). Optimization of Chitosan Surface Response Methodology (Natural and Commercial) Used for Chromium Ion Removal from Wastewater across Different Parameters. Sustainability, 13(23), 13494. https://doi.org/10.3390/su132313494