A Relationship between Micro-Meteorological and Personal Variables of Outdoor Thermal Comfort: A Case Study in Kitakyushu, Japan
Abstract
:1. Introduction
1.1. Urban Parks and Urban Heat Island Phenomenon
1.2. Thermal Comfort Studies
1.3. Objectives of the Study
- (1)
- How are the people’s perceptions of outdoor thermal sensation (TSV), wind flow sensation (WFSV), and humidity sensation (HSV)?
- (2)
- How are the acceptability and satisfaction level of outdoor thermal comfort?
- (3)
- How are the satisfaction preferences for shading, sunlight, and wind condition?
- (4)
- What is the most significant micro-meteorological variables for PET?
- (5)
- How is the relationship between micro-meteorological and TSV?
- (6)
- How is the relationship between micro-meteorological and WFSV?
- (7)
- How is the relationship between micro-meteorological and HSV?
- (8)
- How is the relationship between PET and personal variables (TSV, WFSV, and HSV)?
2. Materials and Methods
2.1. Urban Park’s Description
2.2. Study Case: Green Park, Kitakyushu, Japan
2.2.1. The Climatic Character
2.2.2. The Study Case’s Location
2.2.3. Psycho-Ecological Condition
2.3. Measurement and Methods
2.3.1. Population and Samples
2.3.2. Data Collection Method
2.3.3. Data Analysis Method
2.3.4. Indices Used in This Study
3. Results
3.1. Respondents’ Votes for Thermal, Wind Flow, and Humidity Sensation
3.1.1. Thermal Sensation Vote (TSV)
3.1.2. Wind Flow Sensation Vote (WFSV)
3.1.3. Humidity Sensation Vote (HSV)
3.2. Acceptability and Satisfaction Level of Thermal Comfort
3.2.1. Thermal Acceptability
3.2.2. Thermal Satisfaction Level
3.3. Satisfaction Preferences for Shading, Sunlight, and Wind Conditions
3.3.1. Shading Satisfaction Preferences
3.3.2. Sunlight Satisfaction Preferences
3.3.3. Wind Satisfaction Preferences
3.4. The Relationships between Micro-Meteorological and Personal Variables
3.4.1. The Most Significant Micro-Meteorological Variable of PET
3.4.2. The Relationship between Micro-Meteorological Variables and TSV
3.4.3. The Relationship between Micro-Meteorological Variables and WFSV
3.4.4. The Relationship between Micro-Meteorological Variables and HSV
3.4.5. The Relationship between PET and Personal Variables (TSV, WFSV, and HSV)
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- United Nations, Department of Economic and Social Affairs, P.D. The World ’s Cities in 2018—Data Booklet (ST/ESA/SER.A/417); United Nations: New York, NY, USA, 2018; ISBN 978-92-1-151549-7. [Google Scholar]
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The City and Urban Heat Islands: A Review of Strategies to Mitigate Adverse Effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Zhang, Y.; Watkins, R. The London Heat Island and Building Cooling Design. Sol. Energy 2007, 81, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote Sensing of the Urban Heat Island Effect across Biomes in the Continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Gagge, A.P.; Herrington, L.P.; Winslow, C.-E.A. Thermal Interchanges Between The Human Body and Its Atmospheric Environment. Am. J. Epidemiol. 1937, 26, 84–102. [Google Scholar] [CrossRef]
- ASHRAE Standard 55-2013: Thermal Environmental Conditions for Human Occupancy; ASHRAE Inc.: Peachtree Corners, GA, USA, 2013.
- Gagge, A.P.; Stolwijk, J.A.J.; Hardy, J.D. Comfort and Thermal Sensations and Associated Physiological Responses at Various Ambient Temperatures. Environ. Res. 1967, 1, 1–20. [Google Scholar] [CrossRef]
- Lai, D.; Guo, D.; Hou, Y.; Lin, C.; Chen, Q. Studies of Outdoor Thermal Comfort in Northern China. Build. Environ. 2014, 77, 110–118. [Google Scholar] [CrossRef]
- Kruger, E.L.; Drach, P. Identifying Potential Effects from Anthropometric Variables on Outdoor Thermal Comfort. Build. Environ. 2017, 117, 230–237. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, C.; Zhuo, Y.; Xu, L.; Jiang, Y. Outdoor Thermal Environments and Activities in Open Space: An Experiment Study in Humid Subtropical Climates. Build. Environ. 2016, 103, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Binarti, F.; Koerniawan, M.D.; Triyadi, S.; Utami, S.S.; Matzarakis, A.; Sesotya, S.; Matzarakis, A. A Review of Outdoor Thermal Comfort Indices and Neutral Ranges for Hot-Humid Regions. Urban Clim. 2020, 31, 100531. [Google Scholar] [CrossRef]
- Watanabe, S.; Nagano, K.; Ishii, J.; Horikoshi, T. Evaluation of Outdoor Thermal Comfort in Sunlight, Building Shade, and Pergola Shade during Summer in a Humid Subtropical Region. Build. Environ. 2014, 82, 556–565. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Kong, L.; Lau, K.K.L.; Yuan, C.; Ng, E. A Study on the Impact of Shadow-Cast and Tree Species on in-Canyon and Neighborhood’s Thermal Comfort. Build. Environ. 2017, 115, 1–17. [Google Scholar] [CrossRef]
- Duarte, D.H.S.; Shinzato, P.; Gusson, C. dos S.; Alves, C.A. The Impact of Vegetation on Urban Microclimate to Counterbalance Built Density in a Subtropical Changing Climate. Urban Clim. 2015, 14, 224–239. [Google Scholar] [CrossRef]
- Tan, X.; Liao, J.; Bedra, K.B.; Li, J. Evaluating the 3D Cooling Performances of Different Vegetation Combinations in the Urban Area. J. Asian Archit. Build. Eng. 2021, 1–13. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; de Lieto Vollaro, R.; de Lieto Vollaro, A. Urban Microclimate and Outdoor Thermal Comfort. A Proper Procedure to Fit ENVI-Met Simulation Outputs to Experimental Data. Sustain. Cities Soc. 2016, 26, 318–343. [Google Scholar] [CrossRef]
- Wang, J.; Gao, W.; Haifeng, L.; Zhao, P.; Ren, J.; Ojima, T. Study on Thermal Environment Evaluation in the Central Business District of Shanghai. J. Asian Archit. Build. Eng. 2002, 1, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Li, H.; Ojima, T. Mitigating the Urban Thermal Environment of Tokyo through a Cluster Planning. J. Asian Archit. Build. Eng. 2002, 1, 131–136. [Google Scholar] [CrossRef]
- Lin, T.P.; Matzarakis, A. Tourism Climate Information Based on Human Thermal Perception in Taiwan and Eastern China. Tour. Manag. 2011, 32, 492–500. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E. Outdoor Thermal Comfort and Outdoor Activities: A Review of Research in the Past Decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- Li, R.; Chi, X. Thermal Comfort and Tourism Climate Changes in the Qinghai–Tibet Plateau in the Last 50 Years. Theor. Appl. Climatol. 2014, 117, 613–624. [Google Scholar] [CrossRef]
- Gagge, A.P.; Gonzalez, R.R. Physiological and Physical Factors Associated with Warm Discomfort in Sedentary Man. Environ. Res. 1974, 7, 230–242. [Google Scholar] [CrossRef]
- Gagge, A.P.; Fobelets, A.P.; Berglund, L.G. A Standard Predictive Index of Human Response to the Thermal Environment; ASHRAE Inc.: Peachtree Corners, GA, USA, 1986; Volume 92. [Google Scholar]
- Pickup, J.; de Dear, R. An outdoor thermal comfort index (OUT_SET*)—Part I—the model and its assumptions. In Proceedings of the Biometeorology and Urban Climatology at the Turn of the Millennium, World Meteorological Organization, Sydney, Australia, 8–12 November 2000; pp. 279–283. [Google Scholar]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A Review of Mitigating Strategies to Improve the Thermal Environment and Thermal Comfort in Urban Outdoor Spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef]
- Höppe, P. Different Aspects of Assessing Indoor and Outdoor Thermal Comfort. Energy Build. 2002, 34, 661–665. [Google Scholar] [CrossRef]
- Mayer, H.; Matzarakis, A. Human-biometeorological assessment of urban microclimates’ thermal component. In Proceedings of the Int. Symposium on Monitoring and Management of Urban Heat Island, Fujisawa, Japan, 19–20 January 1998; pp. 155–168. [Google Scholar]
- Höppe, P. The Physiological Equivalent Temperature—A Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Golbabaei, F.; Heidari, H.; Shamsipour, A.; Forushani, A.R.; Gaeini, A. A New Outdoor Environmental Heat Index (OEHI) as a Simple and Applicable Heat Stress Index for Evaluation of Outdoor Workers. Urban Clim. 2019, 29, 100479. [Google Scholar] [CrossRef]
- Broday, E.E.; Moreto, J.A.; de Xavier, A.A.P.; de Oliveira, R. The Approximation between Thermal Sensation Votes (TSV) and Predicted Mean Vote (PMV): A Comparative Analysis. Int. J. Ind. Ergon. 2019, 69, 1–8. [Google Scholar] [CrossRef]
- Hartabela, D.; Dewancker, B.J.; Vidyana, C. The air cooling effects on urban green open spaces by vegetation planning: A literature review. In Proceedings of the JAILCD at the International Conference of Asian Institute of Low Carbon Design., Kitakyushu, Japan, 10–14 March 2021; pp. 63–68. [Google Scholar]
- Binarti, F.; Koerniawan, M.D.; Triyadi, S.; Matzarakis, A. The Predicted Effectiveness of Thermal Condition Mitigation Strategies for a Climate-Resilient Archaeological Park. Sustain. Cities Soc. 2022, 76, 103457. [Google Scholar] [CrossRef]
- Lin, T.P.; Matzarakis, A.; Hwang, R.L. Shading Effect on Long-Term Outdoor Thermal Comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Donny Koerniawan, M.; Gao, W. Thermal Comfort Investigation in Three Hot-Humid Climate Theme Parks in Jakarta. Am. J. Environ. Sci. 2015, 11, 133–144. [Google Scholar] [CrossRef]
- Nikolopoulou, M. Outdoor Thermal Comfort. Front. Biosci. 2011, S3, 1552–1568. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation Fluxes in Simple and Complex Environments: Basics of the RayMan Model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation Fluxes in Simple and Complex Environments—Application of the RayMan Model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Givoni, B.; Noguchi, M.; Saaroni, H.; Pochter, O.; Yaacov, Y.; Feller, N.; Becker, S. Outdoor Comfort Research Issues. Energy Build. 2003, 35, 77–86. [Google Scholar] [CrossRef]
- Zhang, H. Indoor Environmental Quality (IEQ) Title Human Thermal Sensation and Comfort in Transient and Non-Uniform Thermal Environments; University of California: Berkeley, CA, USA, 2003; pp. 1–436. [Google Scholar]
- ASHRAE. ANSI/ASHRAE Standard 55-2017: Thermal Environmental Conditions for Human Occupancy; ASHRAE Inc.: Peachtree Corners, GA, USA, 2017; pp. 1–66. [Google Scholar]
- ISO. ISO 7730: 2005 (E); ISO: Geneva, Switzerland, 2005; pp. 1–49. [Google Scholar]
- Zhang, Y.; Wang, J.; Chen, H.; Zhang, J.; Meng, Q. Thermal Comfort in Naturally Ventilated Buildings in Hot-Humid Area of China. Build. Environ. 2010, 45, 2562–2570. [Google Scholar] [CrossRef]
- Velt, K.B.; Daanen, H.A.M. Thermal Sensation and Thermal Comfort in Changing Environments. J. Build. Eng. 2017, 10, 42–46. [Google Scholar] [CrossRef]
- Mukherjee, M.; Mahanta, S. Urban Heat Island Investigation- Techniques and methods so far. Archit. Time Space People 2004, 16–22. [Google Scholar]
- Ter, Ü. Quality Criteria of Urban Parks: The Case of Alaaddın Hill (Konya-Turkey). African J. Agric. Res. 2011, 6, 5367–5376. [Google Scholar] [CrossRef]
- Gehl, J.; Koch, J. Life Between Buildings: Using Public Space; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- MLIT Types of City Parks. Available online: https://www.mlit.go.jp/english/2006/d_c_and_r_develop_bureau/03_parks-and-green/ (accessed on 25 November 2021).
- KCTIC Parks and Gardens. Available online: https://www.gururich-kitaq.com/en/see/park (accessed on 25 November 2021).
- Blachowski, J.; Hajnrych, M. Assessing the Cooling Effect of Four Urban Parks of Different Sizes in a Temperate Continental Climate Zone: Wroclaw (Poland). Forests 2021, 12, 136. [Google Scholar] [CrossRef]
- Aram, F.; Solgi, E.; García, E.H.; Mosavi, A.; Várkonyi-Kóczy, A.R. The Cooling Effect of Large-Scale Urban Parks on Surrounding Area Thermal Comfort. Energies 2019, 12, 904. [Google Scholar] [CrossRef] [Green Version]
- Calcmaps Calculate Area on Map, Google Maps Area Calculator. Available online: https://www.calcmaps.com/map-area/ (accessed on 25 November 2021).
- Anonimous Kitakyushu. Available online: https://en.wikipedia.org/wiki/Kitakyushu#Geography_and_administrative_divisions (accessed on 18 October 2021).
- Alexandre Merkel Climate Kitakyushu (Japan). Available online: https://en.climate-data.org/asia/japan/fukuoka-prefecture/kitakyushu-764689/ (accessed on 18 October 2021).
- Hibikinada Green Park, Management Office. About Hibiki Nada Ryokuchi (Green Park). Available online: https://hibikinadagp.org/about/ (accessed on 18 October 2021).
- Statistic-Canada, Government of Canada. 3.2.3 Non-Probability Sampling. Available online: http://www.statcan.gc.ca/eng/start (accessed on 19 October 2021).
- Tartarini, F.; Schiavon, S.; Cheung, T.; Hoyt, T. CBE Thermal Comfort Tool: Online Tool for Thermal Comfort Calculations and Visualizations. SoftwareX 2020, 12, 100563. [Google Scholar] [CrossRef]
- Park, G.T. Introductory Manual TR-74Ui. T&D Corporation: Matsumoto, Japan, 2020; p. 37. [Google Scholar]
- Zhuhai Holdpeak Instrument Co., Ltd. HP-866B Digital Anemometer, Handheld Wind Speed Meter. Available online: https://holdpeak-store.com/hp-866b-digital-anemometer-handheld-wind-speed-meter/ (accessed on 19 October 2021).
- De Carli, M.; Olesen, B.W.; Zarrella, A.; Zecchin, R. People’s Clothing Behaviour According to External Weather and Indoor Environment. Build. Environ. 2007, 42, 3965–3973. [Google Scholar] [CrossRef]
- Racinais, S.; Cocking, S.; Périard, J.D. Sports and Environmental Temperature: From Warming-up to Heating-Up. Temperature 2017, 4, 227–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
7-Point Scale | 9-Point Scale | ||
---|---|---|---|
Very hot | 9 | ||
Hot | 3 | Hot | 8 |
Warm | 2 | Warm | 7 |
Slightly warm | 1 | Slightly warm | 6 |
Neutral | 0 | Neutral | 5 |
Slightly cool | −1 | Slightly cool | 4 |
Cool | −2 | Cool | 3 |
Cold | −3 | Cold | 2 |
Very cold | 1 |
Name of Park | Location (Ward) | Area Size * (ha) | Park Type ** | Legal Classification ** |
---|---|---|---|---|
Itozu-no-mori Zoological Park | Kokurakita | 10.82 ha | Buffer Green Belts (Specific parks for zoos) | Urban Park |
Hibikinada Green Park | Wakamatsu | 66.91 ha | Large-scaled parks (Regional parks) | Urban Park |
Agriculture and Livestock Information and Research Center (Hananooka Park) | Kokura-minami | 9.88 ha | Buffer Green Belts (Specific parks for agriculture) | Urban Park |
Kawachi Wisteria Garden | Yahatahigashi | 2.17 ha | Buffer Green Belts (Specific parks for botany) | Urban and Natural Park |
Shiranoe Botanical Gardens | Moji | 8.91 ha | Buffer Green Belts (Specific parks for botany) | Urban and Natural Park |
Mekari Park | Moji | 48.78 ha | Basic Parks for City Wide Use (Comprehensive parks) | Urban and Natural Park |
Hiraodai Countryside Park | Kokura-minami | 25.32 ha | Basic Parks for City Wide Use (Comprehensive parks) | Urban Park |
Adachi Park | Kokurakita | 7.27 ha | Buffer Green Belts | Natural Park |
Takatoyama Park | Wakamatsu | 4.86 ha | Basic Parks for City Wide Use (Comprehensive parks) | Urban and Natural Park |
Kisshoji Park | Yahatanishi | 5.21 ha | Buffer Green Belts (Specific parks for botany and history) | Urban and Natural Park |
Yamada Green Zone/Yamada Park | Kokurakita | 10.06 ha | Buffer Green Belts (Specific parks as a scenic park) | Natural Park |
Tamukeyama Park | Kokurakita | 11.03 ha | Buffer Green Belts (Specific parks as a scenic park) | Natural Park |
Asano Ocean Breeze Park | Kokurakita | 1.61 ha | Basic Parks for Community Use (Neighborhood parks) | Urban Park |
Katsuyama Park | Kokurakita | 9 ha | Basic Parks for City Wide Use (Comprehensive parks) | Urban Park |
Rozanso Park | Kokurakita | 1.2 ha | Basic Parks for City Wide Use (city block parks) | Urban and Natural Park |
Oma Bamboo Grove Park | Kokura-minami | 2.83 ha | Buffer Green Belts (Specific parks as a forest park) | Urban and Natural Park |
Mitsutake Plum Field | Kokura-minami | 1.59 ha | Buffer Green Belts (Specific parks for agriculture) | Natural Park |
Bijutsunomori Park | Tobata | 6.06 ha | Buffer Green Belts (Greenways) | Urban Park |
Yomiya Park | Tobata | 8.63 ha | Basic Parks for Community Use (Community parks) | Urban and Natural Park |
Fukuoka Kenei Central Park & Konpirayama | Tobata & Yahatahigashi | 28.24 ha | Basic Parks for City Wide Use (Comprehensive Park) | Urban and Natural Park |
Korodai Park | Yahatahigashi | 7.67 ha | Basic Parks for City Wide Use (Comprehensive Park) | Urban Park |
Senbonsou Park | Wakamatsu | 16.31 ha | Buffer Green Belts (Specific parks for botany) | Natural Park |
Seita-no-mori Park | Yahatanishi | 33.82 ha | Basic Parks for City Wide Use (Comprehensive Park) | Urban and Natural Park |
Seasons | Period | Number of Respondents | |||
---|---|---|---|---|---|
Male | Female | (Blank) | Total | ||
Summer | 19 July–16 August 2020 | 48 | 48 | 1 | 97 |
Autumn | 14–18 October 2020 | 45 | 50 | 1 | 96 |
Winter | 17 January–14 February 2021 | 47 | 70 | 0 | 117 |
Spring | 10 April–8 May 2021 | 47 | 68 | 0 | 115 |
Total | 187 | 236 | 2 | 425 |
Seasons | Gender | Clothing Insulation Value * (clo) | Attributes/Ensembles |
---|---|---|---|
Summer | Male | 0.50 | Typical summer indoor clothing |
Female | 0.45 | Bra, women’s underwear, long-sleeve shirt (thin), thin skirt, and shoes or sandals. | |
Autumn | Male | 0.57 | Men’s underwear, thick trousers, long sleeve shirt (thin), ankle socks, and shoes or sandals. |
Female | 0.56 | Bra, women’s underwear, long-sleeve sweatshirt, thin skirt, ankle socks, and shoes or sandals. | |
Winter | Male | 1.55 | Men’s underwear, long underwear bottoms, long underwear top, long sleeve shirt (thick), thick trousers, double-breasted coat (thick), knee socks, and shoes or sandals. |
Female | 1.55 | Bra, women’s underwear, long underwear bottoms, long underwear top, long sleeve shirt (thick), thick trousers, double-breasted coat (thick), knee socks, and shoes or sandals. | |
Spring | Male | 0.67 | Men’s underwear, T-shirt, thin trousers, single-breasted coat (thin), ankle socks, and shoes or sandals. |
Female | 0.84 | Bra, women’s underwear, Short-sleeve dress shirt, thick skirt, single-breasted coat (thin), and shoes or sandals. |
Name | Resolution | Accuracy | Output Data |
---|---|---|---|
UV recorder TR-74Ui | 0 to 55 °C 10 to 95%RH | +/−0.5 °C +/−5%RH | Air Temperature (Ta) Relative Humidity (RH) |
Pro Anemometer (HoldPeak) HP-866B-APP series | 0.67 to 67.1 mph | +/−5% of readings | Wind/air velocity (v) |
Term | Estimate | Std Error | t Ratio | Prob >|t| |
---|---|---|---|---|
Intercept | 0.0008044 | 0.012397 | 0.06 | 0.9483 |
Ta Standard | 0.263544 | 0.053904 | 4.89 | <0.0001 * |
RH Standard | −0.10604 | 0.015478 | −6.85 | <0.0001 * |
v Standard | −0.168424 | 0.017673 | −9.53 | <0.0001 * |
Tmrt Standard | 0.6577773 | 0.060381 | 10.89 | <0.0001 * |
Term | Estimate | Std Error | t Ratio | Prob>|t| |
---|---|---|---|---|
Intercept | 0.0018202 | 0.040768 | 0.04 | 0.9644 |
Ta Standard | 0.6432868 | 0.17727 | 3.63 | 0.0003 * |
RH Standard | −0.050148 | 0.050901 | −0.99 | 0.3251 |
v Standard | 0.0218456 | 0.058119 | 0.38 | 0.7072 |
Tmrt Standard | −0.079883 | 0.198571 | −0.40 | 0.6877 |
Term | Estimate | Std Error | t Ratio | Prob >|t| |
---|---|---|---|---|
Intercept | 0.001687 | 0.048732 | 0.03 | 0.9724 |
Ta Standard | 0.3932379 | 0.213465 | 1.84 | 0.0662 |
RH Standard | −0.023098 | 0.061511 | −0.38 | 0.7075 |
v Standard | 0.0054662 | 0.071915 | 0.08 | 0.9394 |
Tmrt Standard | −0.323141 | 0.239887 | −1.35 | 0.1787 |
Term | Estimate | Std Error | t Ratio | Prob >|t| |
---|---|---|---|---|
Intercept | 0.0011969 | 0.043221 | 0.03 | 0.9779 |
Ta Standard | 0.3628165 | 0.187936 | 1.93 | 0.0542 |
RH Standard | −0.066378 | 0.053964 | −1.23 | 0.2194 |
v Standard | 0.2413083 | 0.061616 | 3.92 | 0.0001 * |
Tmrt Standard | 0.1568445 | 0.210519 | 0.75 | 0.4567 |
Variable | by Variable | Correlation | Signif Prob | |
---|---|---|---|---|
TSV Standard | PET Standard | 0.5095 | <0.0001 * | |
HSV Standard | PET Standard | 0.3407 | <0.0001 * | |
HSV Standard | TSV Standard | 0.2580 | <0.0001 * | |
WFSV Standard | TSV Standard | 0.1020 | 0.0372 * | |
WFSV Standard | PET Standard | 0.0409 | 0.4041 | |
HSV Standard | WFSV Standard | −0.0690 | 0.1589 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartabela, D.; Dewancker, B.J.; Koerniawan, M.D. A Relationship between Micro-Meteorological and Personal Variables of Outdoor Thermal Comfort: A Case Study in Kitakyushu, Japan. Sustainability 2021, 13, 13634. https://doi.org/10.3390/su132413634
Hartabela D, Dewancker BJ, Koerniawan MD. A Relationship between Micro-Meteorological and Personal Variables of Outdoor Thermal Comfort: A Case Study in Kitakyushu, Japan. Sustainability. 2021; 13(24):13634. https://doi.org/10.3390/su132413634
Chicago/Turabian StyleHartabela, Dadang, Bart Julien Dewancker, and Mochamad Donny Koerniawan. 2021. "A Relationship between Micro-Meteorological and Personal Variables of Outdoor Thermal Comfort: A Case Study in Kitakyushu, Japan" Sustainability 13, no. 24: 13634. https://doi.org/10.3390/su132413634
APA StyleHartabela, D., Dewancker, B. J., & Koerniawan, M. D. (2021). A Relationship between Micro-Meteorological and Personal Variables of Outdoor Thermal Comfort: A Case Study in Kitakyushu, Japan. Sustainability, 13(24), 13634. https://doi.org/10.3390/su132413634