Machine Learning Application to Eco-Friendly Concrete Design for Decarbonisation
Abstract
:1. Introduction
1.1. Cement Replacement Materials
1.2. Literature Review of ML-Assisted Prediction
2. Materials and Methods
2.1. Data Collection
2.2. Prediction Procedure
- Multiple parameters can be tuned simultaneously;
- It will not take a long time to conduct the GSA for fewer parameters;
- The global optimal solution can be obtained by employing the GSA.
3. Results
4. Discussion
4.1. K-Fold Cross Validation
4.2. Sensitivity Analysis
5. Conclusions
- This paper shows that the GBR ML models have the best ability to predict the CS and EC of concrete containing cement replacement materials, as indicated by the R2 and the RMSE values of the CS prediction (0.946, 0.058), and of the EC prediction (0.999, 0.012). On the basis of the R2 and the RMSE values, it can be stated that the GBR ML models have an excellent ability for predicting the CS and EC of cement replacement concrete using the 12 inputs;
- The average R2 and RMSE values of the 10-fold cross validation for predicting CS are 0.9471 and 0.2270, respectively. Moreover, the average R2 of the 10-fold cross validation for predicting the EC is 0.9967, while the RMSE value is 0.0125. The 10-fold cross-validation results indicate that the prediction error of the GBR models is very low. Hence, the promising prediction ability of the GBR models is robust;
- The R2 and the RMSE values of the other five ML models (SVR, RF, DNN, kNN, and DTR) are compared with the GBR model. The results reveal that the GBR model, as an ensemble ML algorithm, exhibits an outstanding superiority to other individual ML algorithms;
- The SAP results of the inputs note that PFA, GGBS, LP, and SF have stronger correlations to the CS and EC predictions of cement replacement concrete than other inputs. Thus, more attention should be paid to PFA, GGBS, LP, and SF in the ML-aided design of cement replacement concrete in order to reduce the EC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AdBoost | Adaptive Boosting |
ANN | Artificial Neural Network |
CS | Compressive Strength |
DNN | Deep Neural Network |
DTR | Decision Tree Regression |
EC | Embodied Carbon |
EP | Expanded Perlite |
GBR | Gradient Boosting Regression |
GSA | Grid Search Algorithm |
GGBS | Ground Granulated Blast-Furnace Slag |
GPC | Geopolymer Concrete |
kNN | k-Nearest Neighbours |
LR | Linear Regression Model |
ML | Machine Learning |
M5P | M5P-tree model |
MSE | Mean Square Error |
NLR | Nonlinear Regression Model |
OPC | Ordinary Portland Cement |
PFA | Pulverised fuel ash |
RF | Random Forest |
R2 | Coefficient of Determination |
RMSE | Root Mean Square Error |
RBF | Radial Basis Function |
SVR | Support Vector Regression |
SMC | Supplementary Cementitious Materials |
SF | Silica Fume |
SA | Sensitivity Analysis |
References
- Suhendro, B. Toward Green Concrete for Better Sustainable Environment. Procedia Eng. 2014, 95, 305–320. [Google Scholar] [CrossRef] [Green Version]
- Gehlot, T.; Sankhla, S.S.; Parihar, S. Mathematical model to predict the chloride ion penetration and compressive strength of concrete incorporating GGBS. Mater. Today 2021, in press. [Google Scholar] [CrossRef]
- Liu, M. Self-compacting concrete with different levels of pulverized fuel ash. Constr. Build. Mater. 2010, 24, 1245–1252. [Google Scholar] [CrossRef]
- Zhou, X.; Slater, J.R.; Wavell, S.E.; Oladiran, O. Effects of PFA and GGBS on Early-Ages Engineering Properties of Portland Cement Systems. J. Adv. Concr. Technol. 2012, 10, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.S.; Cheah, C.B.; Ramli, M.B. The setting behavior, mechanical properties and drying shrinkage of ternary blended concrete containing granite quarry dust and processed steel slag aggregate. Constr. Build. Mater. 2019, 215, 447–461. [Google Scholar] [CrossRef]
- Chen, J.; Kwan, A.; Jiang, Y. Adding limestone fines as cement paste replacement to reduce water permeability and sorptivity of concrete. Constr. Build. Mater. 2014, 56, 87–93. [Google Scholar] [CrossRef]
- Sarıdemir, M. Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks. Adv. Eng. Softw. 2009, 40, 350–355. [Google Scholar] [CrossRef]
- Moradi, M.; Khaleghi, M.; Salimi, J.; Farhangi, V.; Ramezanianpour, A. Predicting the compressive strength of concrete containing metakaolin with different properties using ANN. Measurement 2021, 183, 109790. [Google Scholar] [CrossRef]
- Bageri, B.; Ahmed, A.; Al Jaberi, J.; Elkatatny, S.; Patil, S. Effect of perlite particles on the properties of oil-well class G cement. J. Pet. Sci. Eng. 2021, 199, 108344. [Google Scholar] [CrossRef]
- Kotwica, Ł.; Pichór, W.; Kapeluszna, E.; Różycka, A. Utilization of waste expanded perlite as new effective supplementary cementitious material. J. Clean. Prod. 2017, 140, 1344–1352. [Google Scholar] [CrossRef]
- Wang, X.; Wu, D.; Geng, Q.; Hou, D.; Wang, M.; Li, L.; Wang, P.; Chen, D.; Sun, Z. Characterization of sustainable ultra-high performance concrete (UHPC) including expanded perlite. Constr. Build. Mater. 2021, 303, 124245. [Google Scholar] [CrossRef]
- Mehrabi, P.; Shariati, M.; Kabirifar, K.; Jarrah, M.; Rasekh, H.; Trung, N.T.; Shariati, A.; Jahandari, S. Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate. Constr. Build. Mater. 2021, 287, 122652. [Google Scholar] [CrossRef]
- Mohammed, A.; Rafiq, S.; Sihag, P.; Kurda, R.; Mahmood, W.; Ghafor, K.; Sarwar, W. ANN, M5P-tree and nonlinear regression approaches with statistical evaluations to predict the compressive strength of cement-based mortar modified with fly ash. J. Mater. Res. Technol. 2020, 9, 12416–12427. [Google Scholar] [CrossRef]
- Khan, M.I. Predicting properties of High Performance Concrete containing composite cementitious materials using Artificial Neural Networks. Autom. Constr. 2012, 22, 516–524. [Google Scholar] [CrossRef]
- Shahmansouri, A.A.; Yazdani, M.; Ghanbari, S.; Bengar, H.A.; Jafari, A.; Ghatte, H.F. Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J. Clean. Prod. 2021, 279, 123697. [Google Scholar] [CrossRef]
- Kandiri, A.; Mohammadi Golafshani, E.; Behnood, A. Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm. Constr. Build. Mater. 2020, 248, 118676. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Kumar, D.; Samui, P.; Hu, J.W.; Kim, D. Compressive strength prediction of high-performance concrete using gradient tree boosting machine. Constr. Build. Mater. 2020, 264, 120198. [Google Scholar] [CrossRef]
- Selvarani, B.; Preethi, V. Investigational study on optimum content of GGBS and fibres in fibre non-breakable self compacting concrete. Mater. Today 2021, in press. [Google Scholar] [CrossRef]
- Jaambavi, I.; Baby, J.E.; Akshaya, T.; Rajeswari, G. Mechanical properties of concrete by replacement of fly ash, Ggbfs, lime stone powder. Mater. Today 2021, in press. [Google Scholar] [CrossRef]
- Gehlot, T.; Sankhla, S.S.; Parihar, S. Modelling compressive strength, flexural strength and chloride ion permeability of high strength concrete incorporating metakaolin and fly ash. Mater. Today 2021, in press. [Google Scholar] [CrossRef]
- Elavarasan, S.; Priya, A.; Ajai, N.; Akash, S.; Annie, T.; Bhuvana, G. Experimental study on partial replacement of cement by metakaolin and GGBS. Mater. Today 2021, 37, 3527–3530. [Google Scholar] [CrossRef]
- Munjal, P.; Hau, K.K.; Arthur, C.C.H. Effect of GGBS and curing conditions on strength and microstructure properties of oil well cement slurry. J. Build. Eng. 2021, 40, 102331. [Google Scholar] [CrossRef]
- Suda, V.R.; Rao, P.S. Experimental investigation on optimum usage of Micro silica and GGBS for the strength characteristics of concrete. Mater. Today 2020, 27, 805–811. [Google Scholar] [CrossRef]
- Gupta, T.; Patel, K.; Siddique, S.; Sharma, R.K.; Chaudhary, S. Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN. Measurement 2019, 147, 106870. [Google Scholar] [CrossRef]
- Esfandiari, J.; Loghmani, P. Effect of perlite powder and silica fume on the compressive strength and microstructural characterization of self-compacting concrete with lime-cement binder. Measurement 2019, 147, 106846. [Google Scholar] [CrossRef]
- Xie, J.; Huang, L.; Guo, Y.; Li, Z.; Fang, C.; Li, L.; Wang, J. Experimental study on the compressive and flexural behaviour of recycled aggregate concrete modified with silica fume and fibres. Constr. Build. Mater. 2018, 178, 612–623. [Google Scholar] [CrossRef]
- Sarıdemir, M. Effect of silica fume and ground pumice on compressive strength and modulus of elasticity of high strength concrete. Constr. Build. Mater. 2013, 49, 484–489. [Google Scholar] [CrossRef]
- Nili, M.; Afroughsabet, V. The long-term compressive strength and durability properties of silica fume fiber-reinforced concrete. Mater. Sci. Eng. A 2012, 531, 107–111. [Google Scholar] [CrossRef]
- Wongkeo, W.; Thongsanitgarn, P.; Ngamjarurojana, A.; Chaipanich, A. Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume. Mater. Des. 2014, 64, 261–269. [Google Scholar] [CrossRef]
- Sharaky, I.; Ghoneim, S.S.; Aziz, B.H.A.; Emara, M. Experimental and theoretical study on the compressive strength of the high strength concrete incorporating steel fiber and metakaolin. Structures 2021, 31, 57–67. [Google Scholar] [CrossRef]
- Seelapureddy, J.; Bommisetty, J.; Rao, M.S. Effect of metakaolin and micro silica on strength characteristics of standard grades of self-compacting concrete. Mater. Today 2021, 45, 884–890. [Google Scholar] [CrossRef]
- BSI. BS EN 15978: 2011. Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method; BSI: London, UK, 2011. [Google Scholar]
- Government Conversion Factors for Company Reporting of Greenhouse Gas Emissions. Available online: https://www.gov.uk/government/collections/government-conversion-factors-for-company-reporting (accessed on 30 October 2021).
- Purnell, P.; Black, L. Embodied carbon dioxide in concrete: Variation with common mix design parameters. Cem. Concr. Res. 2012, 42, 874–877. [Google Scholar] [CrossRef] [Green Version]
- Environmental Product Declaration of Ggbs. Available online: https://www.hanson.co.uk/en/system/files_force/assets/document/53/9b/environmental-product-declaration-hansonconcrete-c28-35-cemi.pdf?download=1 (accessed on 30 October 2021).
- Bolte, G.; Zajac, M.; Skocek, J.; Ben Haha, M. Development of composite cements characterized by low environmental footprint. J. Clean. Prod. 2019, 226, 503–514. [Google Scholar] [CrossRef]
- Homayoonmehr, R.; Ramezanianpour, A.A.; Mirdarsoltany, M. Influence of metakaolin on fresh properties, mechanical properties and corrosion resistance of concrete and its sustainability issues: A review. J. Build. Eng. 2021, 44, 103011. [Google Scholar] [CrossRef]
- Hammond, G.; Jones, C.; Lowrie, E.F.; Tse, P. Embodied Carbon. The Inventory of Carbon and Energy (ICE). Version (2.0) 2011. Available online: https://greenbuildingencyclopaedia.uk/wp-content/uploads/2014/07/Full-BSRIA-ICE-guide.pdf (accessed on 30 October 2021).
- Zhang, J.; Zhao, C.; Zhou, A.; Yang, C.; Zhao, L.; Li, Z. Aragonite formation induced by open cultures of microbial consortia to heal cracks in concrete: Insights into healing mechanisms and crystal polymorphs. Constr. Build. Mater. 2019, 224, 815–822. [Google Scholar] [CrossRef]
- Chopra, P.; Sharma, R.K.; Kumar, M.; Chopra, T. Comparison of Machine Learning Techniques for the Prediction of Compressive Strength of Concrete. Adv. Civ. Eng. 2018, 2018, 5481705. [Google Scholar] [CrossRef] [Green Version]
- Naderpour, H.; Mirrashid, M.; Parsa, P. Failure mode prediction of reinforced concrete columns using machine learning methods. Eng. Struct. 2021, 248, 113263. [Google Scholar] [CrossRef]
- Chun, P.-J.; Ujike, I.; Mishima, K.; Kusumoto, M.; Okazaki, S. Random forest-based evaluation technique for internal damage in reinforced concrete featuring multiple nondestructive testing results. Constr. Build. Mater. 2020, 253, 119238. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, G.; Huang, Y.; Sun, J.; Aslani, F.; Nener, B. Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression. Constr. Build. Mater. 2019, 210, 713–719. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, J.; Gu, Y.; Huang, Y.; Sun, Y.; Ma, G. Prediction of permeability and unconfined compressive strength of pervious concrete using evolved support vector regression. Constr. Build. Mater. 2019, 207, 440–449. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Tran, T.-H.; Nguyen, H.; Nhat-Duc, H. A success history-based adaptive differential evolution optimized support vector regression for estimating plastic viscosity of fresh concrete. Eng. Comput. 2021, 37, 1485–1498. [Google Scholar] [CrossRef]
- Altay, O.; Ulas, M.; Alyamac, K.E. Prediction of the Fresh Performance of Steel Fiber Reinforced Self-Compacting Concrete Using Quadratic SVM and Weighted KNN Models. IEEE Access 2020, 8, 92647–92658. [Google Scholar] [CrossRef]
- Kang, M.-C.; Yoo, D.-Y.; Gupta, R. Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete. Constr. Build. Mater. 2021, 266, 121117. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Aslani, F.; Ma, G.; Nener, B. A hybrid intelligent system for designing optimal proportions of recycled aggregate concrete. J. Clean. Prod. 2020, 273, 122922. [Google Scholar] [CrossRef]
- Tanyildizi, H.; Şengür, A.; Akbulut, Y.; Şahin, M. Deep learning model for estimating the mechanical properties of concrete containing silica fume exposed to high temperatures. Front. Struct. Civ. Eng. 2020, 14, 1316–1330. [Google Scholar] [CrossRef]
- Ly, H.-B.; Nguyen, T.-A.; Mai, H.-V.T.; Tran, V.Q. Development of deep neural network model to predict the compressive strength of rubber concrete. Constr. Build. Mater. 2021, 301, 124081. [Google Scholar] [CrossRef]
- Mezzatesta, S.; Torino, C.; De Meo, P.; Fiumara, G.; Vilasi, A. A machine learning-based approach for predicting the outbreak of cardiovascular diseases in patients on dialysis. Comput. Methods Programs Biomed. 2019, 177, 9–15. [Google Scholar] [CrossRef]
- Feng, D.-C.; Liu, Z.-T.; Wang, X.-D.; Chen, Y.; Chang, J.-Q.; Wei, D.-F.; Jiang, Z.-M. Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach. Constr. Build. Mater. 2020, 230, 117000. [Google Scholar] [CrossRef]
- Xiao, T.; Ren, D.; Lei, S.; Zhang, J.; Liu, X. Based on grid-search and PSO parameter optimization for Support Vector Machine. In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 1529–1533. [Google Scholar]
- Bilim, C.; Atis, C.; Tanyildizi, H.; Karahan, O. Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv. Eng. Softw. 2009, 40, 334–340. [Google Scholar] [CrossRef]
- Atici, U. Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Syst. Appl. 2011, 38, 9609–9618. [Google Scholar] [CrossRef]
- Ling, H.; Qian, C.X.; Kang, W.C.; Liang, C.Y.; Chen, H.C. Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment. Constr. Build. Mater. 2019, 206, 355–363. [Google Scholar] [CrossRef]
- Xu, Y.; Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Dudek, M.; Aslam, F.; Joyklad, P. Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques. Materials 2021, 14, 7034. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Ahmad, A.; Farooq, F.; Ostrowski, K.A.; Maślak, M.; Czarnecki, S.; Aslam, F. Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Constr. Build. Mater. 2021, 308, 125021. [Google Scholar] [CrossRef]
- Huynh, A.T.; Nguyen, Q.D.; Xuan, Q.L.; Magee, B.; Chung, T.; Tran, K.T.; Nguyen, K.T. A Machine Learning-Assisted Numerical Predictor for Compressive Strength of Geopolymer Concrete Based on Experimental Data and Sensitivity Analysis. Appl. Sci. 2020, 10, 7726. [Google Scholar] [CrossRef]
- Tenza-Abril, A.; Villacampa, Y.; Solak, A.; Baeza-Brotons, F. Prediction and sensitivity analysis of compressive strength in segregated lightweight concrete based on artificial neural network using ultrasonic pulse velocity. Constr. Build. Mater. 2018, 189, 1173–1183. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Sussman, J.M.; Matsumoto, A. Grand Challenges in Transportation and Transit Systems. Front. Built Environ. 2016, 2, 2. [Google Scholar] [CrossRef] [Green Version]
Material | Embodied Carbon (kg CO2/t) | Reference |
---|---|---|
Cement | 860 | [33] |
Pulverised fuel ash | 0.1 | [34] |
Ground granulated blast-furnace slag | 79.6 | [35] |
Limestone powder | 8 | [36] |
Silica fume | 28 | [37] |
Metakaolin | 330 | [37] |
Perlite powder | 30 | [38] |
Ground pumice | 30 | [38] |
Type of Parameters | Parameter | Symbol | Unit | Minimum | Maximum |
---|---|---|---|---|---|
Inputs | W/B ratio | WB | - | 0.25 | 1 |
Cement | C | % | 0 | 100 | |
Pulverised fuel ash | PFA | % | 0 | 70 | |
Ground granulated blast-furnace slag | GGBS | % | 0 | 70 | |
Limestone powder | LP | % | 0 | 43 | |
Silica fume | SF | % | 0 | 25 | |
Metakaolin | M | % | 0 | 50 | |
Perlite powder | PP | % | 0 | 20 | |
Ground pumice | GP | % | 0 | 25 | |
Coarse aggregate | CA | kg | 0 | 1437.75 | |
Fine aggregate | FA | kg | 0 | 1166 | |
Superplasticizer | S | - | 0 | 1 | |
Outputs | Compressive strength at 28 days | CS | MPa | 3.3 | 106.5 |
Embodied carbon | EC | kg CO2/t | 40.64 | 860.00 |
Algorithm | Dataset | CS Prediction Performance | EC Prediction Performance | ||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
GBR | Training | 0.985 | 0.028 | 0.999 | 0.002 |
Testing | 0.946 | 0.058 | 0.999 | 0.012 | |
DTR | Training | 0.881 | 0.077 | 0.999 | 0.010 |
Testing | 0.876 | 0.093 | 0.998 | 0.015 | |
DNN | Training | 0.927 | 0.062 | 0.996 | 0.013 |
Testing | 0.892 | 0.077 | 0.995 | 0.015 | |
SVR | Training | 0.953 | 0.049 | 0.999 | 0.005 |
Testing | 0.924 | 0.057 | 0.985 | 0.026 | |
RF | Training | 0.977 | 0.030 | 0.998 | 0.010 |
Testing | 0.933 | 0.062 | 0.997 | 0.012 | |
kNN | Training | 0.924 | 0.063 | 0.969 | 0.038 |
Testing | 0.888 | 0.082 | 0.965 | 0.039 |
Algorithms | Parameters | CS | EC |
---|---|---|---|
DNN | Hidden layers | 3 | 3 |
Hidden neurons | 27–27–30 | 30–28–28 | |
Learning rate | 0.1009 | 0.1000 | |
Activation function | Maxout | Maxout | |
GBR | Depthmax | 11 | 11 |
Splitmin | 0.001 | 0.001 | |
Learning rate | 0.4 | 0.1 | |
Number of trees | 21 | 100 | |
DTR | Depthmax | 5 | 21 |
Splitmin | 1 | 1 | |
Leafmin | 1 | 1 | |
Gainmin | 0.001 | 0.001 | |
SVR | Cpenalty | 0.01 | 1.00 |
Epsilon | 0.001 | 0.001 | |
Gamma | 6000.0004 | 10,000.0000 | |
Kernel type | Anova | Anova | |
RF | Depthmax | 31 | 51 |
Splitmin | 0.001 | 0.100 | |
Leafmin | 80 | 80 | |
Gainmin | 1.0000 | 0.5005 | |
Number of trees | 100 | 11 | |
kNN | k | 6 | 7 |
Folds | CS Prediction Performance | EC Prediction Performance | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
Fold 1 | 0.939 | 0.246 | 0.995 | 0.014 |
Fold 2 | 0.942 | 0.240 | 0.995 | 0.013 |
Fold 3 | 0.946 | 0.231 | 0.997 | 0.012 |
Fold 4 | 0.949 | 0.225 | 0.997 | 0.012 |
Fold 5 | 0.951 | 0.223 | 0.997 | 0.012 |
Fold 6 | 0.950 | 0.223 | 0.997 | 0.012 |
Fold 7 | 0.949 | 0.222 | 0.997 | 0.012 |
Fold 8 | 0.949 | 0.221 | 0.995 | 0.013 |
Fold 9 | 0.946 | 0.220 | 0.999 | 0.012 |
Fold 10 | 0.950 | 0.219 | 0.998 | 0.013 |
Average | 0.9471 | 0.2270 | 0.9967 | 0.0125 |
SD | 0.0037 | 0.0087 | 0.0013 | 0.0007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavercombe, A.; Huang, X.; Kaewunruen, S. Machine Learning Application to Eco-Friendly Concrete Design for Decarbonisation. Sustainability 2021, 13, 13663. https://doi.org/10.3390/su132413663
Lavercombe A, Huang X, Kaewunruen S. Machine Learning Application to Eco-Friendly Concrete Design for Decarbonisation. Sustainability. 2021; 13(24):13663. https://doi.org/10.3390/su132413663
Chicago/Turabian StyleLavercombe, Abigail, Xu Huang, and Sakdirat Kaewunruen. 2021. "Machine Learning Application to Eco-Friendly Concrete Design for Decarbonisation" Sustainability 13, no. 24: 13663. https://doi.org/10.3390/su132413663
APA StyleLavercombe, A., Huang, X., & Kaewunruen, S. (2021). Machine Learning Application to Eco-Friendly Concrete Design for Decarbonisation. Sustainability, 13(24), 13663. https://doi.org/10.3390/su132413663