Air Quality and Active Transportation Modes: A Spatiotemporal Concurrence Analysis in Guadalajara, Mexico
Abstract
:1. Introduction
2. Study Area
2.1. The Guadalajara Metropolitan Area: Geographical and Mobility Context
2.2. The Jalisco Atmospheric Monitoring System’s Area of Influence
3. Data Sources and Methods
3.1. Active Mode Data Management
3.2. Allocation of Episodes by AQI Category
- Conci = Input concentrations for a given pollutant;
- ConcLo = The concentration breakpoint that is less than or equal to Conci;
- ConcHi = The concentration breakpoint that is greater than or equal to Conci;
- AQILo = The AQI value/breakpoint corresponding to ConcLo;
- AQIHi = The AQI value/breakpoint corresponding to ConcHi.
3.3. Concurrence Analysis
4. Results
4.1. Active Mode Data Management
4.2. Allocation of Episodes by AQI Category
4.3. Concurrence Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN-Habitat. Sustainable Development Goals Cities. Available online: https://unhabitat.org/programme/sustainable-development-goals-cities (accessed on 14 January 2021).
- World Health Organization. Air Pollution. Available online: https://www.who.int/westernpacific/health-topics/air-pollution (accessed on 28 June 2021).
- Environmental Protection Agency, (EPA). Air Quality Index Basics. Available online: https://www.airnow.gov/aqi/aqi-basics (accessed on 8 September 2021).
- Environmental Protection Agency, (EPA). Health Effects of Ozone Pollution. Available online: https://www.epa.gov/ground-level-ozone-pollution/health-effects-ozone-pollution (accessed on 25 August 2021).
- Environmental Protection Agency, (EPA). Health and Environmental Effects of Particulate Matter (PM). Available online: https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm (accessed on 25 August 2021).
- De Jesus, A.L.; Thompson, H.; Knibbs, L.D.; Hanigan, I.; De Torres, L.; Fisher, G.; Berko, H.; Morawska, L. Two decades of trends in urban particulate matter concentrations across Australia. Environ. Res. 2020, 190, 110021. [Google Scholar] [CrossRef]
- Alemdar, K.D.; Kaya, Ö.; Canale, A.; Çodur, M.Y.; Campisi, T. Evaluation of air quality index by spatial analysis depending on vehicle traffic during the COVID-19 outbreak in Turkey. Energies 2021, 14, 5729. [Google Scholar] [CrossRef]
- Kahlmeier, S.; Götschi, T.; Cavill, N.; Castro Fernandez, A.; Brand, C.; Rojas-Rueda, D.; Woodcock, J.; Kelly, P.; Lieb, C.; Oja, P.; et al. Health Economic Assessment Tool (HEAT) for Walking and for Cycling, 2017th ed.; WHO Regional Office for Europe: Copenhagen, Denmark, 2017; ISBN 978-92-890-5278-8. [Google Scholar]
- Saeidizand, P.; Fransen, K.; Boussauw, K. Revisiting Car dependency: A worldwide analysis of car travel in global metropolitan areas. Cities 2021, 120, 103467. [Google Scholar] [CrossRef]
- Instituto Nacional de Ecología y Cambio Climático. Informe Nacional de la Calidad del Aire 2019, México; Coordinación General de Contaminación y Salud Ambiental, Dirección de Investigación de Calidad del Aire y Contaminantes Climáticos: Ciudad de Mexico, Mexico, 2020; p. 343. [Google Scholar]
- Grindlay, A.L.; Molero, E.; Miralles-Guasch, C.; Lizárraga, C. Environmental impacts for everyday mobility in Andalusia (Spain) towards a sustainable scenario? WIT Trans. Ecol. Environ. Sustain. City X 2015, 194, 373–384. [Google Scholar]
- Morency, C.; Trépanier, M.; Demers, M. Walking to transit: An unexpected source of physical activity. Transp. Policy 2011, 18, 800–806. [Google Scholar] [CrossRef]
- Mageau-Béland, J.; Morency, C. Assessing physical activity achievement by using transit. Transp. Res. Rec. 2021, 2675, 0361198121999057. [Google Scholar] [CrossRef]
- Peng, L.; Shen, Y.; Gao, W.; Zhou, J.; Pan, L.; Kan, H.; Cai, J. Personal exposure to PM2.5 in five commuting modes under hazy and non-hazy conditions. Environ. Pollut. 2021, 289, 117823. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.D.; Yiannakoulias, N.; Kanaroglou, P.S. Air pollution exposure: An activity pattern approach for active transportation. Atmos. Environ. 2016, 140, 52–59. [Google Scholar] [CrossRef]
- Balderas Torres, A.; Zafra Ortega, A.; Sudmant, A.; Gouldson, A. Sustainable Mobility for Sustainable Cities: Lessons from Cycling Schemes in Mexico City and Guadalajara, Mexico; Coalition for Urban Transitions: London, UK; Washington, DC, USA, 2021; p. 45. [Google Scholar]
- Plan Estatal de Gobernanza y Desarrollo de Jalisco (Government of the State of Jalisco). Plan Estatal de Gobernanza y Desarrollo de Jalisco 2018–2024. Visión 2030. Diagnóstico; Gobierno del Estado de Jalisco: Guadalajara, Mexico, 2019; p. 618. [Google Scholar]
- Achebak, H.; Petetin, H.; Quijal-Zamorano, M.; Bowdalo, D.; Pérez García-Pando, C.; Ballester, J. Trade-offs between short-term mortality attributable to NO2 and O3 changes during the COVID-19 lockdown across major Spanish cities. Environ. Pollut. 2021, 286, 117220. [Google Scholar] [CrossRef]
- Xia, N.; Du, E.; Guo, Z.; de Vries, W. The diurnal cycle of summer tropospheric ozone concentrations across Chinese cities: Spatial patterns and Main drivers. Environ. Pollut. 2021, 286, 117547. [Google Scholar] [CrossRef]
- Bhat, S.U.; Khanday, S.A.; Islam, S.T.; Sabha, I. Understanding the spatiotemporal pollution dynamics of highly fragile montane watersheds of kashmir Himalaya, India. Environ. Pollut. 2021, 286, 117335. [Google Scholar] [CrossRef]
- Iglesias-Merchan, C.; Laborda-Somolinos, R.; González-Ávila, S.; Elena-Rosselló, R. Spatio-temporal changes of road traffic noise pollution at ecoregional scale. Environ. Pollut. 2021, 286, 117291. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Pan, J.; Huo, J.; Fu, Q.; Duan, Y.; Lin, Y.; Hu, X.; Cheng, J. Atmospheric black carbon in urban and traffic areas in Shanghai: Temporal variations, source characteristics, and population exposure. Environ. Pollut. 2021, 289, 117868. [Google Scholar] [CrossRef] [PubMed]
- Shogrkhodaei, S.Z.; Razavi-Termeh, S.V.; Fathnia, A. Spatio-temporal modeling of PM2.5 risk mapping using three machine learning algorithms. Environ. Pollut. 2021, 289, 117859. [Google Scholar] [CrossRef]
- Sullivan, R.C.; Pryor, S.C. Quantifying spatiotemporal variability of fine particles in an urban environment using combined fixed and mobile measurements. Atmos. Environ. 2014, 89, 664–671. [Google Scholar] [CrossRef]
- Cheng, J.; Tong, S.; Su, H.; Xu, Z. Hourly air pollution exposure and emergency department visit for acute myocardial infarction: Vulnerable populations and susceptible time window. Environ. Pollut. 2021, 288, 117806. [Google Scholar] [CrossRef]
- Lejda, K.; Mądziel, M.; Siedlecka, S.; Zielińska, E. The future of public transport in light of solutions for sustainable transport development. Zesz. Nauk. Transp./Politech. Śląska 2017, 95, 97–108. [Google Scholar] [CrossRef]
- Qazi, M.Y.S.; Niazi, M.H.K.; Niazi, A.R.K. Environmental and Social Challenges for Bus Rapid Transit (BRT) Peshawar, Using Culture as a Moderator: An Empirical Study in Peshawar Khyber-Pakhtunkhwa. J. Manag. Sci. 2021, 15, 170–186. [Google Scholar]
- Inegi, Instituto Nacional de Estadística y Geografía (National Institute of Statistics and Geography, Mexico). Population and Housing Census. Available online: https://www.inegi.org.mx/programas/ccpv/2020/default.html#Microdatos (accessed on 9 February 2021).
- Secretaría de Media Ambiente y Desarrollo Territorial. ProAire Jalisco 2014–2020; Secretaría de Media Ambiente y Desarrollo Territorial (SEMADET, Jalisco): Guadalajara, Mexico, 2014; p. 257. [Google Scholar]
- IMEPLAN. SIGmetro. Available online: https://sigmetro.imeplan.mx/mapa (accessed on 26 October 2020).
- Inegi, Instituto Nacional de Estadística y Geografía (National Institute of Statistics and Geography, Mexico). Topographic Information Vector Data Set F13D55 Tesistán. San Francisco Tesistán Scale 1:50,000 Series III; INEGI: Aguascalientes, Mexico, 2015.
- Inegi, Instituto Nacional de Estadística y Geografía (National Institute of Statistics and Geography, Mexico). Topographic Information Vector Data Set F13D65 Guadalajara Oeste Scale 1:50,000 Serie III; INEGI: Aguascalientes, Mexico, 2014.
- Inegi, Instituto Nacional de Estadística y Geografía (National Institute of Statistics and Geography, Mexico). Topographic Information Vector Data Set F13D75 Jocotepec Scale 1:50,000 Series IIII; INEGI: Aguascalientes, Mexico, 2015.
- Inegi, Instituto Nacional de Estadística y Geografía (National Institute of Statistics and Geography, Mexico). Geostatistical Framework. Population and Housing Census 2020; INEGI: Aguascalientes, Mexico, 2020.
- Imeplan, Instituto de Planeación y Gestión Metropolitana de Guadalajara (Guadalajara Metropolitan Planning and Management Institute, Mexico). Bus Network Geometry in the Guadalajara Metropolitan Area; Imeplan: Guadalajara, Mexico, 2018. [Google Scholar]
- Sistema de Monitoreo Atmosférico de Jalisco. Available online: https://semadet.jalisco.gob.mx/medio-ambiente/calidad-del-aire/sitio-de-sistema-de-monitoreo-atmosferico-de-jalisco (accessed on 23 August 2021).
- Landrigan, P.J. Air pollution and health. Lancet Public Health 2017, 2, e4–e5. [Google Scholar] [CrossRef] [Green Version]
- De Quevedo García Najar, F.; Asprilla Lara, Y.; González Pérez, M.G. Entropías de la movilidad urbana en el espacio metropolitano de Guadalajara: Transporte privado y calidad del aire. Tecnura Tecnol. Cult. Afirmando Conoc. 2017, 21, 138–140. [Google Scholar] [CrossRef]
- Zuk, M.; Tzintzun Cervantes, M.G.; Rojas Bracho, L. Tercer Almanaque de Datos y Tendencias del Aire en Nueve Ciudades Mexicanas. Almanaque de Datos y Tendencias del Aire en Ciudades Mexicanas; Instituto Nacional de Ecología: Mexico City, Mexico, 2007; p. 116. [Google Scholar]
- Chen, Y.; Zhang, Y.; Coffman, D.; Mi, Z. An environmental benefit analysis of bike sharing in New York City. Cities 2021, in press. [Google Scholar] [CrossRef]
- Rojas-Rueda, D. Health impacts of urban bicycling in Mexico. Int. J. Environ. Res. Public Health 2021, 18, 2300. [Google Scholar] [CrossRef]
- ITDP; Institute for Transportation and Development Policy Mexico; Medina Cardona, S.N.; Pérez Campos, A.B. Ranking ciclociudades 2020. Desempeño de las Políticas de Movilidad En Bicicleta en Ciudades mexicanas; ITDP: Mexico City, Mexico, 2021; p. 59. [Google Scholar]
- ITDP; Institute for Transportation and Development Policy Mexico; Medina Cardona, S.N.; Pérez Campos, A.B.; Mareike Wegmann, J. Ranking ciclociudades 2019. Desempeño de las Políticas De Movilidad en Bicicleta en Ciudades Mexicanas; ITDP: Mexico City, Mexico, 2020; p. 62. [Google Scholar]
- Gobierno del Estado de Jalisco (Jalisco State Government, Mexico). MiBici|Sistema de Bicicletas Públicas del AMG. Available online: https://www.mibici.net/ (accessed on 9 September 2021).
- Vamos, J.C.; Garibaldi, F.; Rodríguez, F.; Soto, E. Moverse en Guadalajara 2020; Jalisco Cómo Vamos: Guadalajara, Mexico, 2020; p. 66. [Google Scholar]
- Siteur, Sistema de Tren Eléctrico Urbano (Urban Electric Train System, Guadalajara). BRT Ficha del Indicador 2020; SEPLAN: Guadalajara, Mexico, 2020.
- Siteur, Sistema de Tren Eléctrico Urbano (Urban Electric Train System, Guadalajara). BRT Mi Macro. Available online: http://www.siteur.gob.mx/index.php/sistemas-de-transporte/mi-macro (accessed on 23 August 2021).
- Secretaría del Medio Ambiente y Desarrollo Territorial del Estado de Jalisco (Ministry of the Environment and Territorial Development of the State of Jalisco, Mexico). Datos Abiertos: Estaciones SIMAJ. Available online: https://datos.jalisco.gob.mx/dataset/bases-de-datos-historicas-de-la-calidad-del-aire/resource/5b68f6ee-b8bf-4d96-865b (accessed on 9 September 2021).
- Gobierno del Estado de Jalisco (Jalisco State Government, Mexico). MiBici|Datos Abiertos. Available online: https://www.mibici.net/es/datos-abiertos/ (accessed on 13 September 2021).
- SITEUR, Sistema de Tren Eléctrico Urbano. (Urban Electric Train System, Guadalajara) INFOMEX 2782021. In Datos Técnicos de Transporte. BRT, Ingresos Totales Franja Horaria 2019; SITEUR: Guadalajara, Mexico, 2021. [Google Scholar]
- EPA, Environmental Protection Agency. The AQI Equation. Available online: https://forum.airnowtech.org/t/the-aqi-equation/169 (accessed on 22 September 2021).
- Pelletier, M.-P.; Trépanier, M.; Morency, C. Smart card data use in public transit: A literature review. Transp. Res. Part C Emerg. Technol. 2011, 19, 557–568. [Google Scholar] [CrossRef]
- Inegi, Instituto Nacional de Estadística y Geografía (National Institute of Statistics and Geography, Mexico). National Statistical Directory of Economic Units (DENUE, from Its Initials in Spanish). Available online: https://www.inegi.org.mx/app/descarga/ (accessed on 27 January 2020).
- Rosas Gutiérrez, J.; Chías Becerril, L.; Rosas Gutiérrez, J.; Chías Becerril, L. Los BRT ¿nuevo paradigma de la movilidad urbana mundial? Investig. Geográficas 2020, 103, e60045. [Google Scholar] [CrossRef]
- Calonge Reillo, F. Viajando por la periferia del Área Metropolitana de Guadalajara, México. Entre la pasividad y la agencia. Cuad. Antropol. Soc. 2019, 50, 67–84. [Google Scholar] [CrossRef]
- Mora, R.; Truffello, R.; Oyarzún, G. Equity and accessibility of cycling infrastructure: An analysis of Santiago de Chile. J. Transp. Geogr. 2021, 91, 102964. [Google Scholar] [CrossRef]
- Rosas-Satizábal, D.; Guzman, L.A.; Oviedo, D. Cycling diversity, accessibility, and equality: An analysis of cycling commuting in Bogotá. Transp. Res. Part D Transp. Environ. 2020, 88, 102562. [Google Scholar] [CrossRef]
- Pinzón, T.M.; Arias, J.J. Contaminación vehicular en la conurbación Pereira-Dosquebradas. Rev. Luna Azul 2013, 37, 101–129. [Google Scholar]
- Beleño Montagut, L.; Colegial Gutierrez, J.D. Análisis de la Contaminación por flujo vehicular en un entorno universitario. Bistua Rev. Lla Fac. Cienc. Básicas 2018, 16, 28–41. [Google Scholar] [CrossRef]
- Xu, P.; Dong, N.; Wong, S.C.; Huang, H. Cyclists injured in traffic crashes in Hong Kong: A call for action. PLoS ONE 2019, 14, e0220785. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Xie, S.; Wong, S.C.; Xu, P.; Huang, H.; Pei, X. Severity of pedestrian injuries due to traffic crashes at signalized intersections in Hong Kong: A bayesian spatial logit model. J. Adv. Transp. 2016, 50, 2015–2028. [Google Scholar] [CrossRef]
- Sun, Y.; Mobasheri, A. Utilizing crowdsourced data for studies of cycling and air pollution exposure: A case study using strava data. Int. J. Environ. Res. Public Health 2017, 14, 274. [Google Scholar] [CrossRef] [PubMed]
- United Nations (UN). Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 7 October 2021).
- Figueredo, D.C.G.; Martínez, D.A.; Egurrola Hernández, E.A.; De los Reyes Corona, S.A. Análisis de Riesgo Ante Eventos de Mala Calidad del Aire en el Área Metropolitana de Guadalajara Informe para SEMADET Jalisco; Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO): Tlaquepaque, Mexico, 2018; p. 37. [Google Scholar]
- Leaders. The Promise of Open-Source Intelligence. The Economist, 7 August 2021. Available online: https://www.economist.com/leaders/2021/08/07/the-promise-of-open-source-intelligence (accessed on 8 November 2021).
- Glaeser, E.L.; Kominers, S.D.; Luca, M.; Naik, N. Big data and big cities: The promises and limitations of improved measures of urban life. Econ. Inq. 2015, 41, 21778. [Google Scholar]
- Ochoa-Covarrubias, G.; Molero-Melgarejo, E.; Grindlay-Moreno, A.; Falcon Meraz, J.M. Planeación y movilidad como promotores de ciudades saludables en España y México. In Proceedings of the Fundamentos y Práctica de la Ciudad Sostenible, Actas del Congreso Iberoamericano para la Fundamentación y Práctica de la Ciudad Sostenible, Valencia, Spain, 16 November 2019; Poyatos Sebastián, J., García Soriano, L., Baró Zarzo, J.L., Eds.; Universitat Politècnica de Valencia: Valencia, Spain, 2019; pp. 155–172. [Google Scholar]
Pollutant | Assessment | Unit | Value | Standard [NOM-Mexico] | Number of Days above Standard |
---|---|---|---|---|---|
O3 | 8 h | ppm | 0.146 | 0.070 | 39.50% |
PM10 | 24 h | µg/m3 | 261 | 75 | 41.10% |
CO | 8 h | ppm | 3.6 | 11 | N/A |
NO2 | 1 h | ppm | 0.203 | 0.210 | N/A |
SO2 | 8 h | ppm | 0.013 | 0.2 | N/A |
Station | Data | Temporal Basis * | Number of Records | Source |
---|---|---|---|---|
Air quality | O3 and PM10 concentration | Hour | 87,600 | Ministry of the Environment and Territorial Development (Semadet, Jalisco, Mexico) SIMAJ [36,48] |
Active transportation mode | Bicycle in–out anchors | Minute | 2,388,884 | Government of the State of Jalisco, Mexico: MiBici [49] |
Passengers coming into the BRT station | Hour | 105,120 | Urban Electric Train System, Guadalajara [50] |
Pollutant | AQI 3 1 | AQI 4 1 | AQI 5 1 | |||
---|---|---|---|---|---|---|
[Episodes 2] | [% 3] | [Episodes 2] | [% 3] | [Episodes 2] | [% 3] | |
O3 | 993 | 55.19 | 342 | 52.31 | 96 | 59.26 |
PM10 | 1 | 7.14 | 3 | 100 | 0 | 0 |
MiBici | BRT | MiBici + BRT | |||||
---|---|---|---|---|---|---|---|
Total users | AQI 1 | 2,388,884 | 20,028,250 | 22,417,134 | |||
O3 | 3 | 28,469 | 1.19% | 145,468 | 0.73% | 173,937 | 0.78% |
4 | 6467 | 0.27% | 27,761 | 0.14% | 34,228 | 0.15% | |
5 | 43 | 0.00% | 18 | 0.00% | 61 | 0.00% | |
Total | 34,979 | 1.48% | 173,247 | 0.87% | 208,226 | 0.93% | |
PM10 | 3 | 431 | 0.02% | 0 | 0.00% | 431 | 0.00% |
4 | 69 | 0.00% | 0 | 0.00% | 69 | 0.00% | |
5 | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | |
Total | 500 | 0.02% | 0 | 0.00% | 500 | 0.00% | |
O3 + PM10 | All categories | 35,479 | 1.50% | 173,247 | 0.87% | 208,726 | 0.93% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochoa-Covarrubias, G.; González-Figueredo, C.; DeAlba-Martínez, H.; Grindlay, A.L. Air Quality and Active Transportation Modes: A Spatiotemporal Concurrence Analysis in Guadalajara, Mexico. Sustainability 2021, 13, 13904. https://doi.org/10.3390/su132413904
Ochoa-Covarrubias G, González-Figueredo C, DeAlba-Martínez H, Grindlay AL. Air Quality and Active Transportation Modes: A Spatiotemporal Concurrence Analysis in Guadalajara, Mexico. Sustainability. 2021; 13(24):13904. https://doi.org/10.3390/su132413904
Chicago/Turabian StyleOchoa-Covarrubias, Gabriela, Carlos González-Figueredo, Hugo DeAlba-Martínez, and Alejandro L. Grindlay. 2021. "Air Quality and Active Transportation Modes: A Spatiotemporal Concurrence Analysis in Guadalajara, Mexico" Sustainability 13, no. 24: 13904. https://doi.org/10.3390/su132413904
APA StyleOchoa-Covarrubias, G., González-Figueredo, C., DeAlba-Martínez, H., & Grindlay, A. L. (2021). Air Quality and Active Transportation Modes: A Spatiotemporal Concurrence Analysis in Guadalajara, Mexico. Sustainability, 13(24), 13904. https://doi.org/10.3390/su132413904