Research on the Viscosity-Temperature Properties and Thermal Stability of Stabilized Rubber Powder Modified Asphalt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Material
2.1.1. Base Asphalt
2.1.2. Stable Rubber Powder
2.1.3. Other Materials
2.2. Sample Preparation
2.3. Characterization Methods
2.3.1. Physical Performance Test
2.3.2. Determination of Viscoelastic Curve
2.3.3. Thermal Storage Stability Test
2.3.4. Microscopic Test
2.3.5. Thermal Analysis Test
3. Test Results and Analysis
3.1. Physical Index of DRA
3.2. Viscosity-Temperature Characteristic Analysis
3.3. Thermal Storage Stability
3.4. Rubber Powder Specific Surface Area Analysis
3.5. Analysis of Microscopic Morphology of Stable Rubber Powder-Modified Asphalt
3.6. Thermal Stability of Stabilized Rubber Powder-Modified Asphalt
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Zhang, F.; Feng, Z.; Li, W.; Zou, X. Study on waste engine oil and waste cooking oil on performance improvement of aged asphalt and application in reclaimed asphalt mixture. Constr. Build. Mater. 2021, 276, 122138. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Li, W.; Taoum, A.; Zhao, G.; Guo, P. Replacement of limestone with volcanic stone in asphalt mastic used for road pavement. Arab. J. Sci. Eng. 2019, 44, 8629–8644. [Google Scholar] [CrossRef]
- Yang, F.; Li, H.; Zhao, G.; Guo, P.; Li, W. Mechanical performance and durability evaluation of sandstone concrete. Adv. Mater. Sci. Eng. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Li, H.; Liu, G.; Dong, B.; Zhao, G.; Guo, P.; Huang, J.; Sheng, Y. Research on the development and regeneration performance of asphalt rejuvenator based on the mixed waste engine oil and waste cooking oil. Int. J. Pavement Res. Technol. 2019, 12, 336–346. [Google Scholar] [CrossRef]
- Li, H.; Dong, B.; Zhao, D.; Guo, P.; Zhang, J. Physical, Rheological and Stability Properties of Desulfurized Rubber Asphalt and Crumb Rubber Asphalt. Arab. J. Sci. Eng. 2019, 44, 5043–5056. [Google Scholar] [CrossRef]
- Al-Khateeb, G.G.; Ramadan, K.Z. Investigation of the effect of rubber on rheological properties of asphalt binders using superpave dsr. KSCE J. Civ. Eng. 2015, 19, 127–135. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, J.; Li, Q.; Li, B. Aging Properties and Mechanism of Microwave-Activated Crumb Rubber Modified Asphalt Binder. Front. Mater. 2020, 7, 603938. [Google Scholar] [CrossRef]
- Jeong, K.-D.; Lee, S.-J.; Amirkhanian, S.N.; Kim, K.W. Interaction effects of crumb rubber modified asphalt binders. Constr. Build. Mater. 2010, 24, 824–831. [Google Scholar] [CrossRef]
- Ibrahim, I.M.; Fathy, E.S.; El-Shafie, M.; Elnaggar, M.Y. Impact of incorporated gamma irradiated crumb rubber on theshort-term aging resistance and rheological properties of asphalt binder. Constr. Build. Mater. 2015, 81, 42–46. [Google Scholar] [CrossRef]
- Ahmed, T.; Bahzad, D.; Al-Marshed, A.; Omar, M. Evaluating the Characteristics of Crumb Rubber Modified Asphalt Binders Produced with Neat Bitumen—Case of Kuwait. In Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements—Mairepav9, Zurich, Switzerland, 1–3 July 2020; Springer: Cham, Switzerland, 2020; Volume 14, pp. 513–518. [Google Scholar]
- Gallego, J.; Rodríguez-Alloza, A.M.; Giuliani, F. Black curves and creep behaviour of crumb rubber modified binders containing warm mix asphalt additives. Mech. Time-Depend. Mater. 2016, 20, 389–403. [Google Scholar] [CrossRef]
- Shatanawi, K.; Biro, S.; Thodesen, C.; Amirkhanian, S. Effects of Water Activation of Crumb Rubber on the Properties of Crumb Rubber-Modified Binders. Int. J. Pavement Eng. 2009, 10, 289–297. [Google Scholar] [CrossRef]
- Wang, X.; Lv, X.; Chu, F. Analysis of performance characteristics of different types of rubber powder and SBS composite modified asphalt. Bull. Chin. Ceram. Soc. 2019, 38, 3695–3702. [Google Scholar]
- Zhang, X.; Chen, H.; Zhang, B. Research on the road performance of TOR modified waste car tire rubber asphalt mixture. Bull. Ceram. 2018, 37, 2241–2247. [Google Scholar]
- Li, B.; Li, P.; Zhang, X. The effect of the reaction and crosslinking of waste rubber powder on the viscosity of rubber asphalt. J. Chang. Univ. (Nat. Sci. Ed.) 2017, 37, 26–34. [Google Scholar]
- Dong, B. Research on the Characteristics of Stable Rubber Powder Modified Asphalt and Its Mixture Performance. Master’s Thesis, Xi’an University of Science and Technology, Xi’an, China, 2020. [Google Scholar]
- Zhang, Q.; Hou, D.; Shi, J. Overview of the micro characterization methods and micro characteristics of rubber asphalt. Mater. Guide 2019, 33, 247–253. [Google Scholar]
- Li, H.; Li, W.; Temitope, A.A.; Zhao, D.; Zhao, G.; Ma, Q. Analysis of the influence of production method, crumb rubber content and stabilizer on the performance of asphalt rubber. Appl. Sci. 2020, 10, 5447. [Google Scholar] [CrossRef]
- JTG E20-2019. Highway Engineering Asphalt and Mixture Test Regulations; People’s Communications Press: Beijing, China, 2019. [Google Scholar]
- DB 61/T 1021-2016. Technical Specification for Rubber Asphalt Pavement Construction; Shaanxi Provincial Bureau of Quality and Technical Supervision: Xi’an, China, 2016. [Google Scholar]
- Li, H.; Dong, B.; Wang, W.; Zhao, G.; Guo, P.; Ma, Q. Effect of waste engine oil and waste cooking oil on performance improvement of aged asphalt. Appl. Sci. 2019, 9, 1767. [Google Scholar] [CrossRef] [Green Version]
Technical Index | Penetration (25 °C, 100 g, 0.5 s)/0.1 mm | Softening Point/°C | Ductility (5 cm/min, 15 °C)/cm | Dynamic Viscosity at 60 °C/Pa·s |
---|---|---|---|---|
Measured value | 87.9 | 47.6 | >100 | 161.6 |
Requirements [19] | 80–100 | >45 | >100 | >160 |
Pilot Projects | Relative Density | Moisture Content/% | Metal Content/% | Fiber Content/% |
---|---|---|---|---|
Skills requirement | 1.10~1.30 | <1.0 | <0.05 | <1.0 |
Experiment method | JT/T 797 | GB/T 19208 | JT/T 797 | GB/T 19208 |
Pilot Projects | Natural Rubber Content/% | Ash /% | Acetone Extract/% | Carbon Black Content/% | Rubber Hydrocarbon Content/% |
---|---|---|---|---|---|
Skills requirement | ≥25 | ≤9 | ≤22 | ≥24 | ≥42 |
Experiment method | GB/T 14837 | GB/T 4498 | GB/T 3516 | GB/T 14837 | GB/T 14837 |
Technical Index | Penetration (25 °C, 100 g, 0.5 s)/0.1 mm | Softening Point/°C | Ductility (5 cm/min, 15 °C)/cm | Dynamic Viscosity at 180 °C/135 °C/Pa·s |
---|---|---|---|---|
Ordinary rubber asphalt | 65.1 | 66.5 | 8.5 | 1.194 |
Requirements | 40–80 | ≥58 | ≥8 | 1.5~4.0 |
SBS-modified asphalt | 66.0 | 74.4 | 38.2 | 1.550 |
Requirements | 60~80 | ≥55 | ≥30 | ≤3.0 |
Rubber Powder Content/% | Penetration/0.1 mm | Cone Penetration/0.1 mm | Ductility/cm | Softening Point/°C | Viscosity at 135 °C/Pa·s | Viscosity at 180 °C/Pa·s |
---|---|---|---|---|---|---|
21 | 65.4 | 39.56 | 9.5 | 58.3 | 1.765 | 0.551 |
24 | 67.2 | 41.22 | 11.2 | 60.2 | 2.012 | 0.594 |
27 | 69.3 | 42.23 | 13.5 | 63.5 | 2.421 | 0.786 |
30 | 68.2 | 42.01 | 12.8 | 63.8 | 2.652 | 0.858 |
33 | 65.9 | 39.41 | 10.2 | 60.5 | 3.011 | 0.977 |
AR | 63.1 | 36.50 | 8.5 | 66.5 | 8.6 | 1.594 |
VA | 87.9 | —— | >100 | 47.6 | —— | —— |
Rubber Powder Type | P/P0/m2·g−1 | Langmuir Specific Surface Area/m2·g−1 | BET Specific Surface Area/m2·g−1 |
---|---|---|---|
Ordinary rubber powder | 0.3292 | 0.7808 | 0.5874 |
Stable rubber powder | 0.1775 | 1.3394 | 1.0364 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Guo, Z.; Guo, P.; Yang, F.; Li, H. Research on the Viscosity-Temperature Properties and Thermal Stability of Stabilized Rubber Powder Modified Asphalt. Sustainability 2021, 13, 13536. https://doi.org/10.3390/su132413536
Ma Q, Guo Z, Guo P, Yang F, Li H. Research on the Viscosity-Temperature Properties and Thermal Stability of Stabilized Rubber Powder Modified Asphalt. Sustainability. 2021; 13(24):13536. https://doi.org/10.3390/su132413536
Chicago/Turabian StyleMa, Qingwei, Zhongyin Guo, Ping Guo, Fayong Yang, and Haibin Li. 2021. "Research on the Viscosity-Temperature Properties and Thermal Stability of Stabilized Rubber Powder Modified Asphalt" Sustainability 13, no. 24: 13536. https://doi.org/10.3390/su132413536
APA StyleMa, Q., Guo, Z., Guo, P., Yang, F., & Li, H. (2021). Research on the Viscosity-Temperature Properties and Thermal Stability of Stabilized Rubber Powder Modified Asphalt. Sustainability, 13(24), 13536. https://doi.org/10.3390/su132413536