Economic Analysis and Improvement Opportunities of African Catfish (Clarias gariepinus) Aquaculture in Northern Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. African Catfish RAS—Initial Model
2.1.1. Variable Costs
2.1.2. Fixed Costs
2.1.3. Revenues
2.2. Entrepreneurial Decision Scenarios
2.2.1. Scenario 1—Double Production Volume
2.2.2. Scenario 2—Higher Stocking Density
2.2.3. Scenario 3—Fingerling Production
2.2.4. Scenario 4—Aquaponic Integration
2.2.5. Scenario 5—Higher Value-Added Level
2.3. Calculations
3. Results
3.1. Initial Model
3.2. Change in Costs and Prices
3.3. Entrepreneural Decision Scenarios
3.3.1. Double Production Volume
3.3.2. Higher Stocking Densities
3.3.3. Fingerling Production
3.3.4. Aquaponic Integration
3.3.5. Higher Value-Added Level
4. Discussion
4.1. Initial Model with Price Variation
4.2. Entrepreneurial Decision Scenarios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. FishStatJ v4.01.1 (October 2021); FAO: Rome, Italy, 2021. [Google Scholar]
- Tacon, A.G.J. Trends in Global Aquaculture and Aquafeed Production: 2000–2017. Rev. Fish. Sci. Aquac. 2020, 28, 43–56. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome, Italy, 2020; p. 206. [Google Scholar]
- Bundesministerium für Ernährung und Landwirtschaft (BMEL). Jahresbericht zur Deutschen Binnenfischerei und Binnenaquakultur 2019; BMEL: Bonn, Germany, 2021; p. 61. [Google Scholar]
- European Commission. European Green Deal: Commission Adopts Strategic Guidelines for Sustainable and Competitive EU Aquaculture; European Commission: Brussels, Belgium, 2021; p. 2. [Google Scholar]
- Badiola, M.; Mendiola, D.; Bostock, J. Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquac. Eng. 2012, 51, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.I.; Schrama, J.W.; Verreth, J.A. The effect of group composition on the welfare of African catfish (Clarias gariepinus). Appl. Anim. Behav. Sci. 2006, 97, 323–334. [Google Scholar] [CrossRef]
- EUMOFA, European Commission. Recirculating Aquaculture Systems; Publications Office of the European Union: Luxembourg, 2020; p. 45. [Google Scholar]
- Palm, H.; Knaus, U.; Wasenitz, B.; Bischoff, A.; Strauch, S. Proportional up scaling of African catfish (Clarias gariepinus Burchell, 1822) commercial recirculating aquaculture systems disproportionally affects nutrient dynamics. Aquaculture 2018, 491, 155–168. [Google Scholar] [CrossRef]
- Asche, F.; Guttormsen, A.G.; Nielsen, R. Future challenges for the maturing Norwegian salmon aquaculture industry: An analysis of total factor productivity change from 1996 to 2008. Aquaculture 2013, 396–399, 43–50. [Google Scholar] [CrossRef]
- Jokumsen, A.; Svendsen, L.M. Farming of Freshwater Rainbow Trout in Denmark; DTU Aqua Report no. 219-2010; DTU Aqua, National Institute of Aquatic Resources: Charlottenlund, Denmark, 2010; p. 47.
- Summerfelt, S.T.; Davidson, J.; May, T.; Good, C.; Vinci, B. Emerging trends in salmonid RAS—Part II. System enhancements. Glob. Aquac. Adv. 2015, 18, 64–65. [Google Scholar]
- FAO.org. Available online: https://www.fao.org/fishery/culturedspecies/Sander_lucioperca/en (accessed on 27 October 2021).
- FAO.org. Available online: https://www.fao.org/fishery/culturedspecies/Clarias_gariepinus/en (accessed on 28 October 2021).
- Schmidt-Puckhaber, B. Fisch vom Hof?!: Fischerzeugung in Standortunabhängigen Kreislaufanlagen, 1st ed.; DLG-Verlag: Frankfurt, Germany, 2010; p. 144. [Google Scholar]
- Statistisches Bundesamt (Destatis). Land und Forstwirtschaft, Fischerei. Erzeugung in Aquakulturbetrieben; Fachserie 3, Reihe 4.6, 2018; Statistisches Bundesamt (Destatis): Wiesbaden, Germany, 2019; p. 54.
- Hengsawat, K.; Ward, F.; Jaruratjamorn, P.P. The effect of stocking density on yield, growth and mortality of African catfish (Clarias gariepinus Burchell 1822) cultured in cages. Aquaculture 1997, 152, 67–76. [Google Scholar] [CrossRef]
- Hossain, M.A.; Beveridge, M.C.; Haylor, G.S. The effects of density, light and shelter on the growth and survival of African catfish (Clarias gariepinus Burchell, 1822) fingerlings. Aquaculture 1998, 160, 251–258. [Google Scholar] [CrossRef]
- van de Nieuwegiessen, P.G.; Olwo, J.; Khong, S.; Verreth, J.; Schrama, J. Effects of age and stocking density on the welfare of African catfish, Clarias gariepinus Burchell. Aquaculture 2009, 288, 69–75. [Google Scholar] [CrossRef]
- Pasch, J.; Appelbaum, S.; Knaus, U.; Sandmann, P.; Palm, H.W. Effects of stocking density of African catfish (Clarias gariepinus) life stages in RAS on growth performance and profitability. Aquaculture, under review.
- Roques, J.A.C.; Schram, E.; Spanings, T.; van Schaik, T.; Abbink, W.; Boerrigter, J.; de Vries, P.; van de Vis, H.; Flik, G. The impact of elevated water nitrite concentration on physiology, growth and feed intake of African catfish Clarias gariepinus (Burchell 1822). Aquac. Res. 2015, 46, 1384–1395. [Google Scholar] [CrossRef]
- Schram, E.; Roques, J.A.; Abbink, W.; Spanings, T.; de Vries, P.; Bierman, S.; van de Vis, H.; Flik, G. The impact of elevated water ammonia concentration on physiology, growth and feed intake of African catfish (Clarias gariepinus). Aquaculture 2010, 306, 108–115. [Google Scholar] [CrossRef]
- Wasenitz, B.; Karl, H.; Palm, H.W. Composition and quality attributes of fillets from different catfish species on the German market. J. Food Saf. Food Qual. 2018, 69, 57–65. [Google Scholar]
- Knaus, U.; Pribbernow, M.; Xu, L.; Appelbaum, S.; Palm, H.W. Basil (Ocimum basilicum) cultivation in decoupled aquaponics with three hydro-components (grow pipes, raft, gravel) and African catfish (clarias gariepinus) production in Northern Ger-many. Sustainability 2020, 12, 8745. [Google Scholar] [CrossRef]
- Pasch, J.; Ratajczak, B.; Appelbaum, S.; Palm, H.; Knaus, U. Growth of Basil (Ocimum basilicum) in DRF, Raft, and Grow Pipes with Effluents of African Catfish (Clarias gariepinus) in Decoupled Aquaponics. AgriEngineering 2021, 3, 6. [Google Scholar] [CrossRef]
- Pasch, J.; Appelbaum, S.; Palm, H.; Knaus, U. Growth of Basil (Ocimum basilicum) in Aeroponics, DRF, and Raft Systems with Effluents of African Catfish (Clarias gariepinus) in Decoupled Aquaponics (s.s.). AgriEngineering 2021, 3, 36. [Google Scholar] [CrossRef]
- Knaus, U.; Wenzel, L.; Appelbaum, S.; Palm, H. Aquaponics (s.l.) Production of Spearmint (Mentha spicata) with African Catfish (Clarias gariepinus) in Northern Germany. Sustainability 2020, 12, 8717. [Google Scholar] [CrossRef]
- Oladimeji, S.A.; Okomoda, V.T.; Olufeagba, S.O.; Solomon, S.G.; Abol-Munafi, A.B.; Alabi, K.I.; Ikhwanuddin, M.; Martins, C.O.; Umaru, J.; Hassan, A. Aquaponics production of catfish and pumpkin: Comparison with conventional production sys-tems. Food Sci. Nutr. 2020, 8, 2307–2315. [Google Scholar] [CrossRef] [PubMed]
- EC.europa.eu. Available online: https://ec.europa.eu/oceans-and-fisheries/funding/european-maritime-and-fisheries-fund-emff_en (accessed on 27 October 2021).
- Umweltbundesamt.de. Available online: https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-gesetz#erfolg (accessed on 27 October 2021).
- BMWI.de. Available online: https://www.bmwi.de/Redaktion/DE/Artikel/Energie/moderne-kraftwerkstechnologien.html (accessed on 27 October 2021).
- Engle, C.R.; Kumar, G.; Van Senten, J. Cost drivers and profitability of U.S. pond, raceway, and RAS aquaculture. J. World Aquac. Soc. 2020, 51, 847–873. [Google Scholar] [CrossRef]
- Xiao, R.; Wei, Y.; An, D.; Li, D.; Ta, X.; Wu, Y.; Ren, Q. A review on the research status and development trend of equipment in water treatment processes of recirculating aquaculture systems. Rev. Aquac. 2019, 11, 863–895. [Google Scholar] [CrossRef]
- Heiderscheidt, E.; Tesfamariam, A.; Pulkkinen, J.; Vielma, J.; Ronkanen, A.-K. Solids management in freshwater-recirculating aquaculture systems: Effectivity of inorganic and organic coagulants and the impact of operating parameters. Sci. Total Environ. 2020, 742, 140398. [Google Scholar] [CrossRef]
- Gibson, T.F.; Watanabe, W.O.; Losordo, T.M.; Whitehead, R.F.; Carroll, P.M. Evaluation of chemical polymers as coagulation aids to remove suspended solids from marine finfish recirculating aquaculture system discharge using a geotextile bag. Aquac. Eng. 2020, 90, 102065. [Google Scholar] [CrossRef]
- Villar-Navarro, E.; Garrido-Pérez, C.; Perales, J.A. The potential of different marine microalgae species to recycle nutrients from recirculating aquaculture systems (RAS) fish farms and produce feed additives. Algal Res. 2021, 58, 102389. [Google Scholar] [CrossRef]
- Yogev, U.; Vogler, M.; Nir, O.; Londong, J.; Gross, A. Phosphorous recovery from a novel recirculating aquaculture system followed by its sustainable reuse as a fertilizer. Sci. Total Environ. 2020, 722, 137949. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chang, Z.; Qiao, L.; Wang, J.; Yang, L.; Liu, Y.; Song, X.; Li, J. Nitrogen removal performance and microbial diversity of bioreactor packed with cellulosic carriers in recirculating aquaculture system. Int. Biodeterior. Biodegradation 2021, 157, 105157. [Google Scholar] [CrossRef]
- Ruiz, P.; Vidal, J.M.; Sepúlveda, D.; Torres, C.; Villouta, G.; Carrasco, C.; Aguilera, F.; Ruiz-Tagle, N.; Urrutia, H. Overview and future perspectives of nitrifying bacteria on biofilters for recirculating aquaculture systems. Rev. Aquac. 2019, 12, 1478–1494. [Google Scholar] [CrossRef]
- Jiang, W.; Tian, X.; Li, L.; Dong, S.; Zhao, K.; Li, H.; Cai, Y. Temporal bacterial community succession during the start-up process of biofilters in a cold-freshwater recirculating aquaculture system. Bioresour. Technol. 2019, 287, 121441. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Tirado, P.A.; Pedersen, P.B.; Pedersen, L.-F. Bacterial activity dynamics in the water phase during start-up of recirculating aquaculture systems. Aquac. Eng. 2017, 78, 24–31. [Google Scholar] [CrossRef]
- Ekawati, A.W.; Ulfa, S.M.; Dewi, C.S.U.; Aziz, A.; Amin, L.N.M.S.; Yanuar, A.T.; Kurniawan, A. Analysis of Aquaponic-Recirculation Aquaculture System (A-Ras) Application in the Catfish (Clarias gariepinus) Aquaculture in Indonesia. Aquaculture 2021, 21, 93–100. [Google Scholar] [CrossRef]
- Supajaruwong, S.; Satanwat, P.; Pungrasmi, W.; Powtongsook, S. Design and function of a nitrogen and sediment removal system in a recirculating aquaculture system optimized for aquaponics. Environ. Eng. Res. 2020, 26, 190494. [Google Scholar] [CrossRef]
- Calone, R.; Pennisi, G.; Morgenstern, R.; Sanyé-Mengual, E.; Lorleberg, W.; Dapprich, P.; Winkler, P.; Orsini, F.; Gianquinto, G. Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics. Sci. Total Environ. 2019, 687, 759–767. [Google Scholar] [CrossRef]
- O’Rourke, P.D. The economics of recirculating aquaculture systems. In Proceedings of the 1st International Conference on Recirculating Aquaculture, Virginia Polytechnic Institute and State University, Roanoke, VA, USA, 20–23 July 1996; pp. 1–19. [Google Scholar]
- Aich, N.; Nama, S.; Biswal, A.; Paul, T. A review on recirculating aquaculture systems: Challenges and opportunities for sustainable aquaculture. Innov. Farming 2020, 5, 17–24. [Google Scholar]
- Ngoc, P.T.A.; Meuwissen, M.P.M.; Tru, L.C.; Bosma, R.H.; Verreth, J.; Lansink, A.O. Economic feasibility of recirculating aquaculture systems in pangasius farming. Aquac. Econ. Manag. 2016, 20, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Om, A.D.; Yusoff, N.H.N.; Jamari, Z. Evaluation of economics feasibility on marine fish seeds nursed in local backyard re-circulating aquaculture system (RAS). Int. J. Fish. Aquat. Stud. 2020, 8, 288–293. [Google Scholar]
- Ranjan, R.; Megarajan, S.; Xavier, B.; Raju, S.S.; Ghosh, S.; Gopalakrishnan, A. Design and performance of recirculating aq-uaculture system for marine finfish broodstock development. Aquac. Eng. 2019, 85, 90–97. [Google Scholar] [CrossRef]
- de Souza Motta, J.H.; Vidal Júnior, M.V.; Glória, L.S.; Cruz Neto, M.A.; Silveira, L.S.D.; Andrade, D.R.D. Technical and economic feasibility of food strategies in the hatchery of Cyprinus carpio (Cypriniformes, Cyprinidae) in a recirculating aquaculture system. Latin Am. J. Aquat. Res. 2019, 47, 626–637. [Google Scholar]
- Kristan, J.; Blecha, M.; Policar, T. Survival and growth rates of juvenile Grass Carp Ctenopharyngodon idella overwintered in ponds and recirculating aquaculture systems including a comparison of production economics. Turk. J. Fish. Aquat. Sci. 2018, 19, 261–266. [Google Scholar]
- Pereira, D.A.S.; Henriques, M.B. Economic feasibility for producing Imperial Zebra pleco (Hypancistrus zebra) in recirculating aquaculture systems: An alternative for a critically endangered ornamental fish. Aquac. Econ. Manag. 2019, 23, 428–448. [Google Scholar] [CrossRef]
- Mohammad, T.; Moulick, S.; Mukherjee, C.K. Economic feasibility of goldfish (Carassius auratus Linn.) recirculating aquaculture system. Aquac. Res. 2018, 49, 2945–2953. [Google Scholar] [CrossRef]
- Diatin, I.; Shafruddin, D.; Hude, N.; Sholihah, M.; Mutsmir, I. Production performance and financial feasibility analysis of farming catfish (Clarias gariepinus) utilizing water exchange system, aquaponic, and biofloc technology. J. Saudi Soc. Agric. Sci. 2021, 20, 344–351. [Google Scholar] [CrossRef]
- Oké, V.; Goosen, N. The effect of stocking density on profitability of African catfish (Clarias gariepinus) culture in extensive pond systems. Aquaculture 2019, 507, 385–392. [Google Scholar] [CrossRef]
- Oluwalola, O.; Fagbenro, O.; Adebayo, O. Growth and Economic Performances of African Catfish, Clarias gariepinus Reared under Different Culture Facilities. Afr. J. Fish. Aquat. Resour. Manag. 2019, 4, 75–84. [Google Scholar]
- Asche, F.; Roll, K.H.; Tveteras, R. Economic inefficiency and environmental impact: An application to aquaculture production. J. Environ. Econ. Manag. 2009, 58, 93–105. [Google Scholar] [CrossRef]
- El-Sayed, A.-F.; Dickson, M.; El-Naggar, G.O. Value chain analysis of the aquaculture feed sector in Egypt. Aquaculture 2015, 437, 92–101. [Google Scholar] [CrossRef]
- Guttormsen, A.G. Input Factor Substitutability in Salmon Aquaculture. Mar. Resour. Econ. 2002, 17, 91–102. [Google Scholar] [CrossRef]
- Coppens.de. Available online: https://static.alltechcoppens.com/assets/DE_CATFISH_2021.pdf?mtime=20210209101004&focal=none (accessed on 28 October 2021).
- Coppens.de. Available online: https://www.alltechcoppens.com/de/aktuelles/farming-catfish-in-ras (accessed on 28 October 2021).
- KTBL.de. Available online: https://www.ktbl.de/webanwendungen/baukost-gewaechshaeuser (accessed on 28 October 2021).
- KTBL.de. Available online: https://www.ktbl.de/webanwendungen/gemuese-im-geschuetzten-anbau (accessed on 28 October 2021).
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Jijakli, M.H.; Kotzen, B. Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquac. Int. 2018, 26, 813–842. [Google Scholar] [CrossRef]
- Suhl, J.; Dannehl, D.; Kloas, W.; Baganz, D.; Jobs, S.; Scheibe, G.; Schmidt, U. Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agric. Water Manag. 2016, 178, 335–344. [Google Scholar] [CrossRef]
- Microsoft® Corporation. Microsoft Excel®; Microsoft Corporation: Redmond, WA, USA, 2010. [Google Scholar]
- Benker, H. Excel in der Wirtschaftsmathematik. In Excel in der Wirtschaftsmathematik, 1st ed.; Benker, H., Ed.; Springer: Wiesbaden, Germany, 2014; Volume 1, pp. 93–97. [Google Scholar]
- EC.europa.eu. Available online: https://ec.europa.eu/oceans-and-fisheries/funding/emfaf_en (accessed on 28 October 2021).
- Service.m-v.de. Available online: https://www.service.m-v.de/foerderfibel/?sa.fofifoerderung.foerderung_id=24&sa.fofi.kategorie_id=1 (accessed on 28 October 2021).
- Kumar, G.; Engle, C.; Tucker, C. Costs and Risk of Catfish Split-pond Systems. J. World Aquac. Soc. 2016, 47, 327–340. [Google Scholar] [CrossRef]
- Morach, B.; Witte, B.; Walker, D.; von Koeller, E.; Grosse-Holz, F.; Rogg, J.; Brigl, M.; Dehnert, N.; Obloj, P.; Koktenturk, S.; et al. Food for Thought: The Protein Transformation. Ind. Biotechnol. 2021, 17, 125–133. [Google Scholar] [CrossRef]
- Statista.com. Available online: https://de.statista.com/statistik/daten/studie/1905/umfrage/entwicklung-des-pro-kopf-verbrauchs-an-fisch-in-deutschland/ (accessed on 28 October 2021).
- Statista.com. Available online: https://de.statista.com/outlook/cmo/lebensmittel/fisch-meeresfruechte/deutschland#vertriebskanaele (accessed on 28 October 2021).
- Omobepade, B.P.; Adebayo, O.T.; Amos, T.T.; Adedokun, B.C. Profitability analysis of aquaculture in ekiti state, Nigeria. Niger. J. Agric. Food Environ. 2015, 11, 114–119. [Google Scholar]
- Hasan, M.R. On-farm feeding and feed management in aquaculture. FAO Aquac. Newsl. 2010, 45, 48. [Google Scholar]
- Jannathulla, R.; Rajaram, V.; Kalanjiam, R.; Ambasankar, K.; Muralidhar, M.; Dayal, J.S. Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquac. Res. 2019, 50, 3493–3506. [Google Scholar] [CrossRef]
- Palm, H.W.; Berchtold, E.; Gille, B.; Knaus, U.; Wenzel, L.C.; Baßmann, B. Growth and Welfare of African catfish (Clarias gariepinus Burchell, 1822) under dietary supplementation of the mixed layer clay mineral montmorillonite–illlite/muscovite (1g557) in commercial aquaculture. Aquaculture 2021, under review.
- Badiola, M.; Basurko, O.C.; Piedrahita, R.; Hundley, P.; Mendiola, D. Energy use in Recirculating Aquaculture Systems (RAS): A review. Aquac. Eng. 2018, 81, 57–70. [Google Scholar] [CrossRef]
- Gruene.de. Available online: https://www.gruene.de/artikel/wahlprogramm-zur-bundestagswahl-2021 (accessed on 26 November 2021).
- DGB.de. Available online: https://www.dgb.de/themen/++co++6ca263de-fb0e-11e9-bdcf-52540088cada (accessed on 28 October 2021).
- SPD.de. Available online: https://www.spd.de/aktuelles/detail/news/mindestlohn-von-12-euro-notwendig-und-richtig/14/09/2021/ (accessed on 28 October 2021).
- Nyonje, B.M.; Opiyo, M.A.; Orina, P.S.; Abwao, J.; Wainaina, M.; Charo-Karisa, H. Current status of freshwater fish hatcheries, broodstock management and fingerling production in the Kenya aquaculture sector. Livest. Res. Rural. Dev. 2018, 30, 1–8. [Google Scholar]
- Quagrainie, K.K.; Flores, R.M.V.; Kim, H.-J.; McClain, V. Economic analysis of aquaponics and hydroponics production in the U.S. Midwest. J. Appl. Aquac. 2018, 30, 1–14. [Google Scholar] [CrossRef]
- Love, D.C.; Fry, J.P.; Li, X.; Hill, E.S.; Genello, L.; Semmens, K.; Thompson, R.E. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture 2015, 435, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Greenfeld, A.; Becker, N.; McIlwain, J.; Fotedar, R.; Bornman, J.F. Economically viable aquaponics? Identifying the gap between potential and current uncertainties. Rev. Aquac. 2019, 11, 848–862. [Google Scholar] [CrossRef]
- Valbuena, I.; Bechstein, F.; Erdös, A.; Müller-Belecke, A.; Donath, W.; Kaufhold, S. Konzeptstudie zur Erzeugung von Trockenfuttermitteln aus Konservierten Nebenprodukten der Süßwasserfischverarbeitung und deren Verwertung Durch Karnivore Wirtschaftsfischarten; DBU: Osnabrück, Germany, 2012; p. 76. [Google Scholar]
- EUMOFA, European Commission. Case Study, Portion Trout in the EU, Price Structure in the Supply Chain; Publications Office of the European Union: Luxembourg, 2021; p. 58. [Google Scholar]
- Frimpong, J. Fish & Seafood Report 2021; Statista: Hamburg, Germany, 2021; p. 34. [Google Scholar]
- Macfadyen, G.; Nasr-Alla, A.M.; Al-Kenawy, D.; Fathi, M.; Hebicha, H.; Diab, A.M.; Mohmed, S.; Ramadan, H.; Abou-Zeid, M.; El-Naggar, G. Value-chain analysis—An assessment methodology to estimate Egyptian aquaculture sector performance. Aquaculture 2012, 362, 18–27. [Google Scholar] [CrossRef]
Units | Price or Cost per Unit (EUR) | Quantity | Value or Costs (EUR) | ||
---|---|---|---|---|---|
Revenues | |||||
Whole Fish | kg | 2.20 | 320,288 | 704,633 | |
Variable Costs (VC) | |||||
Fish Feed | kg | 1.03 | 288,259 | 296,907 | |
Energy | 59,130 1 | ||||
-Gas | kWh | 0.03 | 1,095,000 | (32,850) | |
-Electricity | kWh | 0.08 | 328,500 | (26,280) | |
Fingerlings | each | 0.20 | 240,216 | 48,043 | |
Wages | unit | 31,000 | 1.2812 | 39,716 | |
Water | m3 | 0.90 | 27,375 | 24,638 | |
Others | unit | 15,000 | 1 | 15,000 | |
Total VC | 483,433 2 | ||||
Contribution Margin | 221,200 | ||||
Fixed Costs (FC) | |||||
Depreciation | unit | 155,455 | 1 | 155,455 | |
Managing | unit | 45,000 | 1 | 45,000 | |
Others | unit | 20,745 | 1 | 20,745 | |
Total FC | 221,200 | ||||
Total Costs (TC) | 704,633 | ||||
Returns | 0 |
Unit | Change of Price or Cost/Unit (EUR) | Returns per Year (EUR/year) | ROI 1 Total (%) | Profit per kg Fish (EUR/kg) | Percentage Change of CM (%) | Percentage Change of VC (%) | Percentage Change of TC (%) | |
---|---|---|---|---|---|---|---|---|
Feed | kg | ±0.103 | ±29,691 | ±3.23 | ±0.093 | ±13.42 | ±6.14 | ±4.21 |
Energy (Total) | ±5913 | ±0.64 | ±0.018 | ±2.67 | ±1.22 | ±0.84 | ||
-Gas | kWh | ±0.003 | ±3285 | ±0.36 | ±0.010 | ±1.49 | ±0.68 | ±0.47 |
-Electricity | kWh | ±0.008 | ±2628 | ±0.29 | ±0.008 | ±1.19 | ±0.54 | ±0.37 |
Fingerlings | ea. | ±0.020 | ±4804 | ±0.52 | ±0.015 | ±2.17 | ±0.99 | ±0.68 |
Wages | unit | ±3100 | ±3972 | ±0.43 | ±0.012 | ±1.80 | ±0.82 | ±0.56 |
Water | m3 | ±0.090 | ±2464 | ±0.27 | ±0.008 | ±1.11 | ±0.51 | ±0.35 |
Invest. costs | m3 PV | ±600 | ±15,546 | ±1.88 | ±0.049 | ±0.00 | ±0.00 | ±2.21 |
Sales price | kg | ±0.220 | ±70,463 | ±7.68 | ±0.220 | ±31.86 | ±0.00 | ±0.00 |
Unit | New Price or Cost/Unit (EUR) | Ivestment Cost (mil. EUR) | CM 2 per year (EUR/Year) | Variable Costs per Year (EUR/year) | Fixed Costs per Year (EUR/Year) | Revenues per Year (EUR/Year) | Returns per Year (EUR/Year) | ROI 1 (%) | CM 2 per kg Fish (EUR/kg) | Variable Costs per kg Fish (EUR/kg) | Total Costs per kg Fish (EUR/kg) | Profit per kg Fish (EUR/kg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial Model | 1.80 | 221,200 | 483,433 | 221,200 | 704,633 | 0 | 0.00 | 0.691 | 1.509 | 2.200 | 0.000 | ||
Feed | kg | 0.927 | 1.80 | 250,890 | 453,742 | 221,200 | 704,633 | 29,691 | 3.23 | 0.783 | 1.417 | 2.107 | 0.093 |
Energy (Total) | 1.80 | 227,113 | 477,520 | 221,200 | 704,633 | 5913 | 0.64 | 0.709 | 1.491 | 2.182 | 0.018 | ||
-Gas | kWh | 0.027 | 1.80 | 224,485 | 480,148 | 221,200 | 704,633 | 3285 | 0.36 | 0.701 | 1.499 | 2.190 | 0.010 |
-Electricity | kWh | 0.072 | 1.80 | 223,828 | 480,805 | 221,200 | 704,633 | 2628 | 0.29 | 0.699 | 1.501 | 2.192 | 0.008 |
Fingerlings | each | 0.180 | 1.80 | 226,004 | 478,628 | 221,200 | 704,633 | 4804 | 0.52 | 0.706 | 1.494 | 2.185 | 0.015 |
Wages | unit | 27,900 | 1.80 | 225,171 | 479,461 | 221,200 | 704,633 | 3972 | 0.43 | 0.703 | 1.497 | 2.188 | 0.012 |
Water | m3 | 0.810 | 1.80 | 223,663 | 480,969 | 221,200 | 704,633 | 2464 | 0.27 | 0.698 | 1.502 | 2.192 | 0.008 |
Invest. costs | m3 PV | 5400 | 1.62 | 221,200 | 483,433 | 205,654 | 704,633 | 15,546 | 1.88 | 0.691 | 1.509 | 2.151 | 0.049 |
Sales price | kg | 2.420 | 1.80 | 291,636 | 483,433 | 221,200 | 775,096 | 70,463 | 7.68 | 0.911 | 1.509 | 2.200 | 0.220 |
Scenario | Units | Sales Price (EUR/Unit) | CMU (EUR/Unit) | VCU (EUR/Unit) | CPU (EUR/Unit) | PPU (EUR/Unit) |
---|---|---|---|---|---|---|
Initial Model | ||||||
300 m2; 450 kg/m3 PV | kg whole fish | 2.200 | 0.691 | 1.509 | 2.200 | 0.00 |
Double Production Volume | ||||||
Opt. 1 (600 m3 PV) | kg whole fish | 2.200 | 0.805 | 1.395 | 1.926 | 0.274 |
Higher Stocking Density | ||||||
Opt. 1 (max. 550 kg/m3) | kg whole fish | 2.200 | 0.668 | 1.532 | 2.097 | 0.103 |
Fingerling Production | ||||||
Opt. 1 (Own Requirements) | each fingerling | 0.200 | 0.004 | 0.196 | 0.312 | –0.112 |
Opt. 2 (300% Fingerling Prod.) | each fingerling | 0.200 | 0.112 | 0.088 | 0.142 | 0.058 |
Aquaponic Integration | ||||||
Aquaculture | kg whole fish | 2.310 | 0.801 | 1.509 | 2.196 | 0.114 |
Opt. 1 (Tomato Prod.) | kg tomato | 2.500 | 1.540 | 0.960 | 2.199 | 0.301 |
Opt. 2 (Basil Prod.) | each pot basil | 0.850 | 0.399 | 0.430 | 0.746 | 0.104 |
Higher Value-Added Level | ||||||
Opt. 1 (Filet Prod.) | kg filet | 6.500 | 2.042 | 4.458 | 6.189 | 0.311 |
Opt. 2 (Smoked Filet Prod.) | kg smoked filet | 12.500 | 6.925 | 5.575 | 7.365 | 5.135 |
Opt. 3 (Direct Sales) | kg whole fish | 3.850 | 2.147 | 1.703 | 2.648 | 1.202 |
kg filet | 11.375 | 6.484 | 4.891 | 7.125 | 4.250 | |
kg smoked filet | 21.875 | 15.877 | 5.998 | 8.232 | 13.643 |
Szenario | TIC (EUR) | VC (EUR/Year) | FC (EUR/Year) | Revenues (EUR/Year) | Returns (EUR/Year) | ROI 1 (%) |
---|---|---|---|---|---|---|
Initial Model | ||||||
300 m2; 450 kg/m3 PV | 1,800,000 | 483,432 | 221,199 | 704,632 | 0.00 | 0.00% |
Double Production Volume | ||||||
Opt. 1 (600 m3 PV) | 3,000,000 | 893,630 | 340,395 | 1,409,265 | 175,240 | 11.45% |
+10% Fish Price | 1,550,192 | 316,167 | 20.66% | |||
Higher Stocking Density | ||||||
Opt. 1 (max. 550 kg/m3 PV) | 1,800,000 | 599,639 | 221,200 | 861,218 | 40,379 | 4.40% |
+10% Fish Price | 947,339 | 126,501 | 13.78% | |||
Fingerling Production | ||||||
Opt. 1 (Own Production) | 2,100,000 | 482,460 | 249,183 | 704,633 | −27,011 | −2.52% |
Opt. 2 (300 % Fingerling Prod.) | 2,190,000 | 505,967 | 260,068 | 800,719 | 34,684 | 3.11% |
+10% Fingerling Price | 810,327 | 44,293 | 3.97% | |||
Aquaponic Integration | ||||||
Aquaculture | 1,890,000 | 483,433 | 219,972 | 739,864 | 36,459 | 3.78% |
Opt. 1 (1000 m2 Tomatoes) | 509,548 | 50,880 | 65,690 | 132,500 | 15,930 | 3.91% |
Total Aquaponic | 2,399,548 | 534,313 | 285,662 | 872,364 | 52,389 | 3.82% |
+10% Tomato Price | 145,750 | 29,180 | 7.16% | |||
Total Aquaponic | 885,614 | 65,639 | 4.79% | |||
Opt. 2 (10,000 m2 Basil) | 4,474,565 | 1,021,875 | 748,832 | 2,018,750 | 248,043 | 6.93% |
Total Aquaponic | 6,364,565 | 1,505,308 | 968,804 | 2,758,614 | 284,502 | 6.26% |
+10% Basil Price | 2,220,625 | 449,918 | 12.57% | |||
Total Aquaponic | 2,960,489 | 486,377 | 10.70% | |||
Higher Value-Added Level | ||||||
Opt. 1 (80% Filet) | 1,980,000 | 566,065 | 236,745 | 831,338 | 28,529 | 2.83% |
+10% Filet Price | 899,624 | 96,814 | 9.59% | |||
Opt. 2 (30% Smoked Filet, 80% Filet) | 2,070,000 | 610,995 | 244,518 | 1,067,710 | 212,198 | 20.10% |
+10% Smoked Filet Price | 1,116,955 | 261,442 | 24.76% | |||
Opt. 3 (Direct Sales) | 2,480,000 | 666,512 | 302,772 | 1,266,489 | 297,204 | 23.46% |
+10% Direct Sales Price | 1,312,870 | 343,586 | 27.12% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasch, J.; Palm, H.W. Economic Analysis and Improvement Opportunities of African Catfish (Clarias gariepinus) Aquaculture in Northern Germany. Sustainability 2021, 13, 13569. https://doi.org/10.3390/su132413569
Pasch J, Palm HW. Economic Analysis and Improvement Opportunities of African Catfish (Clarias gariepinus) Aquaculture in Northern Germany. Sustainability. 2021; 13(24):13569. https://doi.org/10.3390/su132413569
Chicago/Turabian StylePasch, Johannes, and Harry W. Palm. 2021. "Economic Analysis and Improvement Opportunities of African Catfish (Clarias gariepinus) Aquaculture in Northern Germany" Sustainability 13, no. 24: 13569. https://doi.org/10.3390/su132413569
APA StylePasch, J., & Palm, H. W. (2021). Economic Analysis and Improvement Opportunities of African Catfish (Clarias gariepinus) Aquaculture in Northern Germany. Sustainability, 13(24), 13569. https://doi.org/10.3390/su132413569