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Abstract: Since the Green Deal, ambitious climate and resource neutrality goals have been set in
Europe. Here, process industries hold a unique position due to their energy and material transforma-
tion capabilities. They are encouraged to develop cross-sectorial hubs for achieving not only climate
ambition, but also joining a circular economy through urban–industrial symbiosis with both business
and community stakeholders. This research proposes a data-based approach to identify potential
hub locations by means of cluster analysis. A total of three different algorithms are compared on a set
of location and pollution data of European industrial facilities: K-means, hierarchical agglomerative
and density-based spatial clustering. The DBSCAN algorithm gave the best indication of potential
locations for hubs because of its capacity to tune the main parameters. It evidenced that predomi-
nately west European countries have a high potential for identifying hubs for circularity (H4Cs) due
to their industrial density. In Eastern Europe, the industrial landscape is more scattered, suggesting
that additional incentives might be needed to develop H4Cs. Furthermore, industrial activities such
as the production of aluminium, cement, lime, plaster, or electricity are observed to have a relatively
lower tendency to cluster compared with the petrochemical sector. Finally, further lines of research
to identify and develop industrial H4Cs are suggested.

Keywords: industrial symbiosis; hubs for circularity; cluster analysis; circular economy; process
industry; urban–industrial symbiosis

1. Introduction

Climate change and resource intensity are some of the most challenging problems
humanity faces today. To prevent escalation, action is needed on all levels of society [1–3]. In
recent years, circular economy (CE) and industrial symbiosis (IS) have grown in importance
as sustainable development concepts addressing both challenges. The European Union
sees both as key pillars in the ambitious new Green Deal presented at the end of 2019 [2],
which aims at making Europe climate neutral by 2050. To make this transition a reality, the
Circular Economy Action Plan (CEAP) [3] was launched in March 2020, which outlines the
steps needed to achieve the goals of a fully circular economy. An important actor in this
field is the public–private partnership Processes4Planet (P4Planet), an association of process
industries, research institutions and other organisations aiming for a circular and climate
neutral economy in Europe [4]. Of the prominent accelerators for this transformation,
one is the concept of hubs for circularity (H4C). In these hubs, energy, materials, services,
infrastructure and information are shared with the aim of achieving climate and resource
neutrality [4]. Such a self-sustaining economic ecosystem involves a manifold of regional
stakeholders from industry, civil society, local authorities, and RTOs to deploy full-scale
urban–industrial symbiosis (UIS) and circular economics [4].

Hubs for circularity address the implementation of the circular economy at a meso-
level, while industrial clusters are expected to have industrial symbiosis as a central strat-
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egy [5,6]. IS refers to collaboration models that engage two or more organisations towards
valorisation of under-used resources and services across sectors and value chains [7,8].
Such models often result in novel sourcing of required inputs and value added destinations
for by-product outputs [7,9]. The scope also includes infrastructure and service sharing to
improve business and operating processes [10,11].

In the academic literature there are two main concepts related to H4C: zero waste
hubs and urban–industrial symbiosis. Zero waste hubs originated in 1997 [12,13], focusing
on industrial waste but not restricted to industry boundaries. The concept builds on
considering waste as an under-used resource, proposing a hierarchy for end-of-life use
based on the ladder of Lansink [14]. True to this approach, Accenture [6] developed a
strategy for hubs in Europe targeting net-zero emissions with a focus on energy-intensive
industries. The second concept, urban–industrial symbiosis [15,16], introduces synergies
among industries and cities, acknowledging the importance of urban collaboration to
effectively reduce the environmental impact in a region. Such strategy becomes more
prominent as the distance between industries, traditionally established in suburban areas,
reduces due to the expansion of cities in regions around the world [17].

1.1. Circular Economy and the Relevance of European Cities and Industry

The CE is conceptualised as a regenerative economic system that keeps the use of
resources within the planetary boundaries while reducing the footprint of consumption in
Europe [3]. The CE framework aims to decouple economic growth from natural resource
depletion and environmental degradation [18]. The implementation of such a framework
creates profitable opportunities where value creation integrates environmental perfor-
mance, joining improved energy and material productivity with the access and creation to
green market places [19].

The economic model of the circular economy (CE) has gained attention and attraction
in the last 15 years [20]. It aims at replacing the linear economy that follows the ‘take,
make and dispose off’ principle by ‘closing the loop’. The linear economic model exposes
risks regarding the finite supply of raw materials such as resource scarcity and price
volatility [7,21]. Limited supplies also increase material dependency, especially in the
European Union. According to the CEAP on critical raw materials [22], the European Union
is dominated by the manufacturing and the refining industry compared to the extractive
industry. The need for access to primary sources, including ores, concentrates and processed
or refined materials is vast and crucial for European industries’ wealth—even its survival—
and the associated jobs and economic benefits. However, most primary raw materials are
produced and supplied from non-European countries, indicating a supply risk [22]. The
risks have supported the idea to start valorising waste and growing a more circular model.

The circular economy also plays a critical role in helping to reduce climate change [23,24],
enabling goods and services with lower emissions. Based on the ladder of Lansink [14],
the CE policy in Europe integrates the principle of preserving the value of materials with
a cascade approach, leaving energy recovery as the last option (omitting disposal), thus
avoiding unnecessary emissions [14]. The merging of both economic and environmental
goals has led the CE concept to become one of the most prominent sustainable development
models in academic and policy domains [14,25].

To implement the CE concept, action from a diverse range of stakeholders is critical.
Crucial actors are industries and cities establishing symbiotic relations towards higher
levels of circularity [15,16]. The relevance of cities in the creation of industrial hubs for
circularity is high. Although cities occupy only around 3% of the planet’s surface, the
concentration of the population in urban areas is over 50% and is expected to increase
to almost 70% by 2050 [26]. Urban areas are related to 75% of the world’s resources
and are linked to 60–80% of the total greenhouse gas emissions [16,27]. Consumption of
domestic materials in cities is projected to reach approximately 90 billion tonnes by 2050 [28].
European figures show an urbanisation rate of 72% in 2015 and a population density of
3000 residents per km2 [29]. High-density urbanised areas have implications for industries
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in terms of product and service demands and the availability of qualified professionals.
Moreover, European cities enable a concentrated demand for industrial products and can
recirculate resources back to the industry at scale. Hence, the collaboration between cities
and industries is vital to the European policy agenda to reach common goals.

On the industry side, energy-intensive industries (steel, chemicals, cement and refin-
ing, etc.) provide the material and energetic building blocks to virtually any sector [5,30].
Therefore, they concentrate massive amounts of energy, resources, waste and emissions in
industrial sites and clusters. Such profile makes the process industry significant in terms of
environmental impact and economic development. As an example, in 2018, the chemicals
industry in Europe represented 20.7% of the world output sales in Euros [31], producing
about 330 Mt of product per year [32] but also generating CO2 emissions at 27% of the total
industrial CO2 emissions in the EU ETS in 2018 [33]. In the last few decades, many efforts
have been made to reduce process emissions via energy and resource efficiency. The energy
consumption per production unit in the chemical industry, including pharmaceuticals,
was nearly 55% lower in 2017 than in 1991 [31]. Of the key features enabling the sector’s
transition to a net-zero economy, one is its clustering capacity. This does not only enhance
competitiveness [32,34] but also answers to socio-environmental questions by making
effective synergies between different processes and sectors or communities in a specific
region [9,35].

Examples are given for the steel and cement sector, industries that position Europe as
a world reference. In 2019, the steel sector accounted for 10% of the world output (metric
tonnes) in the EU [36]. Steel is fundamental for both the manufacturing and the construction
industry and thus for the logistic development of any region. In 2018, the steel sector made
up for 22% of the total industrial CO2 emissions in the EU ETS [33]. Nevertheless, over the
last 40 years the EU steel industry has reduced its energy consumption by 50% owing to
higher scrap recycling levels and a decrease in production [37]. Likewise, in 2018 cement
production in EU-28 represented 4.4% of the total world production (metric tonnes) [38].
Cement is fundamental for building durable structures as it is a hydraulic binder in
concrete [32]. The CO2 emissions from the sector in Europe take up a 21% share of the
total industrial CO2 emissions in the EU ETS in 2018 [33]. However, an essential aspect
of this industry is its ability to use fuels derived from waste and biomass to produce heat
in its kilns. Between 1990 and 2017, the EU-28 cement industry has reduced its gross CO2
emissions per tonne of product by 13% [38].

Industrial sectors and urban centers have essential relevance towards a circular econ-
omy. Therefore, synergies among industries including cities are a natural way forward.
Industrial symbiosis strategies precisely focus on such synergies, and to facilitate urban–
industrial symbiosis, the identification of regions and clusters is essential.

1.2. Cluster Analysis for Identification of Hubs

Cluster analysis is an exploratory analysis tool that finds structures and patterns
in data sets. Clustering algorithms are unsupervised learning algorithms that identify
patterns from untagged data [39].

According to Estivill and Castro [40], there is a top-down and bottom-up view to clus-
tering. In the top-down approach, clustering is the process of segmenting a heterogeneous
population into a number of homogeneous subgroups. In the bottom-up view, clustering is
defined as “finding groups” in a data set by a specific similarity criterion. These should be
grouped into the most homogeneous groups possible, maximising the difference between
groups and minimising the differences among the elements of each group. However,
given the diversity of methods and purposes, other views and classification strategies are
possible [41].
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Relevant examples of applying clustering methods range from identifying groups of
indicators across frameworks to the segmentation of regions and industries according to
certain parameters. Superti et al. [42] organised circularity indicators into common groups
using hierarchical clustering based on a selection of circular economy projects and frame-
works. Dunkelberg et al. mapped the German plastic industry using clustering analysis
to support waste heat utilisation strategies [43]. Arbolino et al. identified homogeneous
regions to improve the monitoring and evaluations of regional waste policies [44] based
on economic indicators. Although these applications relate to the circular economy, none
entered into developing cross-sector hubs, including industries and cities.

The latest European projects on industrial symbiosis potential in regions indicate the
importance of geo-based data. An initial approach in the EPOS project led to the mapping
of process industries with high potential for industrial symbiosis [45]. The procedure was
further elaborated in the SCALER project, adding potential exchanges among the industries
in a specific area [46]. This regional approach is turned into an implementation strategy in
the INCUBIS project, where incubators are located around Europe to promote symbiosis,
mainly focusing on industrial waste heat utilisation [47]. The hub approach is taken
forward by the Process4Planet partnership supported by the European Commission [4],
considering the geospatial character for clustering as crucial.

Different clustering methods have differing degrees of complexity. A total of three
algorithms are compared on a set of location data of European industrial facilities (E-
PRTR): K-means clustering, hierarchical agglomerative clustering (HAC) and density-based
spatial clustering of applications with noise (DBSCAN). The first, K-means, is one of the
simplest methods capable of both supervised and unsupervised clustering based on the
number of clusters ‘K’ in a given dataset [41]. Due to its simplicity and versatility, it
is one of the most used clustering methods. The second one, HAC, enables bottom-up
clustering based on the distance between points or similarity criteria [48]. Finally, DBSCAN
allows for a more sophisticated clustering based on the distance between data points
and restrictions about the number of connecting points to each point in a cluster [49]. By
selecting this range of methods, we can explore the suitability of clustering methods for a
first identification of hubs.

Using clustering methods to define regions that can become hubs for circularity can
provide useful information for identifying regional circular economy strategies, fostering
industrial symbiosis and involving a maximum number of cities. This paper aims to make
a first-of-a-kind explorative analysis of how cluster analysis methods can support the
identification of regions with a high potential for hubs for circularity.

The approach of this study is two-fold: in the first phase, the clustering methods are
investigated and compared using both general statistical validation techniques as well
visual inspection of the data. In the second phase, the method that is best suited for hubs
identification, based on the nature of the data, is selected and used to generate insights on
clustering for circularity.

2. Methodology

A five-step cyclical methodology was developed to identify H4Cs using clustering
algorithms as shown in Figure 1. With the goal set, the checks required to verify a suit-
able database were defined and the clustering algorithms for comparison and selection
described. To end, the circularity indicators were identified in order to enable insights and
develop a mapping tool to visualise the clusters.
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Figure 1. Methodology: using clustering methods to identify hubs for circularity.

2.1. Goal

We explored the options for defining circularity regions in Europe, using differ-
ent clustering methods, and focused on distributing industries and cities, as they are
critical stakeholders.

The definition of regional circularity is broad, but the pure geographical aspects of the
concept are central. The elements considered for this exploration are process industries in
Europe as reported in the European Pollutant Release and Transfer Register (E-PRTR) [50],
supplemented with information on the concentration of urban areas from the EU Urban
Mobility Observatory [51]. Spatial clustering techniques allow to identify groups of location
points. They are of a specific size and concentration that are not able to appear randomly
and show a visible similarity between each other.

2.2. Database

Information related to the location of an industry was the starting point. The data
on industrial facilities, retrieved from E-PRTR, include all 27 European Union member
states and Iceland, Liechtenstein, Norway, Switzerland, and the United Kingdom. The
register contains data on main pollutant releases to air, water and land of more than
30,000 industrial plants. These facilities cover a total of 65 economic activities across
9 industrial sectors. Besides categorising plants in the above sectors, E-PRTR also sup-
ports classification according to NACE codes (Nomenclature of Economic Activities in
the European Communities). In this study, data were collected by choosing a set of
24 NACE-coded activities [50]. The database is considered solid owing to the broad range
of industries, the relevance of the pollutants for clustering into H4Cs and the continuous
improvement of the reporting since 2007 [50].

With the database selected, we tested its suitability for clustering methods. The cluster
tendency assessment [52] evaluated whether or not the data have non-random structures.
Such evaluation was necessary because the algorithms cluster any type of data, regardless
of the data structure. In this step, first a visual inspection was performed to assess the
generation of meaningful clusters, and then the Hopkins statistic was calculated, yielding
the probability of a uniform data distribution [53].

For the analysis itself, open-source Python libraries were used, in casu the Py-clustertend
package to assess cluster tendency [54].

2.3. Clustering Methods

As introduced above, three representative cluster methods were selected, known to
have increasing sophistication: K-means, HAC and DBSCAN. K-means and HAC require
to determine the optimal number of clusters. Specifically, for this research, we used two
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different methods: the elbow method [55] and the average silhouette method [56]. The
results of these three methods can vary, hence choosing the right value (if existing) relies on
direct inspection of the clustering results. The K-means method served as pilot for testing
the methods for an optimal number of clusters.

In agglomerative clustering (HAC), the hierarchical clustering is performed from a
bottom-up perspective. Each data point starts in a potential cluster, and clusters are merged
using a proximity measure such as distance or similarity. The algorithm also requires
either a specification of the number of clusters or a distance threshold at which clusters
will no longer be merged. The second option is excellent for the H4C application because
it allows to specify clusters with a certain distance range [40,48]. The algorithm in Scikit-
learn for the HAC method does not support haversine distance [57] as a distance metric,
but this can be solved by generating a precomputed distance matrix that calculates circle
distances between all data points. This, however, considerably increases the computational
complexity of this algorithm. The HAC algorithm has different linkage criteria. The single
linkage criterion has the ability to form clusters of non-spherical shapes as compared
to circular clusters in other linkage criteria. Likewise, it is able to create larger clusters
with a tendency to split such clusters into groups of multiple smaller clusters. Therefore,
we selected the single linkage for HAC. The results of the HAC method with a distance
threshold of 25 km criteria are discussed below.

DBSCAN requires two main parameters [49] to be set. The first is the epsilon value
(EPS) that determines the distance between two data points needed to be considered part
of a cluster. When two data points lay within an EPS range of each other, they are called
neighbours. The second parameter is called minPoints and sets the minimum number
of data points required to define a dense region or cluster. Parameters can be chosen
intuitively: the EPS parameter can be transformed into an exact range in kilometres, which
allows to choose a specific range. The minPoints parameter allows to determine the
minimum number of industrial sites to be identified as a cluster with the rest of the data
points categorised as outliers. The DBSCAN algorithm classifies data points (i.e., industrial
locations) into three types in order to process outliers. The first one covers the core points:
it contains at least the minimum number of points (minPoints; including the point itself)
as neighbours with radius EPS. The second type is the border point that is reachable from
a core point, with less than minPoints number of points within the neighbouring area.
Finally, the outlier point is a point that is not a core point and not reachable from any core
point [49]. The results of the DBSCAN method with a distance threshold of 25 km and
minPoints = 5 are used for visualisation in next sections.

Here again, open-source Python libraries were used to perform the analysis. They
include Scikit-learn, a free software machine learning library and the main library used for
the clustering methods [58,59]; NumPy, one of Python’s fundamental libraries for scientific
computing [60]; and Pandas, an open-source data analysis and manipulation tool [61].

2.4. Comparison and Validation

The next step in the selection process was to compare the three algorithms via cluster
validation statistics and visualisation. Cluster validation is a technique that evaluates
the quality of the clustering results [62]. A total of three categories, internal, external and
relative cluster validation [63,64], are distinguished. The first only uses internal information
to indicate the quality of the clustering by applying the average silhouette score. In the
second category, the clustering results are visualised on a map of Europe, thus offering
crucial spatial insight on how the clustering is performed. Lastly, relative validation
techniques evaluate the clustering by changing the values of the clustering parameters
(sensitivity), which is in essence a combination of the internal and external validation
technique. This last validation option was used for DBSCAN because the silhouette score
was not suitable for the type of clustering (density-based) performed.
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Table 1 shows the overview of the clustering algorithms and validation methods
applied. The validation results are discussed and used to evaluate and compare the
algorithms and select the appropriate algorithm for further application.

Table 1. Types of validation applied to the selected clustering algorithms.

Clustering
Method

Internal Validation
(Silhouette Score)

External Validation
(Visual Maps)

Relative Validation
(Parameter Sensitivity)

K-means x x
HAC x x

DBSCAN x x

2.5. Hubs for Circularity Indicators

In a next step, the research gathered statistics and insights on the results of the
clustering. Additional parameters are added to the data model alongside the geolocation
used at first: data on industrial activities of the facilities, data on European cities, CO2
emission data of the industry sites, and industrial symbiosis options across sectors.

Data on European cities provided helpful information on how clusters are located in
relation to the urban zones in order to account for urban–industrial symbiosis. City data
were included as data points into the model. Data are gathered from Eltis [51], Europe’s
main observatory on urban mobility, covering all cities in the EU, including Norway and
the UK but excluding Iceland, Switzerland and Liechtenstein. Eltis is a central place for
the exchange of information, knowledge and experience on European cities. It allows for
filtering of data points based on the population in a city centre as well as larger urban
zones such as communities.

In this paper, cities were defined by having a density of more than 1500 inhabitants
per square km and more than 50,000 inhabitants according to European standards for a
city centre [29]. From the Eltis dataset, data points were chosen for larger urban zones that
had populations of more than 100,000 inhabitants. Data on urban areas in Switzerland,
Iceland and Liechtenstein are gathered from the OECD, again for populations of at least
100,000 inhabitants. In total, 567 data points were collected [65].

CO2 emission data associated with industrial sites are included in the E-PRTR [50].
Not all installations listed in the register have an associated value for emissions due to
varying reporting policies, but most large emitters are included. These are useful to visually
identify and tag them, either within or outside of the potential clusters.

Potential synergies across process industries or in urban-industrial clusters were a
vital part of the result analysis. A preliminary list of IS synergies was extracted from the
published Insights of the Horizon 2020 project EPOS. The documents summarise relevant
outcomes for the H4C study, such as EPOS Insight #17 on industrial symbiosis. It discusses
high-potential cross-sectorial cases and their impact in Europe, identifying 20 different
generic IS cases [37]. Such cases can be generalised in and across sectors’ profiles of the
process industry, such as in steel, cement, chemical, mineral and engineering sectors [66].
The list of 20 cases was applied to a specific cluster to grasp the size of the (potential)
cross-sector collaboration in the cluster.

Again, open-source Python libraries were used to perform the analysis, including
Matplotlib, a library for creating data visualisations [67]; Folium, facilitating data visualisa-
tion on interactive leaflet maps [68]; and Seaborn, another data visualisation library that is
based on Matplotlib [67].

3. Results

In this section, the collected data are analysed according to each methodology, com-
paring the clustering algorithms and assessing the type of clusters and insights found per
selected algorithm. After selecting the final algorithm, we analysed the identified clusters
to gain insight on their profile and their potential as a hub for circularity.
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3.1. Database

In a first explorative analysis, we used the E-PRTR database for localising industrial
sites in Europe. To test the suitability of the database, we evaluated the uniformity of
the installation distributions. Through visual inspection (Figure 2), cluster formation was
observed in known industrial hubs such as port areas (Antwerp and Rotterdam, etc.) or
the Ruhr area. This was further verified by the Hopkins statistic.
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The Hopkins statistic was used as a statistical test with the null hypothesis stating that
the data are uniformly randomly distributed [52,69]. A value close to zero means that the
data are not uniformly distributed and clustering will be meaningful. For higher values
(starting from 0.5) data are too uniformly distributed and clustering is not considered useful
for the problem. The calculated value of the Hopkins statistic on the E-PRTR database is
0.01187, indicating a very high tendency towards clustering.

3.2. Clustering Methods

In a second step, validation of each of the three selected clustering algorithms, K-
means, HAC and DBSCAN, was performed. The methods outlined in the methodology
chapter were used, namely the average silhouette score method for internal validation.
Visualisation of the results is presented for external as well as relative validation (variation
of parameters) mechanisms. In Section 2.4, Table 1 shows the overview of the validation
methods per algorithm.

K-means

The method requires a priori the number of clusters. Using the elbow method, we
found seven to be the optimal number of clusters. K-means uses the Euclidean distance
as distance metric, however, because geolocation coordinates are not linear, this method
does not return entirely accurate results. As shown in Figure 3, the size of the clusters



Sustainability 2021, 13, 13906 9 of 25

is too large to be practical for articulating local hubs (they are too few and too large
to be realistic). In the figure, only five colours can be identified, due to the excessive
agglomeration of datapoints in such clusters. A total of two additional colours suggested
marginal clusters for datapoints spread in continental African and American locations
associated to European countries.
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Figure 3. K-means clustering visualisation; using the elbow method, the optimal number of clusters
is 7 (=K).

The opposite, i.e., a high value for the optimal number of clusters, is found using the
average silhouette score method. It resulted in up to 1000 clusters, divided in intervals
of 50 (Figure 4) with a coefficient optimum at 700 clusters. The coefficient shows least
variation between 600 and 850 clusters, in a range of 0.64 to 0.65, peaking at 700 clusters.
Such wide variation makes it difficult to identify a feasible number of clusters and thus the
realistic potential for hubs for circularity.
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The average silhouette method returned very high values as optimal number of
clusters, but they present either a large range of options or a high degree of sensitivity to the
numbers of clusters from the industrial database. This was confirmed in extra visualisations
showing that certain neighbouring data points were still grouped into different clusters,
and comparatively closely grouped data points were often clustered correctly. Upon further
comparison, K-means was discarded as an algorithm for determining the optimal number
of clusters.

HAC

The HAC algorithm (hierarchical agglomerative clustering) requires a specification
of a distance threshold at which clusters are no longer merged. For HAC, a precomputed
distance matrix was needed to calculate the circle distances between all data points, which
considerably increased the computational complexity of this algorithm. The results of the
HAC method used a distance threshold of 25 km for different linkage criteria, referring to
the average distance for symbiosis between sites in the United Kingdom [70].

Figure 5 shows the output of the HAC algorithm zooming in on Western Europe [71].
The trilateral industrial zone (western Germany, southern Holland and Flanders) is clearly
visible from the plot. The large cluster in western Germany, next to the ports of Antwerp
(pink), Rotterdam (purple) and also Ghent (grey), and a long cluster geometry (blue) in the
centre of Belgium are identified. The downside to such a chained cluster effect is that the
endpoints are distanced further from each other than the data points in other clusters.
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Figure 5. Visualisation of clusters generated by the HAC algorithm with 25 km threshold.

The algorithm generated 628 unique clusters, with the largest cluster consisting of
103 data points. The silhouette score for the single linkage method with a 25-kilometre
range is 0.548. The results with HAC are preferred over K-means because of the ability to
influence the clustering based on a distance threshold, and the unnecessity to determine a
priori the number of clusters.
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DBSCAN

From the start, the DBSCAN algorithm was considered to have several advantages to
make it suitable for the H4C application: the automatic detection of noise and robustness
to outliers and parameters are intuitive, easy to set and offer the needed control over the
outcome of the algorithm. We chose a range of 25 km (EPS) and five minimum points
(minPoints). The distance parameter was chosen based on the input from literature on
the median distance for a symbiotic relationship [70]. The minimum number of points is
chosen on experimental evidence from previous projects and studies aiming for clusters of
a significant size and impact [45,72].

With DBSCAN, 92 clusters were identified using 969 of the 1918 data points, the other
half being categorised as not clustered, thus noise data. The silhouette score for these
results is −0.0158, because the method is not made to validate noise-labelled points. It
assumes that each data point is clustered, thus filtering out the noise would make the
score very high because all clusters would be well-defined when non-clustered data are
not considered. Alternative internal validation methods are available [73], but they are not
applicable for comparison with the other two methods (K-means and HAC).

Regarding the external validation, the DBSCAN results were visually very similar to
HAC clustering with the single linkage criterion. The linear cluster is of particular interest
due to its unconventional shape (Figure 6). While it may seem undesirable to have clusters
in a linear shape, it is clear that all data points are reachable through the cluster core points.
A downside of this linearity, however, is that the endpoints can be reached by core points
in other clusters, meaning that the locations can be part of multiple clusters at the same
time. This makes DBSCAN not fully deterministic [49], but additional testing confirmed
that the frequency of returning linear clusters was too low to have a significant effect on
the results.
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Regarding the relative validation of the algorithm, the results were sensitive to the
minimum number of datapoints to form a cluster. This follows the intuitive trends: with
an increasing minPoint parameter and decreasing distance between points (range), more
outlier data points were identified and less clusters were found; the results being more
sensitive for lower numbers of minPoints compared to higher numbers (Figure 7).
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The experiment confirmed that the advantages of the DBSCAN algorithm are manifold:
it has automatic detection of noise, it shows robustness to outliers, its parameters are easy
to set, and we have indirect and in-built influence over the outcome of the algorithm.

DBSCAN was chosen over the HAC algorithm, primarily because the minimum point
parameter in DBSCAN assures that all core points within a cluster are reachable from one
another, which is imperative for hubs that aspire circularity. Hence it becomes a condition
on the density of data points, an option that is not available when using HAC. The latter
gives no guarantee that a minimum number of other data points will be present within a
radius around a certain data point.

3.3. H4C Indicators

For incentivising hubs for circularity, we used five indicators in collaboration with
Process4Planet [4]: clusters by country, by sector, by synergy, urban-industrial clusters and
zero-carbon clusters. The clusters by country and by sector are presented following the
DBSCAN output, and additionally by adding cities as actors for clustering. We also show
the impact of clusters in terms of CO2 emissions and finally calculate the potential number
of synergies for the largest cluster in the database using the matrix of generic cases from
the EPOS project [45].

Clustering overview (size, countries and sectors)

In order to understand the structure of the clustering results, Figure 8 shows the size of
the identified industrial clusters, with only eight clusters having more than 20 installations
(data points). A prominent outlier in western Germany with 103 data points is shown on
the right side of the figure.
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Figure 9 shows the number of clusters per country. Clusters that span over multiple
countries are added to each country individually. The figure shows a distribution disparity
between western and eastern Europe.
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The largest number of clusters is found in Germany (24), followed by Spain (17),
Italy (14), the UK (13) and France (13). Some smaller western European countries have only
one cluster, in some cases even involving installations in other countries. We must keep in
mind that the dataset is a subset of the total industrial facility population, thus the actual
number may be higher, considering sites beyond the subset reported in the database.

Table 2 shows the number of industrial sites clustered per industrial activity and the
total number of sites corresponding to each activity in the database. Facilities in aluminium
and electricity production, and in manufacturing of cement, lime or plaster all show a
relatively low percentage of clustering. They return an average between 45 and 60%, whilst
the petrochemical sector scores higher with more than 70% clustering.

Table 2. Clustering per industrial type, showing some sectors with 100% of their installations in clustered (glues, industrial
gases, man-made fibres, ceramic products and precious metals).

Industry Type Amount
Clustered Total Percentage

Clustered

Aluminium production 21 45 47%
Copper production 3 9 33%

Extraction of natural gas 2 16 13%
Lead, zinc and tin production 5 7 71%

Manufacture of basic iron and steel and of ferro-alloys 97 159 61%
Manufacture of cement 165 366 45%

Manufacture of dyes and pigments 6 7 86%
Manufacture of fertilisers and nitrogen compounds 15 31 48%

Manufacture of glues 1 1 100%
Manufacture of industrial gases 25 25 100%
Manufacture of lime and plaster 65 110 59%
Manufacture of man-made fibres 2 2 100%

Manufacture of mortars 1 1 100%
Manufacture of other ceramic products 1 1 100%

Manufacture of other chemical products n.e.c. 4 8 50%
Manufacture of other inorganic basic chemicals 47 65 72%
Manufacture of other organic basic chemicals 77 99 78%

Manufacture of plastics in primary forms 16 24 67%
Manufacture of refined petroleum products 94 130 72%

Manufacture of synthetic rubber in primary forms 1 2 50%
Other non-ferrous metal production 1 2 50%

Precious metals production 1 1 100%
Production of electricity 453 807 56%

Urban clusters

The addition of European urban zones and cities shows to increase the clustering
opportunities. The number of clusters goes from 92 to 119 clusters, implying 254 additional
industrial facilities clustered, but also indicating that industrial facilities are located close to
cities (Supplementary Materials: Database of cities per cluster.). Therefore, the addition of
urban parameters is proven useful for the data analysis, offering the potential for exploring
and exploiting urban industrial symbiosis.

Table 3 shows clustered cities per country. The algorithm groups about 40% of the
cities. The higher numbers are for densely populated countries such as Belgium and The
Netherlands with over 65% of the cities clustered. Countries with low population and
industrial density such as Norway and Sweden show limited to no cities clustered.
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Table 3. Overview of the clustered cities per country, showing the countries with the highest
percentage of cities clustered (Belgium, Germany and Netherlands, etc.).

Country Number of Cities Number of Cities
Clustered

Percentage
Clustered

Belgium 8 6 75%

Germany 81 57 70%

Netherlands 25 17 68%

Cyprus 3 2 67%

Spain 61 37 61%

Austria 5 3 60%

Greece 10 6 60%

United Kingdom 96 56 58%

Ireland 2 1 50%

Slovenia 2 1 50%

Portugal 17 7 41%

France 74 30 41%

Italy 46 16 35%

Czech Republic 6 2 33%

Croatia 4 1 25%

Denmark 4 1 25%

Poland 30 6 20%

Switzerland 10 2 20%

Finland 6 1 17%

Romania 24 4 17%

Hungary 13 2 15%

Bulgaria 8 1 13%

Estonia 2 0 0%

Georgia 1 0 0%

Iceland 1 0 0%

Latvia 1 0 0%

Lithuania 4 0 0%

Luxembourg 1 0 0%

Malta 1 0 0%

Norway 2 0 0%

Slovakia 5 0 0%

Sweden 13 0 0%

Ukraine 1 0 0%

Carbon dioxide emissions

Using CO2 emission data from Carbon4Pur, a pro-rata comparison was made showing
the percentage of total CO2 emissions per country in blue and the percentage of industrial
installations clustered in the country in red. The Benelux region heads the table with the
highest number of groups, indicating the high potential of the region for developing hubs.

France and Germany have a similar profile. In France only 56% of the data points
are clustered (red), although that percentage accounts for 77% of the total CO2 emissions.
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Germany highlights 90% of total CO2 emissions clustered compared to 77% clustered data.
This indicates that most large emitters in these countries have the potential to articulate
hubs for gaining value from emissions.

Figure 10 shows clustered CO2 emissions per country. A total of 100%, shown in the
red bar, indicates that all the datapoints of the corresponding country were clustered. A
total of 100%, shown in the blue bar, represents the emission of the clustered installation
for that country.
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emissions for the clustered installations (blue bar).

It is observed that the largest CO2 emitters in western Europe are clustered (indicated
by the colours in Figure 11 and per countries in Figure 10), while most eastern European
large emitters are not (indicated in black on the map). Likewise in southern Europe, various
large emitters are seen to be isolated. Such regional differences indicate that the hubs for
the circularity concept is likely to vary from region to region, with differing potential to
achieve climate and resource neutrality by 2050.
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Potential synergies

To finalise, we used the cross-sectorial symbiosis matrix from the H2020 EPOS
project [45] to roughly estimate the number of potential collaborations between indus-
tries of different sectors. We applied the matrix to the western Germany cluster, showing
that for several sector combinations, numerous industrial symbiosis opportunities were
highlighted. We identified 408 cross-sectorial combinations between sites in the chemi-
cal and steel sectors, each combination having 17 different IS cases. Table 4 gives a full
overview of the cases per sector pair and the total number of cases in western Germany
(cluster #39 in the database).

Table 4. Synergies overview for the western Germany cluster (cluster id 39) using the generic
IS matrix.

Sector
Combination

Number of Potential
Synergies

Number of Cross-Sectorial
Combinations

Chemical-District 8 576
Chemical-Steel 17 408
Steel-District 8 408

Chemical-Mineral 7 144
Mineral-District 2 144

Chemical-Cement 16 120
Cement-District 7 120

Steel-Mineral 6 102
Steel-Cement 15 85

Cement-Mineral 8 30

This way to quantify the number of potential synergies is the first step towards
identifying symbiosis opportunities between different industries in a cluster. The analysis
was performed by using a simplified matrix that did not include all relevant sectors nor
all potential cases. A more elaborated matrix with more cases and sectors is considered



Sustainability 2021, 13, 13906 18 of 25

to yield a more realistic synergy potential per industrial facility as well as per cluster as
a whole.

4. Discussion

In this section, the clustering results are compared with the outcomes of the H2020
projects and discussed with the view of implementing hubs for circularity. Non-technical
factors that are critical to the development of industrial hubs are examined.

4.1. Benchmark of Results

In the EPOS project, a first attempt was made to map the potential for industrial
symbiosis in the process industry in Europe using a geographical base [74]. This approach
was further developed in the SCALER project, leading to a map of 100 synergy cases
involving 18 industrial sectors operating across Europe [75].

A first point of comparison concerns the distance between sites for successful sym-
biosis. The average distance between coupled sites in SCALER was around 1000 km.
Geographical density levels were used in a radius of 100 km computed, arguing that
such distance was still within the local transport standards for materials trading [75]. The
clustering method proposed in this study enables a flexible selection of distances, currently
set at 25 km but allowing for shorter or longer distances. With a 25 km distance, around
one third of the emissions do not correspond to clustered facilities for 2017 (Supplementary
Materials: Database of industrial facilities per cluster). This indicates that higher distances
are convenient to enable a higher emission reduction potential using clustering strategies.
Additionally, the proposed method ensures a minimum number of sites in the selected
distance, which enhances the possibilities for exchange.

The SCALER study identified several areas of high industrial density based of the
number of sites in a 100 km radius: Benelux, western Germany, northern France, north-
ern Italy, Valencia-Castellon and UK midlands. These regions were also detected with
DBSCAN, meaning that sites are also surrounded by at least four other sites in a radius
of 25 km. Because the E-PRTR database has a central role in both studies, similar results
were expected, however, the DBSCAN method also enabled the identification of clusters of
diverse geometry at different regional scales. Such clusters often have a connection with
geographical presences such as ports, rivers and capital cities, etc. Clusters associated with
such can often capitalise on similar strategies to develop a more efficient hub implemen-
tation. In Figure 6, the algorithm identifies the dark blue cluster along the Maas River
flowing from Belgium to The Netherlands.

In terms of industrial symbiosis, the SCALER results present a broader top-down
approach while this paper enables a more local bottom-up approach. The SCALER project
mapped 39 synergies involving 18 sectors at the European and regional level, missing the
local cluster level. In this paper, a more focused approach was used, mapping 20 synergies
covering five sectors for a specific cluster. Such an approach can be used to explore the
potential of cross-sectoral collaboration in any other cluster, complementing the results of
SCALER and providing a specific methodology and database to support further research
that promises relevant benefits for the regional development. According to the broader
SCALER study, the potential benefits are situated in around EUR 22 billion of added value,
EUR 5 billion of added tax, 230,000 new direct jobs, EUR 11.5 billion in savings related
to waste management and 2.5 billion m3 of water saved [75]. In addition, the symbiosis
implementation would save around 91 million tons of CO2 [75].

A fundamental remark towards both the SCALER and the current study is the database
used to identify hubs. E-PRTR lists installations in terms of energy and emissions, but
there is still a significant number of industrial installations not included due to a smaller
size or lower level of energy or carbon intensity [75]. These industrial sites also need
to be considered, especially in regions with lower industrial densities, i.e., when large
installations seem to be in isolation. Smaller companies could find business opportunities
in the concentration of resources from larger installations. Moreover, small companies
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could facilitate collaboration and thus help create the industrial ecosystem needed to form
a hub for circularity, supporting, for example, the link to cities.

Regions with a high density of industrial activity can develop superior levels of
energy and material efficiency; however, this is subject to contextual factors. A Japanese
study, based on spatial econometrics for paper and cement industries, indicates that
there are not only sectoral variations related to the effects of industrial density but also a
diversity of factors that may lead to positive and negative effects at an increasing industrial
concentration [76]. Some symbiosis studies and projects such as EPOS include contextual
factors beyond techno-economic assessments, including legal, spatial and social aspects [57],
thus acknowledging the relevance of non-technical factors. In order to develop hubs for
circularity, industrial density should only be considered as a starting point; additional
critical factors should be taken into account to assess the implementation and the impact of
hubs for circularity.

4.2. Implementing Hubs

The European Waste Hierarchy Framework Directive [77], in combination with the
original Ladder of Lansink [14], offers a basic approach for developing an implementation
framework for circularity in hubs. Such a framework does not only set a preference
default for projects but also enables the identification of specific symbiosis cases tailored
for process industries.

Theoretical circular economy frameworks tend to be compressive, involving as many
sectors as possible. They range from the original 4Rs strategy (reduce, reuse, recycle
and recover) to more than 12Rs [78]. Some R-verbs mainly apply to end-users of spe-
cific products and thus have minor relevance to the industry. On the other hand, more
implementation-oriented approaches limit the number of strategies to a minimum. A
good example is the 3Rs strategy from the UN in the Asian-Pacific region to promote
sustainability principles [79].

We propose a simple frame for the European process industries based on the 4Rs
strategy. In Figure 12 industrial sectors are represented with a dual role as source and sink
of resources. For each sector, the 4Rs strategy is defined in view of incentivising circularity.
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At the top of the ladder, to reduce resource inputs and emissions, industries can
jointly invest in (1) renewable energy production or engage in (2) shared infrastructure or
services. To reuse materials, (3) by-products and (4) bio-based feedstock play a significant
role in replacing virgin inputs. To recycle, (5) mechanical and (6) chemical reprocessing
of waste streams is required, with steel and glass as key examples. Finally, to recover
energy, (7) heat cascading, upgrading and conversion are considered with the use of alter-
native fuels from materials that would otherwise be discarded.

The reduce priority (R1) requires technological breakthroughs to enable unprece-
dented energy, materials and emissions efficiency. It may also lead to substantiating the
demand for service approaches for end-products, such as repairing, refurbishing, remanu-
facturing and repurposing business strategies across multiple product categories (construc-
tion materials and renewable energy infrastructure, etc.), developing new materials that
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cope with such demand while maintaining economic, environmental and social responsi-
bility. R1 strategies enable circularity with virtually any sector, from process industries to
urban centres with innovation ecosystems of small to medium-sized enterprise (SMEs).

The different regions demand differing implementation strategies towards hubs for
circularity in Europe. The variation between west and east Europe, and also north and
south, offers the possibility to use strategies for deployment in broader regions with similar
characteristics. For reduce (R1), northern Europe offers opportunities for hubs related
to wind energy, while in the south, the potential is more on the use of solar energy. In
western regions, the high density of industrial facilities might enable innovation based
on spatial proximity, developing pilot projects and taking advantage of the many R&D
centres in the region and global energy innovation trends [80]. On the other hand, scattered
facilities in eastern Europe may trigger development policies to transfer technology and
innovation, developing hybrid hubs for innovation. They could also expand their network
to actors that do not match the E-PRTR database, such as SMEs of high relevance due
to their diversity and flexibility. Such regions may also advance top-down approaches,
promoted by the regional governments to create conditions for circularity. In that sense,
invigorating changes in the waste legislation could be an enabler for hub development,
and when integrated with energy and emissions directives, could even work towards a
broad implementation of the circular economy.

4.3. Circularity Frameworks

With the aim of implementing circularity centres, a set of enabling frameworks
is discussed.

A starting option is the ETS Innovation Fund framework from the European Commis-
sion. The fund requires a series of sequential steps, each with success criteria. The stages
run from proof of concept to pilot plant, then commercial demonstration, and finally the
scale up and roll out of a technology [81]. Such a scheme could be used to launch specific
symbiosis projects in the scope of hubs for circularity, although the scheme misses the
critical collaboration aspects essential to the development of hubs.

A symbiosis readiness level frame was developed based on the technology readiness
level scheme [82]. It includes aspects of collaboration, such as relevance of the partners in
the proof of concept phase and their indication of interest at an early stage. The maximum
readiness level is a resilient partnership, keeping the collaboration priority until the last
stage [82].

Former SPIRE projects developed implementation tools focusing on barriers and
enablers. For industrial symbiosis in process industries, the EPOS project used the LESTS
scores to assess and identify progress at three levels (region, cluster and resource) across five
different dimensions: legal, economic, spatial, technical and social incentives [83]. Similar
approaches have been developed based on risk identification related to internal and external
factors in the domain of non-technological aspects for symbiosis [84]. Such methods aim to
develop mitigation actions that increase the potential for success of the project.

In the CARBON4PUR project, a two-stage methodology is outlined towards imple-
menting and replicating symbiosis cases related to CO2 utilisation [85]. The first stage
covers hard criteria: a regional selection is based on specific preconditions that can be
qualitative (partners and resource types) or quantitative (proximity and resource flows
quantities). In the second stage, soft criteria are added, developing a better understating of
the context in physical and societal terms. This stage considers for example access to finance,
skilled workforce, supporting institutions, regional market profile, local entrepreneurial
culture and public support policies. Similarly, the CarbonNext project proposes a frame-
work towards a fully integrated and intensified value chain [86]. A total of five main
components are considered: synergy (what is exchanged), physical aspects (distances and
infrastructure, etc.), legislation, public support and economic aspects. Both approaches
take into account factors that support the selection of regions; therefore, they can be helpful
in the planning and implementation of hubs for circularity.
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5. Conclusions

The hubs for circularity concept, introduced by the Processes4Planet partnership, is
a key pillar in Europe’s roadmap towards achieving the Green Deal circular and climate
objectives. Hubs for circularity aim to bring urban and industrial stakeholders together to
create collaborations with urban–industrial symbiosis and a circular economy as central
elements. The development of these hubs facilitates the practical implementation of climate
neutrality by exchanging resources, waste streams, energy and more. This paper provides
a first attempt at identifying locations for hubs based on urban–industrial symbiosis
centred around energy-intensive industries. By comparing different clustering methods
and validation schemes, it is concluded that the DBSCAN algorithm provides core insights
to identify potential hubs for circularity.

The study has laid the foundation for developing a flexible tool that provides relevant
data on industrial clustering and industrial symbiosis potential in the European Union for
all interested stakeholders. When elaborated further, the tool can support and accelerate
the implementation of hubs for circularity. Expanding the data set with more industrial
sectors and a wider variety of streams and exchanges is considered a first step towards
having an improved map of potential hubs. A further research line is about integrating
a machine-learning algorithm to include affinity parameters beyond distance and the
number of surrounding points. Although obtaining the required data seems to be the first
challenge, the digital revolution across industries promises significant opportunities to
develop circularity solutions [87,88].
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