PV-EV Integrated Home Energy Management Considering Residential Occupant Behaviors
Abstract
:1. Introduction
2. Background and Formulation
2.1. Background
2.2. ADP-HEMS Formulation
2.3. Occupant’s Comfort Model
2.3.1. Thermal Comfort
2.3.2. Clothing Behavior Model
2.3.3. EV Model with the Occupant’s SOC Concern
2.4. HVAC Model
2.5. MPC-Based HEMS Simulation Framework
3. Cosimulation Results
3.1. Simulation Scenario Setup
3.2. Baseline Case Simulation
3.3. Proposed HEMS Simulation
3.4. Comparison and Discussion
3.5. Comparison of One-Week Simulations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pratt, A.; Krishnamurthy, D.; Ruth, M.; Wu, H.; Lunacek, M.; Vaynshenk, P. Transactive Home Energy Management Systems: The Impact of Their Proliferation on the Electric Grid. IEEE Electrif. Mag. 2016, 4, 8–14. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Mohamed, A.; Khatib, T.; Shareef, H.; Homod, R.Z.; Ali, J.A. Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm. Energy Build. 2017, 138, 215–227. [Google Scholar] [CrossRef]
- Zhao, Z.; Keerthisinghe, C. A Fast and Optimal Smart Home Energy Management System: State-Space Approximate Dynamic Programming. IEEE Access 2020, 8, 184151–184159. [Google Scholar] [CrossRef]
- Martins, S.; Rossetti, R.J.; Kokkinogenis, Z. A Resource-Based Model for Home Energy Management Using Multi-Agent Systems. In Proceedings of the 2021 IEEE International Smart Cities Conference (ISC2), Manchester, UK, 7–10 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Faqiry, M.N.; Wang, L.; Wu, H. HEMS-enabled transactive flexibility in real-time operation of three-phase unbalanced distribution systems. J. Mod. Power Syst. Clean Energy 2019, 7, 1434–1449. [Google Scholar] [CrossRef] [Green Version]
- Shafie-Khah, M.; Siano, P. A Stochastic Home Energy Management System Considering Satisfaction Cost and Response Fatigue. IEEE Trans. Ind. Inform. 2018, 14, 629–638. [Google Scholar] [CrossRef]
- Mohammadi, F.; Faghihi, F.; Kazemi, A.; Salemi, A.H. A risk-based energy management system design for grid-connected smart homes. Int. Trans. Electr. Energy Syst. 2021, 31, e12924. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Ravey, A.; Chrenko, D.; Miraoui, A. Real-time energy management of photovoltaic-assisted electric vehicle charging station by markov decision process. J. Power Sources 2020, 476, 228504. [Google Scholar] [CrossRef]
- Chen, S.; Liu, T.; Gao, F.; Ji, J.; Xu, Z.; Qian, B.; Wu, H.; Guan, X. Butler, Not Servant: A Human-Centric Smart Home Energy Management System. IEEE Commun. Mag. 2017, 55, 27–33. [Google Scholar] [CrossRef]
- Feldman, D.; Ramasamy, V.; Fu, R.; Ramdas, A.; Desai, J.; Margolis, R. U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks: Q1 2021; National Renewable Energy Laboratory: Golden, CO, USA, 2021. [Google Scholar]
- Moon, Y.; Baran, M. Economic analysis of a residential PV system from the timing perspective: A real option model. Renew. Energy 2018, 125, 783–795. [Google Scholar] [CrossRef]
- Srikranjanapert, M.; Junlakarn, S.; Hoonchareon, N. How an Integration of Home Energy Management and Battery System Affects the Economic Benefits of Residential PV System Owners in Thailand. Sustainability 2021, 13, 2681. [Google Scholar] [CrossRef]
- Mai, T.T.; Jadun, P.; Logan, J.S.; McMillan, C.A.; Muratori, M.; Steinberg, D.C.; Vimmerstedt, L.J.; Haley, B.; Jones, R.; Nelson, B. Electrification Futures Study: Scenarios of Electric Technology Adoption and Power Consumption for the United States; National Renewable Energy Laboratory: Golden, CO, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Gohlke, D.; Zhou, Y. Plug-in Electric Vehicle Market Projections: Scenarios and Impacts; ERPI: Palo Alto, CA, USA, 2017. [Google Scholar]
- Abdelaal, G.; Gilany, M.I.; Elshahed, M.; Sharaf, H.M.; El’gharably, A. Integration of Electric Vehicles in Home Energy Management Considering Urgent Charging and Battery Degradation. IEEE Access 2021, 9, 47713–47730. [Google Scholar] [CrossRef]
- Wang, X.; Mao, X.; Khodaei, H. A multi-objective home energy management system based on internet of things and optimization algorithms. J. Build. Eng. 2021, 33, 101603. [Google Scholar] [CrossRef]
- Jin, X.; Baker, K.; Christensen, D.; Isley, S. Foresee: A user-centric home energy management system for energy efficiency and demand response. Appl. Energy 2017, 205, 1583–1595. [Google Scholar] [CrossRef]
- Yousefi, M.; Hajizadeh, A.; Soltani, M.N.; Hredzak, B. Predictive Home Energy Management System With Photovoltaic Array, Heat Pump, and Plug-In Electric Vehicle. IEEE Trans. Ind. Inform. 2021, 17, 430–440. [Google Scholar] [CrossRef]
- An, J.; Yan, D.; Hong, T. Clustering and statistical analyses of air-conditioning intensity and use patterns in residential buildings. Energy Build. 2018, 174, 214–227. [Google Scholar] [CrossRef]
- Wang, W.; Hong, T.; Li, N.; Wang, R.Q.; Chen, J. Linking energy-cyber-physical systems with occupancy prediction and interpretation through WiFi probe-based ensemble classification. Appl. Energy 2019, 236, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.; Chen, C.f.; Wang, Z.; Xu, X. Linking human-building interactions in shared offices with personality traits. Build. Environ. 2020, 170, 106602. [Google Scholar] [CrossRef] [Green Version]
- Fanger, P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- ASHRAE Standard 55/2004. Thermal Environmental Conditions for Human Occupancy; ASHRAE: Peachtree Corners, GA, USA, 2004. [Google Scholar]
- UNI EN SIO 7730. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Buratti, C.; Ricciardi, P.; Vergoni, M. HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments. Appl. Energy 2013, 104, 117–127. [Google Scholar] [CrossRef]
- Yao, R.; Li, B.; Liu, J. A theoretical adaptive model of thermal comfort—Adaptive Predicted Mean Vote (aPMV). Build. Environ. 2009, 44, 2089–2096. [Google Scholar] [CrossRef]
- Jia, Q.S.; Wu, J.; Wu, Z.; Guan, X. Event-Based HVAC Control—A Complexity-Based Approach. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1909–1919. [Google Scholar] [CrossRef]
- Luo, F.; Dong, Z.Y.; Meng, K.; Wen, J.; Wang, H.; Zhao, J. An Operational Planning Framework for Large-Scale Thermostatically Controlled Load Dispatch. IEEE Trans. Ind. Inform. 2017, 13, 217–227. [Google Scholar] [CrossRef]
- Luo, F.; Ranzi, G.; Wan, C.; Xu, Z.; Dong, Z.Y. A Multistage Home Energy Management System With Residential Photovoltaic Penetration. IEEE Trans. Ind. Inform. 2019, 15, 116–126. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Zhang, H.; Wu, H. Hourly occupant clothing decisions in residential HVAC energy management. J. Build. Eng. 2021, 40, 102708. [Google Scholar] [CrossRef]
- Chung, H.M.; Maharjan, S.; Zhang, Y.; Eliassen, F. Intelligent Charging Management of Electric Vehicles Considering Dynamic User Behavior and Renewable Energy: A Stochastic Game Approach. IEEE Trans. Intell. Transp. Syst. 2020, 22, 7760–7771. [Google Scholar] [CrossRef]
- Alsabbagh, A.; Wu, B.; Ma, C. Distributed Electric Vehicles Charging Management Considering Time Anxiety and Customer Behaviors. IEEE Trans. Ind. Inform. 2021, 17, 2422–2431. [Google Scholar] [CrossRef]
- Yan, L.; Chen, X.; Zhou, J.; Chen, Y.; Wen, J. Deep Reinforcement Learning for Continuous Electric Vehicles Charging Control With Dynamic User Behaviors. IEEE Trans. Smart Grid 2021, 12, 5124–5134. [Google Scholar] [CrossRef]
- Liu, X.; Wu, H.; Wang, L.; Faqiry, M.N. Stochastic home energy management system via approximate dynamic programming. IET Energy Syst. Integr. 2020, 2, 382–392. [Google Scholar] [CrossRef]
- ASHRAE. Handbook Fundamentals: Inch-Pound Edition; ASHRAE: Peachtree Corners, GA, USA, 2017. [Google Scholar]
- Divya, K.C.; Østergaard, J. Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Zhou, C.; Qian, K.; Allan, M.; Zhou, W. Modeling of the Cost of EV Battery Wear Due to V2G Application in Power Systems. IEEE Trans. Energy Convers. 2011, 26, 1041–1050. [Google Scholar] [CrossRef]
- Geng, D.; Zhang, H.; Wu, H. Short-Term Wind Speed Prediction Based on Principal Component Analysis and LSTM. Appl. Sci. 2020, 10, 4416. [Google Scholar] [CrossRef]
- Wu, H.; Palmintier, B.; Krishnamurthy, D. dynamo. Computer Software. National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2018. [Google Scholar] [CrossRef]
- Pratt, A.; Banerjee, B.; Nemarundwe, T. Proof-of-concept home energy management system autonomously controlling space heating. In Proceedings of the 2013 IEEE Power Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Wu, H.; Pratt, A.; Chakraborty, S. Stochastic optimal scheduling of residential appliances with renewable energy sources. In Proceedings of the IEEE Power Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Tesla Model 3. Available online: https://www.tesla.com/model3 (accessed on 28 October 2021).
- Schram, W.; Brinkel, N.; Smink, G.; van Wijk, T.; van Sark, W. Empirical Evaluation of V2G Round-trip Efficiency. In Proceedings of the 2020 International Conference on Smart Energy Systems and Technologies (SEST), Istanbul, Turkey, 7–9 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
Value | clo 1 | clo 2 | clo 3 |
---|---|---|---|
Clothing insulation range | 0.25–0.50 | 0.51–1.00 | 1.01–1.65 |
Ensemble Example | (Shirt Level) short-sleeve shirt + thin trousers | (Sweater Level) thin long-sleeve sweater + long-sleeve shirt + thick trousers | (Jacket Level) thick suit jacket + long-sleeve shirt + thick trousers |
HVAC | State range | COP | (kW) | SEER | SCOP | |||
[18 C, 30 C] | 0.9 | 0.1 | 0.116 | 4.75 | 6 | 18 | 4 | |
EV | State range | (kWh) | (kW) | EPA est. (miles) | MPGe (city/highway) | |||
[20%, 100%] | 82 | 8 | 0.9 | 0 | 315 | 141 / 127 |
Time Range | Occupant’s Clothing Conditions | Desired Temperature |
---|---|---|
[10 p.m., 6 a.m.] | Sleeping with Clo 1 | 22 °C |
Time Range | EV Behavior | EV SOC Consumption |
[8 a.m., 6 p.m.] | Not at home at Day 1 | 30% |
[7 p.m., 9 p.m.] | Not home at Day 2 | 9.7% |
Baseline | Proposed HEMS (Modified EV Schedule) | |
---|---|---|
Avg. PMV | −0.09 | 0.24 |
Avg. Clo. Level | 1.39 | 1.47 |
Avg. EV Concern | 0% | 1.17% |
Endtime Actual SOC | 100% | 55% (100%) |
Tot. Energy Cost | $25.40 | −$0.99 ($8.01) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wu, Y.; Wu, H. PV-EV Integrated Home Energy Management Considering Residential Occupant Behaviors. Sustainability 2021, 13, 13826. https://doi.org/10.3390/su132413826
Liu X, Wu Y, Wu H. PV-EV Integrated Home Energy Management Considering Residential Occupant Behaviors. Sustainability. 2021; 13(24):13826. https://doi.org/10.3390/su132413826
Chicago/Turabian StyleLiu, Xuebo, Yingying Wu, and Hongyu Wu. 2021. "PV-EV Integrated Home Energy Management Considering Residential Occupant Behaviors" Sustainability 13, no. 24: 13826. https://doi.org/10.3390/su132413826
APA StyleLiu, X., Wu, Y., & Wu, H. (2021). PV-EV Integrated Home Energy Management Considering Residential Occupant Behaviors. Sustainability, 13(24), 13826. https://doi.org/10.3390/su132413826