A Critical Assessment on Functional Attributes and Degradation Mechanism of Membrane Electrode Assembly Components in Direct Methanol Fuel Cells
Abstract
:1. Introduction
2. DMFC Functional Components
2.1. Membrane
2.2. Gas Diffusion Electrode (GDE)
3. MEA Degradation and Mitigation Strategies in DMFC
3.1. Electrolyte Membrane
3.1.1. Methanol Crossover
3.1.2. Stack Assembly Effects
3.1.3. Thermal/Mechanical Stability
3.1.4. Methanol Concentration and Impurities
3.1.5. Membrane Thickness
3.1.6. Reactive Oxygen Species
3.1.7. Mitigation Strategies for Membrane Degradation
3.2. Electrocatalyst Degradation
3.2.1. Catalytic Poisoning
3.2.2. Pt/Ru Agglomeration
3.2.3. Pt/Ru Dissolution
3.2.4. Pt/Ru Delamination
3.2.5. Ru Leaching from Pt/Ru Catalyst
3.2.6. Surface Oxidation Formation and Practical Growth
3.2.7. Carbon Corrosion
3.2.8. Mitigation Strategies for Catalyst Degradation
3.3. Gas Diffusion Layer
3.3.1. Cell Potential
3.3.2. Porosity
3.3.3. Operating Temperature
3.3.4. Mitigation Strategies of GDL Degradation
4. Influence of Water Flooding in MEA Degradation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakraborty, S.; Kumar, N.M.; Jayakumar, A.; Dash, S.K.; Elangovan, D. Selected Aspects of Sustainable Mobility Reveals Implementable Approaches and Conceivable Actions. Sustainability 2021, 13, 12918. [Google Scholar] [CrossRef]
- Jayakumar, A. An Assessment on Polymer Electrolyte Membrane Fuel Cell Stack Components. In Applied Physical Chemistry with Multidisciplinary Approaches; Apple Academic Press: Cambridge, MA, USA, 2018; ISBN 978-1-315-16941-5. [Google Scholar]
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Herve Bang, Y.; Di Noto, V. Hybrid Inorganic-Organic Proton-Conducting Membranes Based on SPEEK Doped with WO3 Nanoparticles for Application in Vanadium Redox Flow Batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Garraín, D.; Banacloche, S.; Ferreira-Aparicio, P.; Martínez-Chaparro, A.; Lechón, Y. Sustainability Indicators for the Manufacturing and Use of a Fuel Cell Prototype and Hydrogen Storage for Portable Uses. Energies 2021, 14, 6558. [Google Scholar] [CrossRef]
- Cost-Effective Iron-Based Aqueous Redox Flow Batteries for Large-Scale Energy Storage Application: A Review. J. Power Sources 2021, 493, 229445. [CrossRef]
- Wu, F.; Maier, J.; Yu, Y. Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-Ion Batteries. Chem. Soc. Rev. 2020, 49, 1569–1614. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Halme, A.; Selkäinaho, J.; Noponen, T.; Kohonen, A. An Alternative Concept for DMFC—Combined Electrolyzer and H2 PEMFC. Int. J. Hydrogen Energy 2016, 41, 2154–2164. [Google Scholar] [CrossRef]
- Munjewar, S.S.; Thombre, S.B.; Patil, A.P. Passive Direct Alcohol Fuel Cell Using Methanol and 2-Propanol Mixture as a Fuel. Ionics 2019, 25, 2231–2241. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, J.; Lu, S.; Jiang, S.P. Significantly Enhanced Performance of Direct Methanol Fuel Cells at Elevated Temperatures. J. Power Sources 2020, 450, 227620. [Google Scholar] [CrossRef]
- Dao, D.V.; Adilbish, G.; Le, T.D.; Nguyen, T.T.D.; Lee, I.-H.; Yu, Y.-T. Au@CeO2 Nanoparticles Supported Pt/C Electrocatalyst to Improve the Removal of CO in Methanol Oxidation Reaction. J. Catal. 2019, 377, 589–599. [Google Scholar] [CrossRef]
- Badwal, S.P.S.; Giddey, S.; Kulkarni, A.; Goel, J.; Basu, S. Direct Ethanol Fuel Cells for Transport and Stationary Applications—A Comprehensive Review. Appl. Energy 2015, 145, 80–103. [Google Scholar] [CrossRef]
- Pan, Z.; Bi, Y.; An, L. Mathematical Modeling of Direct Ethylene Glycol Fuel Cells Incorporating the Effect of the Competitive Adsorption. Appl. Therm. Eng. 2019, 147, 1115–1124. [Google Scholar] [CrossRef]
- Chu, Y.H.; Shul, Y.G. Combinatorial Investigation of Pt–Ru–Sn Alloys as an Anode Electrocatalysts for Direct Alcohol Fuel Cells. Int. J. Hydrogen Energy 2010, 35, 11261–11270. [Google Scholar] [CrossRef]
- Achmad, F.; Kamarudin, S.K.; Daud, W.R.W.; Majlan, E.H. Passive Direct Methanol Fuel Cells for Portable Electronic Devices. Appl. Energy 2011, 88, 1681–1689. [Google Scholar] [CrossRef]
- Bahrami, H.; Faghri, A. Review and Advances of Direct Methanol Fuel Cells: Part II: Modeling and Numerical Simulation. J. Power Sources 2013, 230, 303–320. [Google Scholar] [CrossRef]
- Mallick, R.K.; Thombre, S.B.; Shrivastava, N.K. Vapor Feed Direct Methanol Fuel Cells (DMFCs): A Review. Renew. Sustain. Energy Rev. 2016, 56, 51–74. [Google Scholar] [CrossRef]
- Falcão, D.S.; Oliveira, V.B.; Rangel, C.M.; Pinto, A.M.F.R. Review on Micro-Direct Methanol Fuel Cells. Renew. Sustain. Energy Rev. 2014, 34, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Karimi, M.B.; Mohammadi, F.; Hooshyari, K. Recent Approaches to Improve Nafion Performance for Fuel Cell Applications: A Review. Int. J. Hydrogen Energy 2019, 44, 28919–28938. [Google Scholar] [CrossRef]
- Lufrano, F.; Baglio, V.; Staiti, P.; Antonucci, V.; Arico’, A.S. Performance Analysis of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells. J. Power Sources 2013, 243, 519–534. [Google Scholar] [CrossRef]
- Pethaiah, S.S.; Arunkumar, J.; Ramos, M.; Al-Jumaily, A.; Manivannan, N. The Impact of Anode Design on Fuel Crossover of Direct Ethanol Fuel Cell. Bull. Mater. Sci. 2016, 39, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Dutta, K.; Das, S.; Kundu, P.P. An Overview of Unsolved Deficiencies of Direct Methanol Fuel Cell Technology: Factors and Parameters Affecting Its Widespread Use. Int. J. Energy Res. 2014, 38, 1367–1390. [Google Scholar] [CrossRef]
- Park, J.-Y.; Park, K.-Y.; Kim, K.B.; Na, Y.; Cho, H.; Kim, J.-H. Influence and Mitigation Methods of Reaction Intermediates on Cell Performance in Direct Methanol Fuel Cell System. J. Power Sources 2011, 196, 5446–5452. [Google Scholar] [CrossRef]
- Bresciani, F.; Rabissi, C.; Zago, M.; Gazdzicki, P.; Schulze, M.; Guétaz, L.; Escribano, S.; Bonde, J.L.; Marchesi, R.; Casalegno, A. A Combined In-Situ and Post-Mortem Investigation on Local Permanent Degradation in a Direct Methanol Fuel Cell. J. Power Sources 2016, 306, 49–61. [Google Scholar] [CrossRef]
- Kreuer, K.-D. Ion Conducting Membranes for Fuel Cells and Other Electrochemical Devices. Chem. Mater. 2014, 26, 361–380. [Google Scholar] [CrossRef]
- Ahmad, H.; Kamarudin, S.K.; Hasran, U.A.; Daud, W.R.W. Overview of Hybrid Membranes for Direct-Methanol Fuel-Cell Applications. Int. J. Hydrogen Energy 2010, 35, 2160–2175. [Google Scholar] [CrossRef]
- Kim, D.S.; Guiver, M.; McGrath, J.; Pivovar, B.; Kim, Y.S. Molecular Design Aspect of Sulfonated Polymers for Direct Methanol Fuel Cells. ECS Trans. 2010, 33, 711. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S. Membranes for Low Temperature Fuel Cells: New Concepts, Single-Cell Studies and Applications; De Gruyter: Berlin, Germany, 2019; ISBN 978-3-11-064732-7. [Google Scholar]
- Lin, H.-L.; Wang, S.-H. Nafion/Poly(Vinyl Alcohol) Nano-Fiber Composite and Nafion/Poly(Vinyl Alcohol) Blend Membranes for Direct Methanol Fuel Cells. J. Membr. Sci. 2014, 452, 253–262. [Google Scholar] [CrossRef]
- Choi, J.S.; Sohn, J.-Y.; Shin, J. A Comparative Study on EB-Radiation Deterioration of Nafion Membrane in Water and Isopropanol Solvents. Energies 2015, 8, 5370–5380. [Google Scholar] [CrossRef] [Green Version]
- Aydın Ünal, F.; Erduran, V.; Timuralp, C.; Şen, F. 15—Fabrication and Properties of Polymer Electrolyte Membranes (PEM) for Direct Methanol Fuel Cell Application. In Nanomaterials for Direct Alcohol Fuel Cells; Şen, F., Ed.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 283–302. ISBN 978-0-12-821713-9. [Google Scholar]
- Ercelik, M.; Ozden, A.; Devrim, Y.; Colpan, C.O. Investigation of Nafion Based Composite Membranes on the Performance of DMFCs. Int. J. Hydrogen Energy 2017, 42, 2658–2668. [Google Scholar] [CrossRef]
- Wang, J.; Liao, J.; Yang, L.; Zhang, S.; Huang, X.; Ji, J. Highly Compatible Acid–Base Blend Membranes Based on Sulfonated Poly(Ether Ether Ketone) and Poly(Ether Ether Ketone-Alt-Benzimidazole) for Fuel Cells Application. J. Membr. Sci. 2012, 415–416, 644–653. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Xu, J.; Wang, C.; Chen, H.; Liu, W.; Chen, Z.; Du, X.; Wang, S.; Wang, Z. PEMs with High Proton Conductivity and Excellent Methanol Resistance Based on Sulfonated Poly (Aryl Ether Ketone Sulfone) Containing Comb-Shaped Structures for DMFCs Applications. Int. J. Hydrogen Energy 2020, 45, 945–957. [Google Scholar] [CrossRef]
- Dutta, K.; Das, S.; Kundu, P.P. Synthesis, Preparation, and Performance of Blends and Composites of π-Conjugated Polymers and Their Copolymers in DMFCs. Polym. Rev. 2015, 55, 630–677. [Google Scholar] [CrossRef]
- Kludský, M.; Vopička, O.; Matějka, P.; Hovorka, Š.; Friess, K. Nafion® Modified with Primary Amines: Chemical Structure, Sorption Properties and Pervaporative Separation of Methanol-Dimethyl Carbonate Mixtures. Eur. Polym. J. 2018, 99, 268–276. [Google Scholar] [CrossRef]
- Klose, C.; Breitwieser, M.; Vierrath, S.; Klingele, M.; Cho, H.; Büchler, A.; Kerres, J.; Thiele, S. Electrospun Sulfonated Poly(Ether Ketone) Nanofibers as Proton Conductive Reinforcement for Durable Nafion Composite Membranes. J. Power Sources 2017, 361, 237–242. [Google Scholar] [CrossRef]
- Pérez, L.C.; Brandão, L.; Sousa, J.M.; Mendes, A. Segmented Polymer Electrolyte Membrane Fuel Cells—A Review. Renew. Sustain. Energy Rev. 2011, 15, 169–185. [Google Scholar] [CrossRef]
- Prokop, M.; Kodym, R.; Bystron, T.; Drakselova, M.; Paidar, M.; Bouzek, K. Degradation Kinetics of Pt during High-Temperature PEM Fuel Cell Operation Part II: Dissolution Kinetics of Pt Incorporated in a Catalyst Layer of a Gas-Diffusion Electrode. Electrochim. Acta 2020, 333, 135509. [Google Scholar] [CrossRef]
- Kamarudin, S.K.; Hashim, N. Materials, Morphologies and Structures of MEAs in DMFCs. Renew. Sustain. Energy Rev. 2012, 16, 2494–2515. [Google Scholar] [CrossRef]
- Xinyao, Y.; Zhongqing, J.; Yuedong, M. Preparation of Anodes for DMFC by Co-Sputtering of Platinum and Ruthenium. Plasma Sci. Technol. 2010, 12, 224–229. [Google Scholar] [CrossRef]
- Dutta, K.; Das, S.; Rana, D.; Kundu, P.P. Enhancements of Catalyst Distribution and Functioning Upon Utilization of Conducting Polymers as Supporting Matrices in DMFCs: A Review. Polym. Rev. 2015, 55, 1–56. [Google Scholar] [CrossRef]
- Gulaboski, R.; Mirceski, V.; Komorsky-Lovric, S.; Lovric, M. Three-Phase Electrodes: Simple and Efficient Tool for Analysis of Ion Transfer Processes across Liquid-Liquid Interface—Twenty Years On. J Solid State Electrochem. 2020, 24, 2575–2583. [Google Scholar] [CrossRef]
- Li, Q.; Wang, T.; Havas, D.; Zhang, H.; Xu, P.; Han, J.; Cho, J.; Wu, G. High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode. Adv. Sci. 2016, 3, 1600140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sgroi, M.F.; Zedde, F.; Barbera, O.; Stassi, A.; Sebastián, D.; Lufrano, F.; Baglio, V.; Aricò, A.S.; Bonde, J.L.; Schuster, M. Cost Analysis of Direct Methanol Fuel Cell Stacks for Mass Production. Energies 2016, 9, 1008. [Google Scholar] [CrossRef]
- Samad, S.; Loh, K.S.; Wong, W.Y.; Lee, T.K.; Sunarso, J.; Chong, S.T.; Wan Daud, W.R. Carbon and Non-Carbon Support Materials for Platinum-Based Catalysts in Fuel Cells. Int. J. Hydrogen Energy 2018, 43, 7823–7854. [Google Scholar] [CrossRef]
- Khotseng, L. Oxygen Reduction Reaction; IntechOpen: Gujarat, India, 2018; ISBN 978-1-78984-813-7. [Google Scholar]
- Yan, X.H.; Zhao, T.S.; An, L.; Zhao, G.; Zeng, L. A Crack-Free and Super-Hydrophobic Cathode Micro-Porous Layer for Direct Methanol Fuel Cells. Appl. Energy 2015, 138, 331–336. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Sayed, E.T.; Nakagawa, N. Significance of Diffusion Layers on the Performance of Liquid and Vapor Feed Passive Direct Methanol Fuel Cells. Energy 2020, 209, 118492. [Google Scholar] [CrossRef]
- Ivanova, N.A.; Alekseeva, O.K.; Fateev, V.N.; Shapir, B.L.; Spasov, D.D.; Nikitin, S.M.; Presnyakov, M.Y.; Kolobylina, N.N.; Soloviev, M.A.; Mikhalev, A.I.; et al. Activity and Durability of Electrocatalytic Layers with Low Platinum Loading Prepared by Magnetron Sputtering onto Gas Diffusion Electrodes. Int. J. Hydrogen Energy 2019, 44, 29529–29536. [Google Scholar] [CrossRef]
- Netzeband, C.; Arlt, T.; Wippermann, K.; Lehnert, W.; Manke, I. Three-Dimensional Multiscale Analysis of Degradation of Nano- and Micro-Structure in Direct Methanol Fuel Cell Electrodes after Methanol Starvation. J. Power Sources 2016, 327, 481–487. [Google Scholar] [CrossRef]
- Nagy, K.A.; Tóth, I.Y.; Ballai, G.; Varga, Á.T.; Szenti, I.; Sebők, D.; Kopniczky, J.; Hopp, B.; Kukovecz, Á. Wetting and Evaporation on a Carbon Cloth Type Gas Diffusion Layer for Passive Direct Alcohol Fuel Cells. J. Mol. Liq. 2020, 304, 112698. [Google Scholar] [CrossRef]
- Poplavsky, V.V.; Dorozhko, A.V.; Matys, V.G. Ion-Beam Formation of Electrocatalysts for Fuel Cells with Polymer Membrane Electrolyte. J. Synch. Investig. 2017, 11, 326–332. [Google Scholar] [CrossRef]
- Liu, G.; Li, X.; Wang, M.; Wang, M.; Kim, J.Y.; Woo, J.Y.; Wang, X.; Lee, J.K. A Study on Anode Diffusion Layer for Performance Enhancement of a Direct Methanol Fuel Cell. Energy Convers. Manag. 2016, 126, 697–703. [Google Scholar] [CrossRef]
- Falcão, D.S.; Silva, R.A.; Rangel, C.M.; Pinto, A.M.F.R. Performance of an Active Micro Direct Methanol Fuel Cell Using Reduced Catalyst Loading MEAs. Energies 2017, 10, 1683. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, S.-S.; Hung, L.-C.; Liu, C.-C.; Huang, C.-F. Analyses of Electrochemical Impedance Spectroscopy and Cyclic Voltammetry in Micro-Direct Methanol Fuel Cell Stacks. Int. J. Energy Res. 2016, 40, 2162–2175. [Google Scholar] [CrossRef]
- Rashed, M.K.; Mohd Salleh, M.A.; Abdulbari, H.A.; Shah Ismail, M.H.; Izhar, S. The Effects of Electrode and Catalyst Selection on Microfluidic Fuel Cell Performance. ChemBioEng Rev. 2015, 2, 356–372. [Google Scholar] [CrossRef]
- Gauthier, E.; Benziger, J.B. Gas Management and Multiphase Flow in Direct Alcohol Fuel Cells. Electrochim. Acta 2014, 128, 238–247. [Google Scholar] [CrossRef]
- Xue, R.; Zhang, Y.; Liu, X. A Novel Cathode Gas Diffusion Layer for Water Management of Passive μ-DMFC. Energy 2017, 139, 535–541. [Google Scholar] [CrossRef]
- Yuan, W.; Tang, Y.; Yang, X.; Liu, B.; Wan, Z. Structural Diversity and Orientation Dependence of a Liquid-Fed Passive Air-Breathing Direct Methanol Fuel Cell. Int. J. Hydrogen Energy 2012, 37, 9298–9313. [Google Scholar] [CrossRef]
- Yi, P.; Peng, L.; Lai, X.; Li, M.; Ni, J. Investigation of Sintered Stainless Steel Fiber Felt as Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy 2012, 37, 11334–11344. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, F.; Zhang, Y.; Zhang, D. Performance Optimization of ΜDMFC with Foamed Stainless Steel Cathode Current Collector. Energies 2021, 14, 6608. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.L.; Qi, G.; Li, J.Y. Current Development of Key Materials for Low Temperature Fuel Cells. Key Eng. Mater. 2017, 727, 670–677. [Google Scholar] [CrossRef]
- Madheswaran, D.K.; Jayakumar, A. Recent Advancements on Non-Platinum Based Catalyst Electrode Material for Polymer Electrolyte Membrane Fuel Cells: A Mini Techno-Economic Review. Bull. Mater. Sci. 2021, 44, 287. [Google Scholar] [CrossRef]
- Yao, D.; Jao, T.-C.; Zhang, W.; Xu, L.; Xing, L.; Ma, Q.; Xu, Q.; Li, H.; Pasupathi, S.; Su, H. In-Situ Diagnosis on Performance Degradation of High Temperature Polymer Electrolyte Membrane Fuel Cell by Examining Its Electrochemical Properties under Operation. Int. J. Hydrogen Energy 2018, 43, 21006–21016. [Google Scholar] [CrossRef]
- Han, J.; Han, J.; Yu, S. Experimental Analysis of Performance Degradation of 3-Cell PEMFC Stack under Dynamic Load Cycle. Int. J. Hydrogen Energy 2020, 45, 13045–13054. [Google Scholar] [CrossRef]
- Chu, T.; Zhang, R.; Wang, Y.; Ou, M.; Xie, M.; Shao, H.; Yang, D.; Li, B.; Ming, P.; Zhang, C. Performance Degradation and Process Engineering of the 10 KW Proton Exchange Membrane Fuel Cell Stack. Energy 2021, 219, 119623. [Google Scholar] [CrossRef]
- Casalegno, A.; Bresciani, F.; Zago, M.; Marchesi, R. Experimental Investigation of Methanol Crossover Evolution during Direct Methanol Fuel Cell Degradation Tests. J. Power Sources 2014, 249, 103–109. [Google Scholar] [CrossRef]
- Shrivastava, N.K.; Chadge, R.B.; Bankar, S.L. Modelling and Simulation of Passive Feed Direct Methanol Fuel Cell. Int. J. Energy Technol. Policy 2017, 13, 4–18. [Google Scholar] [CrossRef]
- Direct Methanol Fuel Cell Methanol and Water Crossover. Available online: https://www.wpclipart.com/science/how_things_work/Direct_Methanol_Fuel_Cell__Methanol_and_Water_Crossover.png.html (accessed on 13 November 2021).
- Xu, C.; Faghri, A.; Li, X.; Ward, T. Methanol and Water Crossover in a Passive Liquid-Feed Direct Methanol Fuel Cell. Int. J. Hydrogen Energy 2010, 35, 1769–1777. [Google Scholar] [CrossRef]
- Sharifi, S.; Rahimi, R.; Mohebbi-Kalhori, D.; Colpan, C.O. Numerical Investigation of Methanol Crossover through the Membrane in a Direct Methanol Fuel Cell. Iran. J. Hydrog. Fuel Cell 2018, 5, 21–33. [Google Scholar] [CrossRef]
- Chi, N.T.Q.; Bae, B.; Kim, D. Electro-Osmotic Drag Effect on the Methanol Permeation for Sulfonated Poly(Ether Ether Ketone) and Nafion117 Membranes. J. Nanosci. Nanotechnol. 2013, 13, 7529–7534. [Google Scholar] [CrossRef]
- García-Nieto, D.; Barragán, V.M. A Comparative Study of the Electro-Osmotic Behavior of Cation and Anion Exchange Membranes in Alcohol-Water Media. Electrochim. Acta 2015, 154, 166–176. [Google Scholar] [CrossRef]
- Endo, N.; Ogawa, Y.; Ukai, K.; Kakihana, Y.; Higa, M. DMFC Performance of Polymer Electrolyte Membranes Prepared from a Graft-Copolymer Consisting of a Polysulfone Main Chain and Styrene Sulfonic Acid Side Chains. Energies 2016, 9, 658. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.-L.; Liao, Y.-H.; Chen, S.-J. Effects of Operating Parameters on Gas-Phase PAH Emissions from a Direct Methanol Fuel Cell. Aerosol Air Qual. Res. 2019, 19, 2196–2204. [Google Scholar] [CrossRef]
- Yuan, Z.; Chuai, W.; Guo, Z.; Tu, Z.; Kong, F. The Self-Adaptive Fuel Supply Mechanism in Micro DMFC Based on the Microvalve. Micromachines 2019, 10, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araya, S.S.; Andreasen, S.J.; Kær, S.K. Experimental Characterization of the Poisoning Effects of Methanol-Based Reformate Impurities on a PBI-Based High Temperature PEM Fuel Cell. Energies 2012, 5, 4251. [Google Scholar] [CrossRef]
- Bogolowski, N.; Drillet, J.-F. Appropriate Balance between Methanol Yield and Power Density in Portable Direct Methanol Fuel Cell. Chem. Eng. J. 2015, 270, 91–100. [Google Scholar] [CrossRef]
- Ji, F.; Yang, L.; Sun, H.; Wang, S.; Li, H.; Jiang, L.; Sun, G. A Novel Method for Analysis and Prediction of Methanol Mass Transfer in Direct Methanol Fuel Cell. Energy Convers. Manag. 2017, 154, 482–490. [Google Scholar] [CrossRef]
- Ramesh, V.; Krishnamurthy, B. Modeling the Transient Temperature Distribution in a Direct Methanol Fuel Cell. J. Electroanal. Chem. 2018, 809, 1–7. [Google Scholar] [CrossRef]
- Govindarasu, R.; Somasundaram, S. Studies on Influence of Cell Temperature in Direct Methanol Fuel Cell Operation. Processes 2020, 8, 353. [Google Scholar] [CrossRef] [Green Version]
- Andoh, S.; Fujita, A.; Miitsu, T.; Kuroda, Y.; Mitsushima, S. Practical and Reliable Methanol Concentration Sensor for Direct Methanol Fuel Cells. Electrochemistry 2021, 89, 250–255. [Google Scholar] [CrossRef]
- Tsen, W.-C. Composite Proton Exchange Membranes Based on Chitosan and Phosphotungstic Acid Immobilized One-Dimensional Attapulgite for Direct Methanol Fuel Cells. Nanomaterials 2020, 10, 1641. [Google Scholar] [CrossRef]
- Sudaroli, B.M.; Kolar, A.K. An Experimental Study on the Effect of Membrane Thickness and PTFE (Polytetrafluoroethylene) Loading on Methanol Crossover in Direct Methanol Fuel Cell. Energy 2016, 98, 204–214. [Google Scholar] [CrossRef]
- Gwak, G.; Lee, K.; Ferekh, S.; Lee, S.; Ju, H. Analyzing the Effects of Fluctuating Methanol Feed Concentration in Active-Type Direct Methanol Fuel Cell (DMFC) Systems. Int. J. Hydrogen Energy 2015, 40, 5396–5407. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, X.; Yang, Y.; Lu, N.; Zhang, S.; Wang, G. Thin and Methanol-Resistant Reinforced Composite Membrane Based on Semi-Crystalline Poly (Ether Ether Ketone) for Fuel Cell Applications. J. Power Sources 2020, 450, 227664. [Google Scholar] [CrossRef]
- Wippermann, K.; Klafki, K.; Kulikovsky, A.A. In Situ Measurement of the Oxygen Diffusion Coefficient in the Cathode Catalyst Layer of a Direct Methanol Fuel Cell. Electrochim. Acta 2014, 141, 212–215. [Google Scholar] [CrossRef]
- Gago, A.S.; Esquivel, J.-P.; Sabaté, N.; Santander, J.; Alonso-Vante, N. Comprehensive Characterization and Understanding of Micro-Fuel Cells Operating at High Methanol Concentrations. Beilstein J. Nanotechnol. 2015, 6, 2000–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zago, M.; Bisello, A.; Baricci, A.; Rabissi, C.; Brightman, E.; Hinds, G.; Casalegno, A. On the Actual Cathode Mixed Potential in Direct Methanol Fuel Cells. J. Power Sources 2016, 325, 714–722. [Google Scholar] [CrossRef]
- Majidi, P.; Altarawneh, R.M.; Ryan, N.D.W.; Pickup, P.G. Determination of the Efficiency of Methanol Oxidation in a Direct Methanol Fuel Cell. Electrochim. Acta 2016, 199, 210–217. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, W.; Wu, Q.; Sun, H.; Luo, Z.; Fu, H. High-Temperature Passive Direct Methanol Fuel Cells Operating with Concentrated Fuels. J. Power Sources 2015, 273, 517–521. [Google Scholar] [CrossRef]
- Wan, N. High Performance Direct Methanol Fuel Cell with Thin Electrolyte Membrane. J. Power Sources 2017, 354, 167–171. [Google Scholar] [CrossRef]
- Xue, Y.; Chan, S. Layer-by-Layer Self-Assembly of CHI/PVS–Nafion Composite Membrane for Reduced Methanol Crossover and Enhanced DMFC Performance. Int. J. Hydrogen Energy 2015, 40, 1877–1885. [Google Scholar] [CrossRef]
- Rambabu, G.; Bhat, S.D. Carbon-Polymer Nanocomposite Membranes as Electrolytes for Direct Methanol Fuel Cells. In Membrane Technology; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-315-10566-6. [Google Scholar]
- Yee, R.S.L.; Zhang, K.; Ladewig, B.P. The Effects of Sulfonated Poly(Ether Ether Ketone) Ion Exchange Preparation Conditions on Membrane Properties. Membranes 2013, 3, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Iannaci, A.; Mecheri, B.; D’Epifanio, A.; Licoccia, S. Sulfated Zirconium Oxide as Electrode and Electrolyte Additive for Direct Methanol Fuel Cell Applications. Int. J. Hydrogen Energy 2014, 39, 11241–11249. [Google Scholar] [CrossRef]
- Yang, C.-C. Fabrication and Characterization of Poly(Vinyl Alcohol)/Montmorillonite/Poly(Styrene Sulfonic Acid) Proton-Conducting Composite Membranes for Direct Methanol Fuel Cells. Int. J. Hydrogen Energy 2011, 36, 4419–4431. [Google Scholar] [CrossRef]
- Maiti, J.; Kakati, N.; Lee, S.H.; Jee, S.H.; Viswanathan, B.; Yoon, Y.S. Where Do Poly(Vinyl Alcohol) Based Membranes Stand in Relation to Nafion® for Direct Methanol Fuel Cell Applications? J. Power Sources 2012, 216, 48–66. [Google Scholar] [CrossRef]
- Zhong, S.; Cui, X.; Gao, Y.; Liu, W.; Dou, S. Fabrication and Properties of Poly(Vinyl Alcohol)-Based Polymer Electrolyte Membranes for Direct Methanol Fuel Cell Applications. Int. J. Hydrogen Energy 2014, 39, 17857–17864. [Google Scholar] [CrossRef]
- Sidharthan, K.A.; Joseph, S. Preparation and Characterization of Polyvinyl Alcohol Based Nanocomposite Membrane for Direct Methanol Fuel Cell. AIP Conf. Proc. 2019, 2162, 020143. [Google Scholar] [CrossRef]
- Aricò, A.S.; Sebastian, D.; Schuster, M.; Bauer, B.; D’Urso, C.; Lufrano, F.; Baglio, V. Selectivity of Direct Methanol Fuel Cell Membranes. Membranes 2015, 5, 793–809. [Google Scholar] [CrossRef] [PubMed]
- Katzfuß, A.; Poynton, S.; Varcoe, J.; Gogel, V.; Storr, U.; Kerres, J. Methylated Polybenzimidazole and Its Application as a Blend Component in Covalently Cross-Linked Anion-Exchange Membranes for DMFC. J. Membr. Sci. 2014, 465, 129–137. [Google Scholar] [CrossRef]
- Alam, T.M.; Hibbs, M.R. Characterization of Heterogeneous Solvent Diffusion Environments in Anion Exchange Membranes. Macromolecules 2014, 47, 1073–1084. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, Y.; Yuan, Z.; Li, X.; Zhang, H.; Vankelecom, I.F.J. Highly Stable Anion Exchange Membranes with Internal Cross-Linking Networks. Adv. Funct. Mater. 2015, 25, 2583–2589. [Google Scholar] [CrossRef]
- Verjulio, R.W.; Santander, J.; Ma, J.; Alonso-Vante, N. Selective CoSe2/C Cathode Catalyst for Passive Air-Breathing Alkaline Anion Exchange Membrane μ-Direct Methanol Fuel Cell (AEM-ΜDMFC). Int. J. Hydrogen Energy 2016, 41, 19595–19600. [Google Scholar] [CrossRef]
- Benvenuti, T.; García-Gabaldón, M.; Ortega, E.M.; Rodrigues, M.A.S.; Bernardes, A.M.; Pérez-Herranz, V.; Zoppas-Ferreira, J. Influence of the Co-Ions on the Transport of Sulfate through Anion Exchange Membranes. J. Membr. Sci. 2017, 542, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Higa, M.; Mehdizadeh, S.; Feng, S.; Endo, N.; Kakihana, Y. Cell Performance of Direct Methanol Alkaline Fuel Cell (DMAFC) Using Anion Exchange Membranes Prepared from PVA-Based Block Copolymer. J. Membr. Sci. 2020, 597, 117618. [Google Scholar] [CrossRef]
- Hu, X.; Huang, Y.; Liu, L.; Ju, Q.; Zhou, X.; Qiao, X.; Zheng, Z.; Li, N. Piperidinium Functionalized Aryl Ether-Free Polyaromatics as Anion Exchange Membrane for Water Electrolysers: Performance and Durability. J. Membr. Sci. 2021, 621, 118964. [Google Scholar] [CrossRef]
- Zakaria, Z.; Kamarudin, S.K. A Review of Quaternized Polyvinyl Alcohol as an Alternative Polymeric Membrane in DMFCs and DEFCs. Int. J. Energy Res. 2020, 44, 6223–6239. [Google Scholar] [CrossRef]
- Mustain, W.E.; Chatenet, M.; Page, M.; Kim, Y.S. Durability Challenges of Anion Exchange Membrane Fuel Cells. Energy Environ. Sci. 2020, 13, 2805–2838. [Google Scholar] [CrossRef]
- Chen, N.; Wang, H.H.; Kim, S.P.; Kim, H.M.; Lee, W.H.; Hu, C.; Bae, J.Y.; Sim, E.S.; Chung, Y.-C.; Jang, J.-H.; et al. Poly(Fluorenyl Aryl Piperidinium) Membranes and Ionomers for Anion Exchange Membrane Fuel Cells. Nat Commun. 2021, 12, 2367. [Google Scholar] [CrossRef] [PubMed]
- Electrochemical Characteristics of Different Membranes Used for DMFC. Available online: https://www.fumatech.com/EN/Membranes/Fuel-cells/Products%2Bfumapem/index.html (accessed on 13 November 2021).
- Chen, X.; Li, T.; Shen, J.; Hu, Z. From Structures, Packaging to Application: A System-Level Review for Micro Direct Methanol Fuel Cell. Renew. Sustain. Energy Rev. 2017, 80, 669–678. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, X.; Sun, H.; Wang, S.; Sun, G. Recent Advances in Multi-Scale Design and Construction of Materials for Direct Methanol Fuel Cells. Nano Energy 2019, 65, 104048. [Google Scholar] [CrossRef]
- Yan, X.H.; Gao, P.; Zhao, G.; Shi, L.; Xu, J.B.; Zhao, T.S. Transport of Highly Concentrated Fuel in Direct Methanol Fuel Cells. Appl. Therm. Eng. 2017, 126, 290–295. [Google Scholar] [CrossRef]
- Kim, J.; Jang, J.-S.; Peck, D.-H.; Lee, B.; Yoon, S.-H.; Jung, D.-H. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells. Nanomaterials 2016, 6, 148. [Google Scholar] [CrossRef] [Green Version]
- Lo Vecchio, C.; Sebastián, D.; Lázaro, M.J.; Aricò, A.S.; Baglio, V. Methanol-Tolerant M–N–C Catalysts for Oxygen Reduction Reactions in Acidic Media and Their Application in Direct Methanol Fuel Cells. Catalysts 2018, 8, 650. [Google Scholar] [CrossRef] [Green Version]
- Elangovan, A.; Xu, J.; Sekar, A.; Rajendran, S.; Liu, B.; Li, J. Platinum Deposited Nitrogen-Doped Vertically Aligned Carbon Nanofibers as Methanol Tolerant Catalyst for Oxygen Reduction Reaction with Improved Durability. Appl. Nano 2021, 2, 303–318. [Google Scholar] [CrossRef]
- Prapainainar, P.; Du, Z.; Theampetch, A.; Prapainainar, C.; Kongkachuichay, P.; Holmes, S.M. Properties and DMFC Performance of Nafion/Mordenite Composite Membrane Fabricated by Solution-Casting Method with Different Solvent Ratio. Energy 2020, 190, 116451. [Google Scholar] [CrossRef]
- Divya, K.; Sri Abirami Saraswathi, M.S.; Rana, D.; Alwarappan, S.; Nagendran, A. Custom-Made Sulfonated Poly (Ether Sulfone) Nanocomposite Proton Exchange Membranes Using Exfoliated Molybdenum Disulfide Nanosheets for DMFC Applications. Polymer 2018, 147, 48–55. [Google Scholar] [CrossRef]
- Barbera, O.; Stassi, A.; Sebastian, D.; Bonde, J.L.; Giacoppo, G.; D’Urso, C.; Baglio, V.; Aricò, A.S. Simple and Functional Direct Methanol Fuel Cell Stack Designs for Application in Portable and Auxiliary Power Units. Int. J. Hydrogen Energy 2016, 41, 12320–12329. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, Z.; Wen, F.; Cheng, Y.; Zhang, Y.; Wang, G. A Bipolar Passive DMFC Stack for Portable Applications. Energy 2018, 144, 587–593. [Google Scholar] [CrossRef]
- Sombatmankhong, K.; Yunus, K.; Fisher, A.C. Electrocogeneration of Hydrogen Peroxide: Confocal and Potentiostatic Investigations of Hydrogen Peroxide Formation in a Direct Methanol Fuel Cell. J. Power Sources 2013, 240, 219–231. [Google Scholar] [CrossRef]
- Li, Y.; Liang, L.; Liu, C.; Li, Y.; Xing, W.; Sun, J. Self-Healing Proton-Exchange Membranes Composed of Nafion–Poly(Vinyl Alcohol) Complexes for Durable Direct Methanol Fuel Cells. Adv. Mater. 2018, 30, 1707146. [Google Scholar] [CrossRef]
- Wang, A.; Yuan, W.; Huang, S.; Tang, Y.; Chen, Y. Structural Effects of Expanded Metal Mesh Used as a Flow Field for a Passive Direct Methanol Fuel Cell. Appl. Energy 2017, 208, 184–194. [Google Scholar] [CrossRef]
- Sakurai, Y.; Kawai, A. Mechanical Stress Effect on Ionic Conductivity of Perflurosulfonic Acid (PFSA) Film by Photolithography. J. Photopolym. Sci. Technol. 2012, 25, 723–727. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Zhang, Y.F.; Fu, W.T.; Li, Z.P.; Liu, X.W. Investigation of the Direct Methanol Fuel Cell with Novel Assembly Method. Fuel Cells 2013, 13, 794–803. [Google Scholar] [CrossRef]
- Ince, A.C.; Karaoglan, M.U.; Glüsen, A.; Colpan, C.O.; Müller, M.; Stolten, D. Semiempirical Thermodynamic Modeling of a Direct Methanol Fuel Cell System. Int. J. Energy Res. 2019, 43, 3601–3615. [Google Scholar] [CrossRef]
- Li, L.-Y.; Yu, B.-C.; Shih, C.-M.; Lue, S.J. Polybenzimidazole Membranes for Direct Methanol Fuel Cell: Acid-Doped or Alkali-Doped? J. Power Sources 2015, 287, 386–395. [Google Scholar] [CrossRef]
- Kimiaie, N.; Trappmann, C.; Janßen, H.; Hehemann, M.; Echsler, H.; Müller, M. Influence of Contamination with Inorganic Impurities on the Durability of a 1 KW DMFC System. Fuel Cells 2014, 14, 64–75. [Google Scholar] [CrossRef]
- Nicotera, I.; Simari, C.; Enotiadis, A. 2—Nafion-Based Cation-Exchange Membranes for Direct Methanol Fuel Cells. In Direct Methanol Fuel Cell Technology; Dutta, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 13–36. ISBN 978-0-12-819158-3. [Google Scholar]
- Wang, L.; Kang, B.; Gao, N.; Du, X.; Jia, L.; Sun, J. Corrosion Behaviour of Austenitic Stainless Steel as a Function of Methanol Concentration for Direct Methanol Fuel Cell Bipolar Plate. J. Power Sources 2014, 253, 332–341. [Google Scholar] [CrossRef]
- Simari, C.; Nicotera, I.; Aricò, A.S.; Baglio, V.; Lufrano, F. New Insights into Properties of Methanol Transport in Sulfonated Polysulfone Composite Membranes for Direct Methanol Fuel Cells. Polymers 2021, 13, 1386. [Google Scholar] [CrossRef]
- Lufrano, E.; Simari, C.; Lo Vecchio, C.; Aricò, A.S.; Baglio, V.; Nicotera, I. Barrier Properties of Sulfonated Polysulfone/Layered Double Hydroxides Nanocomposite Membrane for Direct Methanol Fuel Cell Operating at High Methanol Concentrations. Int. J. Hydrogen Energy 2020, 45, 20647–20658. [Google Scholar] [CrossRef]
- Li, J.; Fan, K.; Cai, W.; Ma, L.; Xu, G.; Xu, S.; Ma, L.; Cheng, H. An In-Situ Nano-Scale Swelling-Filling Strategy to Improve Overall Performance of Nafion Membrane for Direct Methanol Fuel Cell Application. J. Power Sources 2016, 332, 37–41. [Google Scholar] [CrossRef]
- Li, X.; Miao, Z.; Marten, L.; Blankenau, I. Experimental Measurements of Fuel and Water Crossover in an Active DMFC. Int. J. Hydrogen Energy 2021, 46, 4437–4446. [Google Scholar] [CrossRef]
- Mollá, S.; Compañ, V. Polymer Blends of SPEEK for DMFC Application at Intermediate Temperatures. Int. J. Hydrogen Energy 2014, 39, 5121–5136. [Google Scholar] [CrossRef]
- Krishnan, N.N.; Henkensmeier, D.; Jang, J.H.; Kim, H.-J. Nanocomposite Membranes for Polymer Electrolyte Fuel Cells. Macromol. Mater. Eng. 2014, 299, 1031–1041. [Google Scholar] [CrossRef]
- Zatoń, M.; Rozière, J.; Jones, D.J. Current Understanding of Chemical Degradation Mechanisms of Perfluorosulfonic Acid Membranes and Their Mitigation Strategies: A Review. Sustain. Energy Fuels 2017, 1, 409–438. [Google Scholar] [CrossRef]
- Bunlengsuwan, P.; Paradee, N.; Sirivat, A. Influence of Sulfonated Graphene Oxide on Sulfonated Polysulfone Membrane for Direct Methanol Fuel Cell. Polym.-Plast. Technol. Eng. 2017, 56, 1695–1703. [Google Scholar] [CrossRef]
- Dutta, K.; Kumar, P.; Das, S.; Kundu, P.P. Utilization of Conducting Polymers in Fabricating Polymer Electrolyte Membranes for Application in Direct Methanol Fuel Cells. Polym. Rev. 2014, 54, 1–32. [Google Scholar] [CrossRef]
- Rosli, N.A.H.; Loh, K.S.; Wong, W.Y.; Yunus, R.M.; Lee, T.K.; Ahmad, A.; Chong, S.T. Review of Chitosan-Based Polymers as Proton Exchange Membranes and Roles of Chitosan-Supported Ionic Liquids. Int. J. Mol. Sci. 2020, 21, 632. [Google Scholar] [CrossRef] [Green Version]
- Aricò, A.S.; Stassi, A.; D’Urso, C.; Sebastián, D.; Baglio, V. Synthesis of Pd3Co1@Pt/C Core-Shell Catalysts for Methanol-Tolerant Cathodes of Direct Methanol Fuel Cells. Chem.-A Eur. J. 2014, 20, 10679–10684. [Google Scholar] [CrossRef]
- Choi, B.; Nam, W.-H.; Chung, D.Y.; Park, I.-S.; Yoo, S.J.; Song, J.C.; Sung, Y.-E. Enhanced Methanol Tolerance of Highly Pd Rich Pd-Pt Cathode Electrocatalysts in Direct Methanol Fuel Cells. Electrochim. Acta 2015, 164, 235–242. [Google Scholar] [CrossRef]
- Baglio, V.; Stassi, A.; Barbera, O.; Giacoppo, G.; Sebastian, D.; D’Urso, C.; Schuster, M.; Bauer, B.; Bonde, J.L.; Aricò, A.S. Direct Methanol Fuel Cell Stack for Auxiliary Power Units Applications Based on Fumapem® F-1850 Membrane. Int. J. Hydrogen Energy 2017, 42, 26889–26896. [Google Scholar] [CrossRef]
- Prapainainar, P.; Pattanapisutkun, N.; Prapainainar, C.; Kongkachuichay, P. Incorporating Graphene Oxide to Improve the Performance of Nafion-Mordenite Composite Membranes for a Direct Methanol Fuel Cell. Int. J. Hydrogen Energy 2019, 44, 362–378. [Google Scholar] [CrossRef]
- Liu, G.; Tsen, W.-C.; Jang, S.-C.; Hu, F.; Zhong, F.; Zhang, B.; Wang, J.; Liu, H.; Wang, G.; Wen, S.; et al. Composite Membranes from Quaternized Chitosan Reinforced with Surface-Functionalized PVDF Electrospun Nanofibers for Alkaline Direct Methanol Fuel Cells. J. Membr. Sci. 2020, 611, 118242. [Google Scholar] [CrossRef]
- Mollá, S.; Compañ, V. Polyvinyl Alcohol Nanofiber Reinforced Nafion Membranes for Fuel Cell Applications. J. Membr. Sci. 2011, 372, 191–200. [Google Scholar] [CrossRef]
- Li, H.-Y.; Lee, Y.-Y.; Lai, J.-Y.; Liu, Y.-L. Composite Membranes of Nafion and Poly(Styrene Sulfonic Acid)-Grafted Poly(Vinylidene Fluoride) Electrospun Nanofiber Mats for Fuel Cells. J. Membr. Sci. 2014, 466, 238–245. [Google Scholar] [CrossRef]
- Xu, G.; Wu, Z.; Xie, Z.; Wei, Z.; Li, J.; Qu, K.; Li, Y.; Cai, W. Graphene Quantum Dot Reinforced Hyperbranched Polyamide Proton Exchange Membrane for Direct Methanol Fuel Cell. Int. J. Hydrogen Energy 2021, 46, 9782–9789. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, M.; Deng, Y.; Xu, M.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B.; Yao, S.; Zhang, X.; et al. A Stable Low-Temperature H2-Production Catalyst by Crowding Pt on α-MoC. Nature 2021, 589, 396–401. [Google Scholar] [CrossRef]
- Ramli, Z.A.C.; Kamarudin, S.K. Platinum-Based Catalysts on Various Carbon Supports and Conducting Polymers for Direct Methanol Fuel Cell Applications: A Review. Nanoscale Res. Lett. 2018, 13, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Sahin, O.; Kivrak, H. A Comparative Study of Electrochemical Methods on Pt–Ru DMFC Anode Catalysts: The Effect of Ru Addition. Int. J. Hydrogen Energy 2013, 38, 901–909. [Google Scholar] [CrossRef]
- Nie, M.; Du, S.; Li, Q.; Hummel, M.; Gu, Z.; Lu, S. Tungsten Carbide as Supports for Trimetallic AuPdPt Electrocatalysts for Methanol Oxidation. J. Electrochem. Soc. 2020, 167, 044510. [Google Scholar] [CrossRef]
- Bresciani, F.; Rabissi, C.; Casalegno, A.; Zago, M.; Marchesi, R. Experimental Investigation on DMFC Temporary Degradation. Int. J. Hydrogen Energy 2014, 39, 21647–21656. [Google Scholar] [CrossRef]
- Yaldagard, M.; Jahanshahi, M.; Seghatoleslami, N. Carbonaceous Nanostructured Support Materials for Low Temperature Fuel Cell Electrocatalysts—A Review. World J. Nano Sci. Eng. 2013, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Kim, C.; Hirata, S.; Fujigaya, T.; Nakashima, N. Facile Enhancement in CO-Tolerance of a Polymer-Coated Pt Electrocatalyst Supported on Carbon Black: Comparison between Vulcan and Ketjenblack. ACS Appl. Mater. Interfaces 2015, 7, 15885–15891. [Google Scholar] [CrossRef]
- Motsoeneng, R.G.; Modibedi, R.M.; Mathe, M.K.; Khotseng, L.E.; Ozoemena, K.I. The Synthesis of PdPt/Carbon Paper via Surface Limited Redox Replacement Reactions for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2015, 40, 16734–16744. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, Q.; Gu, L.; Xu, S.; Wang, P.; Liu, J.; Ding, Y.; Yao, Y.F.; Nan, C.; Zhao, M.; et al. Ruthenium–Platinum Core–Shell Nanocatalysts with Substantially Enhanced Activity and Durability towards Methanol Oxidation. Nano Energy 2016, 21, 247–257. [Google Scholar] [CrossRef]
- Jovanovič, P.; Šelih, V.S.; Šala, M.; Hočevar, S.; Ruiz-Zepeda, F.; Hodnik, N.; Bele, M.; Gaberšček, M. Potentiodynamic Dissolution Study of PtRu/C Electrocatalyst in the Presence of Methanol. Electrochim. Acta 2016, 211, 851–859. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Karpenko-Jereb, L. Lifetime of Catalyst under Voltage Cycling in Polymer Electrolyte Fuel Cell Due to Platinum Oxidation and Dissolution. Technologies 2021, 9, 80. [Google Scholar] [CrossRef]
- Han, M.; Zeng, J.; Xia, J.; Liao, S. Effect of Thermal Treatment on Structural Change of Anode Electrocatalysts for Direct Methanol Fuel Cells. Particuology 2014, 15, 45–50. [Google Scholar] [CrossRef]
- Sharma, R.; Gyergyek, S.; Lund, P.B.; Andersen, S.M. Recovery of Pt and Ru from Spent Low-Temperature Polymer Electrolyte Membrane Fuel Cell Electrodes and Recycling of Pt by Direct Redeposition of the Dissolved Precursor on Carbon. ACS Appl. Energy Mater. 2021, 4, 6842–6852. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, X.; Luan, J.; Lu, N.; Mu, Y.; Zhang, S.; Wang, G. Reinforced Poly(Ether Ether Ketone)/Nafion Composite Membrane with Highly Improved Proton Conductivity for High Concentration Direct Methanol Fuel Cells. ACS Appl. Energy Mater. 2020, 3, 7180–7190. [Google Scholar] [CrossRef]
- Schoekel, A.; Melke, J.; Bruns, M.; Wippermann, K.; Kuppler, F.; Roth, C. Quantitative Study of Ruthenium Cross-over in Direct Methanol Fuel Cells during Early Operation Hours. J. Power Sources 2016, 301, 210–218. [Google Scholar] [CrossRef]
- Lee, K.-S.; Jeon, T.-Y.; Yoo, S.J.; Park, I.-S.; Cho, Y.-H.; Kang, S.H.; Choi, K.H.; Sung, Y.-E. Effect of PtRu Alloying Degree on Electrocatalytic Activities and Stabilities. Appl. Catal. B Environ. 2011, 102, 334–342. [Google Scholar] [CrossRef]
- Arlt, T.; Manke, I.; Wippermann, K.; Riesemeier, H.; Mergel, J.; Banhart, J. Investigation of the Local Catalyst Distribution in an Aged Direct Methanol Fuel Cell MEA by Means of Differential Synchrotron X-Ray Absorption Edge Imaging with High Energy Resolution. J. Power Sources 2013, 221, 210–216. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Y.; Zhu, C.; Hu, L.; Han, M.; Wang, A.; Huang, H.; Liu, Y.; Kang, Z. A Pt–Co3O4–CD Electrocatalyst with Enhanced Electrocatalytic Performance and Resistance to CO Poisoning Achieved by Carbon Dots and Co3O4 for Direct Methanol Fuel Cells. Nanoscale 2017, 9, 5467–5474. [Google Scholar] [CrossRef] [PubMed]
- Abdelkareem, M.A.; Masdar, M.S.; Tsujiguchi, T.; Nakagawa, N.; Sayed, E.T.; Barakat, N.A.M. Elimination of Toxic Products Formation in Vapor-Feed Passive DMFC Operated by Absolute Methanol Using Air Cathode Filter. Chem. Eng. J. 2014, 240, 38–44. [Google Scholar] [CrossRef]
- Chung, D.Y.; Lee, K.-J.; Sung, Y.-E. Methanol Electro-Oxidation on the Pt Surface: Revisiting the Cyclic Voltammetry Interpretation. J. Phys. Chem. C 2016, 120, 9028–9035. [Google Scholar] [CrossRef]
- Park, S.-H.; Joo, S.-J.; Kim, H.-S. An Investigation into Methanol Oxidation Reactions and CO, OH Adsorption on Pt-Ru-Mo Catalysts for a Direct Methanol Fuel Cell. J. Electrochem. Soc. 2014, 161, F405. [Google Scholar] [CrossRef]
- Siller-Ceniceros, A.A.; Sánchez-Castro, M.E.; Morales-Acosta, D.; Torres-Lubian, J.R.; Martínez, G.E.; Rodríguez-Varela, F.J. Innovative Functionalization of Vulcan XC-72 with Ru Organometallic Complex: Significant Enhancement in Catalytic Activity of Pt/C Electrocatalyst for the Methanol Oxidation Reaction (MOR). Appl. Catal. B Environ. 2017, 209, 455–467. [Google Scholar] [CrossRef]
- Karuppanan, K.K.; Panthalingal, M.K.; Biji, P. Chapter 26—Nanoscale, Catalyst Support Materials for Proton-Exchange Membrane Fuel Cells. In Handbook of Nanomaterials for Industrial Applications; Hussain, C.M., Ed.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 468–495. ISBN 978-0-12-813351-4. [Google Scholar]
- Baruah, B.; Deb, P. Performance and Application of Carbon-Based Electrocatalysts in Direct Methanol Fuel Cell. Mater. Adv. 2021, 2, 5344–5364. [Google Scholar] [CrossRef]
- Sundqvist, B. Carbon under Pressure. Phys. Rep. 2021, 909, 1–73. [Google Scholar] [CrossRef]
- Zainoodin, A.M.; Kamarudin, S.K.; Masdar, M.S.; Daud, W.R.W.; Mohamad, A.B.; Sahari, J. Investigation of MEA Degradation in a Passive Direct Methanol Fuel Cell under Different Modes of Operation. Appl. Energy 2014, 135, 364–372. [Google Scholar] [CrossRef]
- Tsukagoshi, Y.; Ishitobi, H.; Nakagawa, N. Improved Performance of Direct Methanol Fuel Cells with the Porous Catalyst Layer Using Highly-Active Nanofiber Catalyst. Carbon Resour. Convers. 2018, 1, 61–72. [Google Scholar] [CrossRef]
- Abdullah, N.; Kamarudin, S.K.; Shyuan, L.K. Novel Anodic Catalyst Support for Direct Methanol Fuel Cell: Characterizations and Single-Cell Performances. Nanoscale Res. Lett. 2018, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.H.T.; Nguyen, M.D.; Mai, A.T.N. Influence of Solvents on the Electroactivity of PtAl/RGO Catalyst Inks and Anode in Direct Ethanol Fuel Cell. J. Chem. 2021, 2021, 6649089. [Google Scholar] [CrossRef]
- So, M.; Ohnishi, T.; Park, K.; Ono, M.; Tsuge, Y.; Inoue, G. The Effect of Solvent and Ionomer on Agglomeration in Fuel Cell Catalyst Inks: Simulation by the Discrete Element Method. Int. J. Hydrogen Energy 2019, 44, 28984–28995. [Google Scholar] [CrossRef]
- Lashkenari, M.S.; Ghorbani, M.; Silakhori, N.; Karimi-Maleh, H. Enhanced Electrochemical Performance and Stability of Pt/Ni Electrocatalyst Supported on SiO2-PANI Nanocomposite: A Combined Experimental and Theoretical Study. Mater. Chem. Phys. 2021, 262, 124290. [Google Scholar] [CrossRef]
- Robinson, J.E.; Labrador, N.Y.; Chen, H.; Sartor, B.E.; Esposito, D.V. Silicon Oxide-Encapsulated Platinum Thin Films as Highly Active Electrocatalysts for Carbon Monoxide and Methanol Oxidation. ACS Catal. 2018, 8, 11423–11434. [Google Scholar] [CrossRef]
- Yusoff, N.; Kumar, S.V.; Rameshkumar, P.; Pandikumar, A.; Shahid, M.M.; Rahman, M.A.; Huang, N.M. A Facile Preparation of Titanium Dioxide-Iron Oxide@Silicon Dioxide Incorporated Reduced Graphene Oxide Nanohybrid for Electrooxidation of Methanol in Alkaline Medium. Electrochim. Acta 2016, 192, 167–176. [Google Scholar] [CrossRef]
- Mansor, M.; Timmiati, S.N.; Wong, W.Y.; Mohd Zainoodin, A.; Lim, K.L.; Kamarudin, S.K. NiPd Supported on Mesostructured Silica Nanoparticle as Efficient Anode Electrocatalyst for Methanol Electrooxidation in Alkaline Media. Catalysts 2020, 10, 1235. [Google Scholar] [CrossRef]
- Niyaz, M.; Sawut, N.; Jamal, R.; Abdiryim, T.; Helil, Z.; Liu, H.; Xie, S.; Song, Y. Preparation of PEDOT-Modified Double-Layered Hollow Carbon Spheres as Pt Catalyst Support for Methanol Oxidation. Int. J. Hydrogen Energy 2021, 46, 31623–31633. [Google Scholar] [CrossRef]
- Yin, S.; Wang, Z.; Li, C.; Yu, H.; Deng, K.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Mesoporous Pt@PtM (M = Co, Ni) Cage-Bell Nanostructures toward Methanol Electro-Oxidation. Nanoscale Adv. 2020, 2, 1084–1089. [Google Scholar] [CrossRef] [Green Version]
- Jayakumar, A.; Sethu, S.P.; Ramos, M.; Robertson, J.; Al-Jumaily, A. A Technical Review on Gas Diffusion, Mechanism and Medium of PEM Fuel Cell. Ionics 2015, 21, 1–18. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, Y.; Zheng, X.; Li, Y.; Zhang, X.; Liu, X. A CNT (Carbon Nanotube) Paper as Cathode Gas Diffusion Electrode for Water Management of Passive μ-DMFC (Micro-Direct Methanol Fuel Cell) with Highly Concentrated Methanol. Energy 2015, 82, 236–241. [Google Scholar] [CrossRef]
- Chen, Y.; Ke, Y.; Xia, Y.; Cho, C. Investigation on Mechanical Properties of a Carbon Paper Gas Diffusion Layer through a 3-D Nonlinear and Orthotropic Constitutive Model. Energies 2021, 14, 6341. [Google Scholar] [CrossRef]
- Randrianarizafy, B.; Schott, P.; Gerard, M.; Bultel, Y. Modelling Carbon Corrosion during a PEMFC Startup: Simulation of Mitigation Strategies. Energies 2020, 13, 2338. [Google Scholar] [CrossRef]
- Jayakumar, A. A Comprehensive Assessment on the Durability of Gas Diffusion Electrode Materials in PEM Fuel Cell Stack. Front. Energy 2019, 13, 325–338. [Google Scholar] [CrossRef]
- Pethaiah, S.S.; Sadasivuni, K.K.; Jayakumar, A.; Ponnamma, D.; Tiwary, C.S.; Sasikumar, G. Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review. Energies 2020, 13, 5879. [Google Scholar] [CrossRef]
- Kothekar, K.P.; Shrivastava, N.K.; Thombre, S.B. 11—Gas Diffusion Layers for Direct Methanol Fuel Cells. In Direct Methanol Fuel Cell Technology; Dutta, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 317–339. ISBN 978-0-12-819158-3. [Google Scholar]
- Hsieh, S.-S.; Chen, I.-C.; Hwong, C.-H. Development of a Four-Cell DMFC Stack with Air-Breathing Cathode and Dendrite Flow Field. Int. J. Energy Res. 2014, 38, 1693–1711. [Google Scholar] [CrossRef]
- Hwang, C.M.; Ishida, M.; Ito, H.; Maeda, T.; Nakano, A.; Hasegawa, Y.; Yokoi, N.; Kato, A.; Yoshida, T. Influence of Properties of Gas Diffusion Layers on the Performance of Polymer Electrolyte-Based Unitized Reversible Fuel Cells. Int. J. Hydrogen Energy 2011, 36, 1740–1753. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Li, X.; Wang, H.; Liu, X.; Chen, M.; Woo, J.Y.; Kim, J.Y.; Wang, X.; Lee, J.K. Design of 3-Electrode System for in Situ Monitoring Direct Methanol Fuel Cells during Long-Time Running Test at High Temperature. Appl. Energy 2017, 197, 163–168. [Google Scholar] [CrossRef]
- García-Salaberri, P.A.; Vera, M. On the Effect of Operating Conditions in Liquid-Feed Direct Methanol Fuel Cells: A Multiphysics Modeling Approach. Energy 2016, 113, 1265–1287. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Peck, D.-H.; Kim, S.-K.; Jung, D.-H.; Lim, S.; Kim, S.-H. Effects of the Microstructure and Powder Compositions of a Micro-Porous Layer for the Anode on the Performance of High Concentration Methanol Fuel Cell. Int. J. Hydrogen Energy 2013, 38, 7159–7168. [Google Scholar] [CrossRef]
- He, Y.-L.; Miao, Z.; Zhao, T.-S.; Yang, W.-W. Numerical Study of the Effect of the GDL Structure on Water Crossover in a Direct Methanol Fuel Cell. Int. J. Hydrogen Energy 2012, 37, 4422–4438. [Google Scholar] [CrossRef]
- Lee, K.; Ferekh, S.; Jo, A.; Lee, S.; Ju, H. Effects of Hybrid Catalyst Layer Design on Methanol and Water Transport in a Direct Methanol Fuel Cell. Electrochim. Acta 2015, 177, 209–216. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, X.; Hou, C.; Zhang, Y.; Wang, H.; Liu, X. Enhanced Water Management via the Optimization of Cathode Microporous Layer Using 3D Graphene Frameworks for Direct Methanol Fuel Cell. J. Power Sources 2020, 451, 227800. [Google Scholar] [CrossRef]
- Deng, H.; Zhou, J.; Zhang, Y. A Trilaminar-Catalytic Layered MEA Structure for a Passive Micro-Direct Methanol Fuel Cell. Micromachines 2021, 12, 381. [Google Scholar] [CrossRef]
- Ko, J.; Kang, K.; Park, S.; Kim, W.-G.; Lee, S.-H.; Ju, H. Effect of Design of Multilayer Electrodes in Direct Methanol Fuel Cells (DMFCs). Int. J. Hydrogen Energy 2014, 39, 1571–1579. [Google Scholar] [CrossRef]
- Yuan, W.; Han, F.; Chen, Y.; Chen, W.; Hu, J.; Tang, Y. Enhanced Water Management and Fuel Efficiency of a Fully Passive Direct Methanol Fuel Cell with Super-Hydrophilic/ -Hydrophobic Cathode Porous Flow-Field. J. Electrochem. Energy Convers. Storage 2018, 15, 031003. [Google Scholar] [CrossRef]
- Chan, D.-S.; Hsueh, K.-L. A Transient Model for Fuel Cell Cathode-Water Propagation Behavior inside a Cathode after a Step Potential. Energies 2010, 3, 920–939. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.X.; Zhao, T.S.; Yang, W.W. Effect of the Cathode Gas Diffusion Layer on the Water Transport Behavior and the Performance of Passive Direct Methanol Fuel Cells Operating with Neat Methanol. Int. J. Heat Mass Transf. 2011, 54, 1132–1143. [Google Scholar] [CrossRef]
- Shrestha, S. Fuel Cell: Direct Methanol Fuel Cell (DMFC). Available online: https://energyandclimatechangeinfo.blogspot.com/2021/06/direct-methanol-fuel-cell-dmfc-uses.html (accessed on 12 February 2021).
- Kim, J.H.; Lee, G.G.; Kim, W.T. Comparison of Liquid Water Dynamics in Bent Gas Channels of a Polymer Electrolyte Membrane Fuel Cell with Different Channel Cross Sections in a Channel Flooding Situation. Energies 2017, 10, 748. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Faghri, A.; Xu, C. Water Management of the DMFC Passively Fed with a High-Concentration Methanol Solution. Int. J. Hydrogen Energy 2010, 35, 8690–8698. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Nie, L.; Zhang, Y.; Liu, X. Elimination of Water Flooding of Cathode Current Collector of Micro Passive Direct Methanol Fuel Cell by Superhydrophilic Surface Treatment. Appl. Energy 2014, 126, 107–112. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, G.; Guo, T.; Che, G.; Jiao, K.; Huang, X. Effect of Anisotropy in Cathode Diffusion Layers on Direct Methanol Fuel Cell. Appl. Therm. Eng. 2020, 165, 114589. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, L.; Cai, W.; Liu, C.; Xing, W. The Function of Hydrophobic Cathodic Backing Layers for High Energy Passive Direct Methanol Fuel Cell. J. Power Sources 2011, 196, 9510–9515. [Google Scholar] [CrossRef]
- Fu, X.; Ni, H.; Zhang, F.; Yang, Y.; Shao, X.; Huang, Z.; Zhang, R.; Liu, Q.; Hu, S. Polypyrrole Nanowires as a Cathode Microporous Layer for Direct Methanol Fuel Cell to Enhance Oxygen Transport. Int. J. Energy Res. 2021, 45, 3375–3384. [Google Scholar] [CrossRef]
- Hutzenlaub, T.; Paust, N.; Zengerle, R.; Ziegler, C. The Effect of Wetting Properties on the Bubble Dynamics in the Flow Field of Direct Methanol Fuel Cells. Meet. Abstr. 2010, 3, 177. [Google Scholar] [CrossRef]
- Yuan, W.; Hou, C.; Zhang, X.; Zhong, S.; Luo, Z.; Mo, D.; Zhang, Y.; Liu, X. Constructing a Cathode Catalyst Layer of a Passive Direct Methanol Fuel Cell with Highly Hydrophilic Carbon Aerogel for Improved Water Management. ACS Appl. Mater. Interfaces 2019, 11, 37626–37634. [Google Scholar] [CrossRef]
Membrane Acronym | E-730 | F-1850 | Nafion® 115 |
---|---|---|---|
Type of polymer | SPEEK | PFSA | PFSA |
Equivalent weight (g mol−1) | 700 | 1800 | 1100 |
Membrane thickness (µm) | 30 | 120 | 125 |
Crossover current (mA cm−2) | 48 | 100 | 195 |
Maximum power density @ 90 °C (mW cm−2) | 77 | 38 | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayakumar, A.; Madheswaran, D.K.; Kumar, N.M. A Critical Assessment on Functional Attributes and Degradation Mechanism of Membrane Electrode Assembly Components in Direct Methanol Fuel Cells. Sustainability 2021, 13, 13938. https://doi.org/10.3390/su132413938
Jayakumar A, Madheswaran DK, Kumar NM. A Critical Assessment on Functional Attributes and Degradation Mechanism of Membrane Electrode Assembly Components in Direct Methanol Fuel Cells. Sustainability. 2021; 13(24):13938. https://doi.org/10.3390/su132413938
Chicago/Turabian StyleJayakumar, Arunkumar, Dinesh Kumar Madheswaran, and Nallapaneni Manoj Kumar. 2021. "A Critical Assessment on Functional Attributes and Degradation Mechanism of Membrane Electrode Assembly Components in Direct Methanol Fuel Cells" Sustainability 13, no. 24: 13938. https://doi.org/10.3390/su132413938
APA StyleJayakumar, A., Madheswaran, D. K., & Kumar, N. M. (2021). A Critical Assessment on Functional Attributes and Degradation Mechanism of Membrane Electrode Assembly Components in Direct Methanol Fuel Cells. Sustainability, 13(24), 13938. https://doi.org/10.3390/su132413938