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Abstract: Land use and land cover (LULC) change is considered among the most discussed issues
associated with development nowadays. It is necessary to provide factual and up-to-date information
to policymakers to fulfil the increasing population’s food, work, and habitation needs while ensuring
environmental sustainability. Geographical Information System (GIS) and Remote sensing can
perform such work adequately. This study aims to assess land use and land cover changes concerning
the Barapukuria coal mine and its adjacent areas in Bangladesh by applying remote sensing and GIS
(geographical information system) techniques. This research work used time-series satellite images
from the Landsat 7 ETM+ satellite between 1999 and 2009 and the Landsat 8 OLI/TIRS satellite for
2019. Supervised classification maximum likelihood classifier matrix was implemented using ERDAS
Imagine 2018. The images were categorised into four definite classes: settlement, agricultural land,
forest land, and waterbody. Analytical results clearly indicated that settlements and agricultural land
had increasing and decreasing trends over the past 20 years, respectively. Settlements increased from
22% to 34% between 1999 and 2019. However, agricultural land reduced from 69% to 59% in the
same period. Settlements grew by more than 50% during this period. The research had an overall
accuracy of 70%, while the kappa coefficient was more than 0.60. There were land subsidence issues
because of mining activities, leading to 1.003 km2 area being depressed and 1500 houses cracked.
This research depicts the present LULC scenario and the impact of the coalfield area. It is expected to
reduce the burden on policymakers to prepare a proper and effective mines development policy in
Bangladesh and meet sustainable development goal (SDG) 15 (Life on land).

Keywords: land use and land cover; Barapukuria coal mine; GIS and remote sensing; satellite image;
supervised classification

1. Introduction

Despite different meanings, land cover and land use (LULC) changes are frequently
applied in the same context [1]. Land cover describes the natural characteristics of the
earth’s surface, i.e., the dissemination of vegetation, water, soil and other elements of the
land [2]. On the contrary, land use considers the human aspect of land use, emphasising the
economic aspects [2]. Physical and socio-economic factors are the primary determinants
influencing land use and land cover in an area. The changes in land cover/land use,
mainly due to human intervention, play a vital role in comprehensively changing the
atmosphere [3]. Geographical Information System (GIS) and remote sensing techniques
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have provided a comprehensive and fruitful method for land use and land cover mapping
in an area, i.e., agricultural, built-up, and other forms [4]. Remote sensing data made it
easy to analyse land use and land cover changes with reduced costs, lesser time, and better
accuracy [5]. In fact, LULC mapping is one of the robust remote sensing applications [6]. In
Ghana, remote sensing and geographical information system techniques were deployed to
assess mine-related areas’ land use and land cover dynamics [7]. Landsat satellite imageries
of three different periods, i.e., 1991, 2000, and 2014 were used to quantify land use and land
cover changes in the area.

Image differences showed a positive correlation with land use and land cover changes.
The study revealed the declining vegetation trend and the significance of using satellite
imagery. The effect of coal mining on LULC changes was analysed for a period of 24 years,
i.e., from the year 1990 to 2014 in the Godavari coalfield, India [8]. Research related to
LULC change detection was conducted in the Dhanbad district of India [9]. The researchers
utilised Landsat satellite images for 1997, 2009, and 2017 to retrieve LULC data of the study
area using the supervised classification maximum likelihood technique. Eleven classes
were devised based on satellite image interpretation. Several works relating to land use and
land cover changes have been completed in Bangladesh. The works address different issues,
such as watershed, urbanisation and so on. An initiative was taken to map the urbanisation
of Dhaka megacity (1990 to 2006) with multi-sensor data [10]. Researchers assigned a
Support Vector Machine (SVM) classifier and used a post-classification comparison to
disclose spatio-temporal urban land-use and land-cover change patterns. Another work
monitored and detected the land use and land cover change in Dhaka, Bangladesh, for
1960–2005 using topographic maps, multi-temporal remote sensing data, and the maximum
likelihood supervised classification technique [11]. The study illustrated the expansion of
Dhaka city, the capital of Bangladesh, over the time frame. During this time gap, urban area
rose by 15,924 hectares, while agricultural land reduced by 7214 hectares. Another approach
was devised to quantify the land use land cover changes in greater Dhaka, Bangladesh, by
applying remote sensing techniques on Landsat images and processing population and
economic data [12]. Researchers materialised the supervised classification principle along
with the post-classification change detection model in GIS. They demonstrated that urban
areas expanded while water bodies, agricultural land, and vegetation had a reducing trend.

Population growth and economic development are the forces for urban expansion.
Moreover, Ahmed et al. [13] modelled Urban Land Cover Growth Dynamics Using Multi-
Temporal Satellite Images in Dhaka, Bangladesh. LULC changes concerning Gazipur Sadar
Upazila in Bangladesh were analysed during the 1973–2017 period using Landsat imagery
and the maximum likelihood supervised classification algorithm [14]. They stated that
urban areas had expanded while vegetation reduced during the same period. Sundarbans,
the largest mangrove forest globally, had been assessed for forest cover from 1989 to
2000 using Landsat Thematic Mapper (TM) satellite imagery [15]. Three image processing
modules, including Normalised Differential Vegetation Index (NDVI), maximum likelihood
classification scheme, and sub-pixel classification, had been applied in the scheme. Research
on forest land changes concerning the Chunati Wildlife Sanctuary (CSW) from 2005 to 2015
was conducted using Landsat images and a supervised maximum likelihood classification
algorithm [16]. A study of Tangoar haor, a Ramsar site of Bangladesh, revealed that
approximately 40% of land cover from the studied area had been converted into other
types during the last 30 years (1980–2010) [17]. It was achieved using GIS, remote sensing
techniques, and the maximum likelihood supervised classification method. The study
clearly stated that forest and highland disappearance increased while settlements increased.
Halda watershed, the most potent fish breeding zone in Bangladesh, was analysed for the
last 40 years (1978–2017) and classified into five categories: water, vegetation, agriculture,
bare soil and settlements [18]. Their research indicated a significant shift in water and
vegetation to agricultural land, bare soil, and settlement areas. Arifeen et al. [19] recently
researched land use and land cover change detection, urban expansion, and determining
factors in Gazipur, Bangladesh. They found higher urbanisation due to population and
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economic growth, location, and accessibility. Rohingya population played a critical role in
changing the environmental setting of Cox’s Bazar, Bangladesh [20]. The study simulated
outcomes showing vegetation reduction habitation growth by 2030.

In northern China, coal mining-related subsidence is a prime geohazard [21]. Coal
mine subsidence and deformation mapping were conducted using Differential SAR (Syn-
thetic Aperture Radar) Interferometry. Improved radar interferometry and persistent
scatter interferometry was used with the small baseline subset methodology to demarcate
and quantify the surface distortion of an underground coalfield in Springfield, Illinois,
USA [22]. From 1992 to 2000, the highest subsidence rate was −4.1 mm/year, and during
2007–2011, it was −35.9 mm/year.

Bangladesh is a developing nation having a rapid growth rate. According to the World
Bank, Bangladesh’s Gross Domestic Product (GDP) growth rate was 7.9% in 2018 [23].
Fulfilling the development goals in Bangladesh leads to higher energy needs, and coal is an
important energy source to fulfil this requirement. The Barapukuria coal mine is the only
operational coal mine in Bangladesh. Hence, the impact of mining-related LULC changes
was assessed to reduce the adverse effect on the atmosphere, policy-making, and actual
land administration [8,24–26]. Satellite data is critical and significant for verifying changes
in land use and land cover [8,27]. There are some research works related to land use and
land cover in Bangladesh. These works employed GIS and Remote sensing techniques;
however, there is no research concerning mines. This work is the first attempt to analyse
land use and land cover changes in a mining zone in Bangladesh.

The area has witnessed changes due to anthropogenic aspects related to mining. In
the future, this area might be severely impacted in the LULC context, and this area’s
natural aspects could be impacted. Moreover, the knowledge obtained by studying this
coal mine will educate policymakers and mine developers about different environmental
issues and the harmful consequences of mining. This knowledge could be used while
preparing policies for developing other coal mines in Bangladesh. Therefore, the primary
goal of this venture is to observe LULC changes in a specific time frame and analyse the
pattern of changes by incorporating GIS and remote sensing algorithms. This data will help
determine how mining adversely affects nature and impacts efforts towards Sustainable
Development Goal (SDG) 15 (Life on Land).

2. Study Area

The area of interest lies in the Dinajpur District in Northwest Bangladesh. It con-
sists of the environment close to the Barapukuria Coal Mine (BCM) (25◦32′51.42′′ N,
88◦ 57′38.42′′ E). Bangladesh is the 8th most populated country globally and is experi-
encing high population growth of about 1%/year over the recent decades [28], causing
urbanisation. It affects food and energy supply.

The BCM started operations in 2005, and the selected study area has witnessed land
cover changes. Local urbanisation and infrastructure increased to sustain a sufficient
labour force and a high production rate. Furthermore, it was observed that the mining
activities caused subsidence in a broader area, causing resettlement. These changes make
the area suitable for a geospatial investigation. It is challenging to overcome geographical
limitations without field exploration; hence, the first estimate concerning the study area
was derived from personal experiences as Bangladeshi residents. Additionally, a 5 km
buffer zone was considered, as modelled by Peeters et al. [29] for an open-pit mine in
Australia. The application of this model for the current case is beyond the scope of this
work due to a lack of data. However, in the final step, the circular buffer was replaced by
administrative boundaries to obtain additional regional information.

The final study area consists of four unions, the smallest administrative units of
Bangladesh, namely Habra and Hamidpur, from sub-district (locally called Upazila) Par-
batipur and Shibnagar and Paurashava from sub-district Phulbari (Figure 1). These areas
have a total land area of 142 km2 affected by the BCM. There are four LULC classes [30]
designated for this study (Table 1).
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Table 1. LULC classification scheme.

LULC Type Description

Agriculture Paddy, Crops, Vegetable, after harvested open land, etc.
Settlement Houses, Shops, Industries, Impervious Road, etc.

Forest Trees, Dense bushes, etc.
Water River, Canals, Ponds, Marshy lands, Seasonal channel, Wet land, etc.

3. Materials and Methods

The primary focus of the study was to identify the changes in land use land cover of
a mining area by analysing the medium resolution and open-sourced satellite images of
different years with a definite time gap.

3.1. Data Selection and Collection

The research was based on the temporal analysis of satellite imagery of a mining area.
Hence, selecting satellite sensors and associated images was the first significant task [31].
Landsat satellite images (Table 2) were selected for the experiment before the literature
review concerning previous works. All images were acquired from the United States
Geological Survey’s image-related website: earth explorer (www.earthexplorer.usgs.gov
(accessed on 20 April 2021)). The images were selected from late November until the end
of March (dry season in Bangladesh) to eliminate the effects of seasonal variability. The
flight line that covered the area was path 42 and row 138.

www.earthexplorer.usgs.gov
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Table 2. Image description.

Acquisition Date Satellite Sensor Spectral Resolution Spatial Resolution

15 November 1999 Landsat 7 ETM+ Band 1–5, 7 30 m

28 December 2009 Landsat 7 ETM+ Band 1–5, 7 30 m

19 March 2019 Landsat 8 OLI/TIRS Band 1–7 30 m

Landsat data are multi-spectral, having different colour bands. The study used data
from the Landsat Enhanced Thematic Mapper Plus (ETM+), Operational Land Imager
(OLI), and Thermal Infrared Sensor (TIRS) sensors

3.2. Image Pre-Processing

Image pre-processing and analysis entailed several steps before the final output was
generated. The Earth Resource Development Association System (ERDAS) Imagine 2014
software was used to accomplish the pre-processing tasks. The layer stacking tool was
utilised to merge the bands 1–5 and 7 for Landsat 7 images and band 1–7 for Landsat
8 images to create a single band comprising all images (1999, 2009, and 2019).

Landsat 8 bands 5, 4, and 3 and Landsat 7 bands 4, 3, and 2 were used to obtain image
data for analysis. Landsat 7 images for 2009 had (Scan Line Corrector) SLC-off data; hence,
the Landsat Toolbox was downloaded and added to Arc Toolbox of ArcMap 10.2.2.

Each band was then processed for scanline error correction. Subsequently, the subset
tool in ERDAS was used to determine the study area for the images. The UTM (Universal
Transfer Mercator) 46 N coordinate system was utilised to re-project the images. Finally,
using the panchromatic band (No. 8 for both Landsat 7 and Landsat 8) having a 15-m
resolution, the area was pan-sharpened (Figure 2) for better resolution. The pan-sharpened
image was 15 m × 15 m.
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3.3. Image Classification

Digital image classification in remote sensing detects and clusters similar image pixels
into the same information categories produced from several spectral bands of a satellite
image [31–33]. The supervised maximum likelihood classifier method was used for this
analysis. It is a popular conventional pixel-based method where signature files consisting of
means and covariance matrices for each class were created before running the classification
result. These signatures were used with a classifier (maximum likelihood) to assign each
image pixel to a discrete class. In supervised classification, the analyst selects and digitises
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polygons (training areas) and places these polygons in an AOI (Area of Interest) layer
to create the signature files, rather than using an automated routine to define the most
separable classes.

In Imagine, an individual training site is delineated as an “area of interest” and given
a class name. The pixels within the training site were used to generate a “signature.” This
process is repeated to gather several training sites for each class. Subsequently, polygons
with the same signature were merged and given the class name. After generating the
signature file, the supervised image classification (maximum likelihood classifier) method
was run to classify the images based on the designated class. A 3 × 3 majority filter was
applied to the map to reduce the salt and pepper effect [34].

3.4. Change Detection

The following formulae are applied to detect changes in land use and land cover type
in a specific/given period [35]:

Dc = (At2 − At1)/At1 × 1/(t2 − t1) × 100% (1)

where Dc denotes land use dynamic degree, At1 represents the area of a land-use type at t1,
and At2 represents the area of this land-use type at t2.

C = (At2 − At1)/At1 × 100% (2)

where C is the area variation in land use rate, At1 represents the area of a land-use type at
t1, and At2 represents the area of this land-use type at t2.

3.5. Accuracy Assessment

It is critical to assess the accuracy of digital image classification. Accuracy assessment
is usually implemented using a fresh set of ground truth data or comparing it with a
previously classified reference map for selected sampling points [31]. However, those
options could not be used due to various constraints (e.g., timespan, budget) associated
with the project.

However, field experience in 2016 (February–April) made the task comparatively
easier concerning land class identification. Google Earth was used as the validation
tool. Historical high-resolution images from Google Earth Pro were utilised for accuracy
assessment.

The following formula was applied for accuracy assessment:

Overall accuracy = Total number of correctly classified pixels/Total reference pixels × 100 (3)

User accuracy = Number of correctly classified pixels/Total number of classified pixels (Row total) × 100 (4)

Producer accuracy = Number of correctly classified pixels/Total number of classified pixels (Column total) × 100 (5)

Kappa coefficient = (TS × TCS) −∑ (Column total × Row total)/ TS2 −∑ (Column total × Row total) (6)

where TS = Total sample; TCS = Total corrected sample

4. Results

This section comprises subheadings. It provides a concise and precise description of
the experimental results, interpretation, and conclusions.

4.1. Land Use and Land Cover Status
4.1.1. LULC Status of the Study Area, 1999

In 1999, the study area was dominantly covered by agricultural land (69%). As
Bangladesh is an agricultural country, most lands were agricultural, followed by settlements
(22%), water bodies (8%), and forests (1%). (Figure 3 and Table 3).
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4.1.2. LULC Status of the Study Area, 2009

In 2009, the study area was dominantly covered by agricultural land (68%). The
total agricultural land decreased approximately 1.5% but occupied the maximum area.
Settlements increased to 28% in that year, and water bodies and forest area decreased to 3%
and 1%, respectively (Figure 4 and Table 3).
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4.1.3. LULC Status of the Study Area, 2019

In 2019, the reducing agriculture trend continued, and agricultural land was approxi-
mately 59%, while settlements expanded to about 34% of the total area. Water bodies and
forest areas increased slightly to 5% and 2% (Figure 5 and Table 3).
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Table 3. Type and year wise LULC distribution of the area (Hectares).

LULC
Area 1999 Area 2009 Area 2019

Hectare % Hectare % Hectare %

Water 1079.753 7.609414 480.195 3.384111 788.265 5.555194
Forest 179.64 1.265989 123.975 0.873698 282.555 1.991269

Settlement 3143.903 22.15624 4000.838 28.19538 4775.243 33.6529
Agriculture 9786.398 68.96836 9584.685 67.54681 8343.63 58.80064

Grand
Total 14,189.69 100 14,189.69 100 14,189.69 100

Table 4 summarises the changes corresponding to years 1999, 2009, and 2019 concern-
ing area (Hectares), percentages (%), and annual average (Hectares) considering the four
LULC classes.
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Table 4. LULC change assessment.

1999 to 2009 2009 to 2019 1999 to 2019

Change
(Ha)

Change
(%)

Annual
Change (Ha)

Change
(Ha)

Change
(%)

Annual
Change (Ha)

Change
(Ha)

Change
(%)

Annual
Change (Ha)

W −599.56 −55.53 −59.96 308.07 64.16 30.81 −291.49 −27.00 −29.15
F −55.67 −30.99 −5.57 158.58 127.91 15.86 102.92 57.29 10.29
S 856.94 27.26 85.69 774.41 19.36 77.44 1631.34 51.89 163.13
A −201.71 −2.06 −20.17 −1241.06 −12.95 −124.11 −1442.77 −14.74 −144.28

W = Water; F = Forest; S = Settlement; A = Agriculture.

4.2. Statistical Analysis

Percentage-based land cover distribution for different years is depicted in Figure 6.
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Figure 6. Year-wise distribution of different land classes.

The figure depicts the increase in settlements (built-up area) and decreases in agricul-
tural land. It also implies the conversion of agricultural lands into settlements. In 1999,
agricultural land was approximately 69%, while settlements were around 22%. However,
in 2019, settlements occupied about 34% of the area, and agricultural land was around
59%. Settlements expanded by more than 50% from their previous state (22% to 34%)
during these 20 years. It resembles the case in Sikkim, India, where the built-up area
rose, and cultivation land shrunk [36]. The built-up area increased 2.13% (5.41 km2), and
agricultural land dropped 2.83% (7.22 km2). Figures 7 and 8 illustrate the relative changes
in area (hectares) and percentage of the land-use class types. Settlements (Built-up/Urban)
increased in the entire analysis period, while other land classes demonstrated mixed trends;
however, agricultural land decreased rapidly.
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Figure 7. Relative change-hectares.
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Figure 8. Relative change % of LULC.

LULC is strongly correlated with time (Figure 9).

Sustainability 2021, 13, x FOR PEER REVIEW 11 of 20 
 

 
Figure 7. Relative change-hectares. 

 
Figure 8. Relative change % of LULC. 

LULC is strongly correlated with time (Figure 9).  
With time, it is noted that the reduction or enhancement of land class type is 

noticeable, which is crucial to evaluate each land type’s internal connection. 

  

Figure 9. Relation between LULC and time. 

The prominent land use classes are correlated and have decreasing or increasing 
trends (Figure 10). The following statistical figure demonstrates that rising settlements 
correlate strongly (negatively) with the downward movement in croplands (R2 = 0.8312). 

-2000.00
-1500.00
-1000.00

-500.00
0.00

500.00
1000.00
1500.00
2000.00

1999-2009 2009-2019 1999-2019

C
ha

ng
es

 o
f L

U
LC

 -
H

ec
ta

re

Relative change of LULC

Water Forest Settlement Agriculture

-4
.2

3

2.
17

-2
.0

5

-0
.3

9

1.
12

0.
736.

04

5.
46

11
.5

0

-1
.4

2

-8
.7

5

-1
0.

17

1999 - 2 009 2009 - 2 019 1999 - 2 019

Water Forest Settlement Agriculture

y = -72.15x + 154187
R² = 0.8527

8000

8500

9000

9500

10000

1995 2000 2005 2010 2015 2020

A
gr

ic
ul

tu
re

 -
H

ec
ta

re

Year

y = 81.55x - 159861
R² = 0.9991

3000

3500

4000

4500

5000

1995 2000 2005 2010 2015 2020Se
ttl

em
en

t -
H

ec
ta

re

Year

Figure 9. Relation between LULC and time.

With time, it is noted that the reduction or enhancement of land class type is noticeable,
which is crucial to evaluate each land type’s internal connection.

The prominent land use classes are correlated and have decreasing or increasing
trends (Figure 10). The following statistical figure demonstrates that rising settlements
correlate strongly (negatively) with the downward movement in croplands (R2 = 0.8312).
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4.3. Changes by Land Type

The changes in the study area during the observation period is categorised into two
types: immediate change and ultimate change. Immediate change denotes the changes
every ten years, while ultimate change indicates the overall change during the study period.
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4.3.1. Immediate Change

(I) Changes between 1999 to 2009: During 1999–2009, except settlements, all LULC
types, including agriculture, forest, and water, had a declining trend. Six hundred hectares
of water body area was lost (Figure 11 and Table 5). In 1999, water bodies totalled around
1080 hectares. In 2009, water bodies lost area to agriculture and settlements. Forestry and
agriculture also lost area during this period. On the contrary, settlements increased to
857 hectares, gaining 27.26% of land area, equalling 86 hectares per year.
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Table 5. LULC class changes between 1999 and 2009 (Hectares).

1999–2009 Agriculture Forest Settlement Water

Agriculture 8286.51 9.57 1354.89 153.22
Forest 11.12 67.11 86.23 13.08

Settlement 841.63 37.56 2177.93 78.51
Water 450.47 7.05 383.56 222.54

(II) Changes between 2009 to 2019:
During 2009–2019, except agriculture, every type of LULC, including settlements,

forests, and water bodies, had an upward trend. Settlements gained 774 hectares (Figure 12
and Table 6). In 2009, the area of all settlements was around 4000 hectares. In 2019,
settlements borrowed land from agriculture, water, and forest use. Forestry and water also
lost area during this period. There was a significant loss in agricultural area because most
agricultural land was used for settlements.
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Table 6. LULC class changes between 2009 and 2019 (Hectares).

2009–2019 Agriculture Forest Settlement Water

Agriculture 7622.37 116.49 1448.06 401.88
Forest 0.86 46.91 66.40 7.13

Settlement 647.29 103.57 3050.05 202.18
Water 89.30 5.70 224.22 148.15

4.3.2. Ultimate Change

Changes between 1999–2019:
During 1999–2009, in the broader sense, settlements and forests gained land while

agriculture and water bodies were lost. Settlements increased by 1600 hectares during the
mentioned time frame, and forests gained 100 hectares (Figure 13 and Table 7). On the
contrary, agriculture reduced by 1443 hectares, and water bodies declined tentatively by
300 hectares. Overall, settlements increased by 52%, and forests increased by 57% from
1999 to 2019. Agricultural land reduced by 15%, and water bodies decreased by 27%.
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Table 7. Changes of LULC class between 1999 and 2019 (Hectares).

1999–2019 Agriculture Forest Settlement Water

Agriculture 7379.55 130.89 1855.48 437.04
Forest 11.71 68.86 88.64 8.35

Settlement 631.38 53.36 2318.23 132.94
Water 337.19 19.62 525.95 181.02

4.4. Accuracy Assessment

Validation of the four land classes in terms of overall accuracy and kappa coefficients
was executed for 1999, 2009 and 2019. One thousand randomly identified points were
created on the Arc map for land use and land cover maps of 1999, 2009 and 2019.

The first 20 points of each LULC class for 2019, 2009 and 1999 were exported to Google
Earth Pro for accuracy assessment. The prepared LULC classes were validated using
Google Earth (Tables 8–10).

Table 8. Error matrix for supervised land use classification, 2019.

Water Forest Agriculture Settlement Total (User) Producer acc. User acc.

Water 12 0 8 0 20 92.31 60
Forest 0 12 8 0 20 85.71 60

Agriculture 0 0 20 0 20 52.63 100
Settlement 1 2 2 15 20 100 75

Total (Producer) 13 14 38 15 80

Table 9. Error matrix for supervised land use classification, 2009.

Water Forest Agriculture Settlement Total (User) Producer acc. User acc.

Water 13 0 5 2 20 100.00 65
Forest 0 18 1 1 20 85.71 90

Agriculture 0 0 17 3 20 56.67 85
Settlement 0 3 7 10 20 62.50 50

Total (Producer) 13 21 30 16 80

Table 10. Error matrix for supervised land use classification, 1999.

Water Forest Agriculture Settlement Total (User) Producer acc. User acc.

Water 12 0 8 0 20 63.16 60
Forest 0 18 2 0 20 85.71 90

Agriculture 2 0 18 0 20 64.29 90
Settlement 5 3 0 12 20 100 60

Total (Producer) 19 21 28 12 80

For 2019, producer accuracy, user accuracy, overall accuracy and kappa coefficient
values were the four metrics computed for assessment. Producer accuracy ranged between
52.63 and 100; user accuracy ranged between 60 and 100; overall accuracy was 73.75%, and
kappa coefficient was 0.65.

For 2009, producer accuracy ranged between 56.67 and 100, while user accuracy
ranged between 50 to 90. Overall accuracy was 72.50%, and the kappa coefficient was 0.63.

For 1999, Google Earth did not have higher resolution images to indicate precise
positions concerning specific land classes. As research accuracy assessment is based solely
on images provided by Google Earth, it was infeasible to validate settlements data for 1999.
However, expert knowledge and experience indicated that settlement (built-up) areas are
established near roads and riversides; these areas have a sporadic tree presence. Hence, it
can be inferred that settlements were validated correctly to some extent.
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Moreover, during the dry period (November–March), seasonal channels dried, causing
data mismatch—homestead trees were confused for forests. These happened for all periods
(1999, 2009 and 2019). In 1999, producer accuracy ranged between 63.16 and 100; user
accuracy ranged between 60 and 90. Overall accuracy and kappa coefficients were 75%
and 0.67, respectively.

Overall accuracy exceeded 70%, and the kappa coefficient value was more than 0.60
for each work period.

5. Environment Impact

The conducted research is pertinent to the changes of LULC in the Barapukuria
Coal Mine under the district of Dinajpur, Bangladesh. The research work was conducted
incorporating GIS and remote sensing techniques and open-sourced Landsat imageries to
reveal the surficial land type changes before and after the establishment of the coal field.
The major increasing land class is settlement, while decreasing class is agricultural land.

The three maps (Figures 3–5) indicate a change in land cover distribution. It is an agro-
based zone with settlements, forestry, and a few water bodies. Settlements are distributed
everywhere in the study area, especially in the southern and north-eastern parts, such as
the expansion of greater Dhaka [37]. The urban region of Dhaka expanded towards the
north, northwest, and southwest, and the present study area expanded to the southern
part consisting of Phulbari Pourasava (An administrative unit, such as a municipality), a
large business and residential zone in this region.

The area is increasing with the development of the Barapukuria Coal Mine and the
adjacent power plant. The observations are similar to Shanghai, China, where the total
urban area was approximately 255 km2 in 1979; however, it grew to 1968 km2 in 2009 [38].
It is also opposite to Shanghai [39], where the main driving resources to the development
are human activities and socio-economic development, but the major infrastructure is the
only reason for the change in the Barapukuria area.

Agricultural land is decreasing despite the area being an agricultural zone. The agri-
cultural land is distributed and witnessing a reducing trend with new settlements and
infrastructure, which is not the case for the Godavari coalfield in India. Agricultural land
in this coalfield increased from 59.46% in 1990 to 62.22% in 2014 [8]. Similar to Barapukuria,
Amman [40] experienced the reduction in vegetation area due to the increase in the built-up
area. Amman lost 18.82 km2 of vegetation, while Barapukuria dropped 1442.768 hectares
of agricultural land. Forests occupy the central part of the region following a north–south
trend, occupying minor parts on maps. In the near future, forest areas may be ham-
pered by the advancement of different infrastructures and development works, such as
Botswana [41]. In the Gaborone dam catchment area, Botswana, the built-up area increased
from 1984 to 2015 and shrubland and savanna decreased for different development activi-
ties. Water bodies are widely distributed throughout all three maps and cover small areas.
There is a river named “Little Jamuna” in the mid-west. It runs from north to south and
covers the area as an elongated strip. The river is almost dry in the dry season. Due to
the mining-related development activities, water bodies are also in a reducing trend. The
total loss of the area’s water body is about 291.488 hectares from 1999 to 2019, which shows
analogous trend of water body losing in South-eastern Tanzania [42].

6. Discussion

Subsidence is caused by the massive extraction of water, coal, oil and gas [43]. The area
suffered from extensive environmental change due to mining-related activities. Mining-
induced subsidence is visible. Subsidence impacted settlement characteristics, soil be-
haviour, hydrological balance, and social character [44]. Surface cracks are observed
around the mining area (Figure 14).
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Figure 14. Cracks due to mining.

The total subsided area is about 1.003 km2, and the projected subsided area is
2.173 km2 [44,45]. Approximately 1500 houses were damaged by mining-induced cracking.
Subsidence caused the formation of two water bodies that did not exist before (Figure 15).
Maximum subsidence of 7.50 metres was observed northwards, while the southern side
had maximum subsidence of 7.20 metres [46]. As a result, settlement patterns changed,
and crop production was reduced.
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7. Conclusions

The study focused on the temporal land use/land cover (LULC) changes for 142 km2

around the Barapukuria Coal Mine. An analysis of Landsat 7 and 8 images from the past
20 years, using a ten-year interval, was conducted to evaluate land use by data quan-
tification and qualification. Four distinct classes were found by analysing the images:
agricultural land, settlements, forests, and water bodies. Statistical analysis indicates a re-
duction in agricultural land (9786 hectares in 1999 and 8343 hectares in 2019). The situation
is reversed for settlements (or built-up areas) (3144 hectares in 1999 and 4775 hectares in
2019). It occurred due to the accommodation enhancement and infrastructure development
with the increasing mining and power generation-related activities. Settlements increased
by more than 50% during this time frame. The overall accuracy of the analyses is more than
70%, and kappa coefficient values are more than 0.60 for three consecutive years. The area
also faced some negative consequences, such as surficial cracks and land subsidence. The
subsided area was more than 1 km2, and the prediction exceeds 2 km2, indicating cracking
around 1500 houses. The outcomes are very effective for land use planning and manage-
ment personnel to formulate a fool-proof, comprehensive, and sustainable development
plan for the area. Moreover, this study can serve as the primary model concerning LULC
for additional mining, especially coal mining-related functions in Bangladesh.
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