
sustainability

Article

Blockchain-Based Community Safety Security System with IoT
Secure Devices

Chin-Ling Chen 1,2,3 , Zi-Yi Lim 3,* and Hsien-Chou Liao 3,*

����������
�������

Citation: Chen, C.-L.; Lim, Z.-Y.;

Liao, H.-C. Blockchain-Based

Community Safety Security System

with IoT Secure Devices.

Sustainability 2021, 13, 13994.

https://doi.org/10.3390/su132413994

Academic Editor: Fadi Al-Turjman

Received: 20 November 2021

Accepted: 15 December 2021

Published: 18 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information Engineering, Changchun Sci-Tech University, Changchun 130600, China;
clc@mail.cyut.edu.tw

2 School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
3 Department of Computer Science and Information Engineering, Chaoyang University of Technology,

Taichung 41349, Taiwan
* Correspondence: zylim@cyut.edu.tw (Z.-Y.L.); hcliao@cyut.edu.tw (H.-C.L.)

Abstract: Humans frequently need to construct a huge number of buildings for occupants in large
cities to work or live in a highly developed civilization; people who live in the same building or
same area are defined as a community. A thief stealing items, a burglary, fire hazards, flood hazards,
earthquakes, emergency aid, abnormal gas leakage, strange behavior, falling in a building, fainting
in a building, and other incidents all threaten the community’s safety. Therefore, we proposed
a blockchain-based community safety security system that is combined with IoT devices. In the
proposed scheme, we designed multiple phases to process the alarm triggered by IoT devices. IoT
devices can be set up in two types areas: private and public areas. Both types of IoT devices’ alarms
have different process flow for the response and records checking phase. All records are saved in
the Blockchain Center to assure the data can be verified and cannot be forged. During the communi-
cation between sender and receiver, we implemented some security methods to prevent message
repudiation, prevent transmission intercept, prevent replay attacks, and ensure data integrity. We
also implemented a clarifying mechanism to ensure that all system participants can have confidence
in the system’s processing methods. The proposed scheme can be used in communities to improve
community safety and prevent unnecessary conflicts.

Keywords: community safety; security system; blockchain; Internet of Things; security analysis

1. Introduction
1.1. Background

In a highly developed society, people often need to build a lot of buildings to allow
employees or occupants in large cities to work or live; those people in the same building
become a community in the city. Generally, working or living in a community is often
inseparable from the problem of safety. Recently, there have been serious fire incidents in
Taiwan [1,2], causing many injuries and deaths. After the investigation, the building did
not have fully functional security sensors or systems, and when a fire broke out, it did not
notify the community’s occupants, which resulted in the tragedy. Many incidents can harm
the safety of the community, including thieves stealing things, burglary, fire hazards, flood
hazards, earthquake, emergency help, abnormal gas leakage, abnormal behavior, falling in
building, fainting in building, etc.

The above-mentioned unsafe concerns are common in community buildings. The
community should construct a community safety system to prevent such problems. Further-
more, more people started to deploy private security guards services in their communities,
and these have become hot topics to discuss [3–6].

Some of the communities deploy smart building or smart home technologies to solve
the community safety problem; most of these technologies are related to various types of

Sustainability 2021, 13, 13994. https://doi.org/10.3390/su132413994 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4958-2043
https://orcid.org/0000-0002-3199-770X
https://doi.org/10.3390/su132413994
https://doi.org/10.3390/su132413994
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132413994
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132413994?type=check_update&version=2

Sustainability 2021, 13, 13994 2 of 37

Internet of Things (IoT) devices (e.g., sensors or surveillance cameras) to achieve
the function, such as fire detection, gas leaked detection, motion detection, abnormal
detection, human intruder detection, access control, fall detection, earthquake detection,
etc. According to a smart buildings market report [7], the research company shows the
market is projected to grow from $66.3 billion in 2020 to $108.9 billion in 2025. In addition,
due to improvements in medical science and technology, life expectancy has grown rapidly
over the world in recent years. Humans are living longer lives, resulting in a fast increase
in the number of old people in the population. Around 727 million persons over the age of
65 were recorded globally in 2020, with the number predicted to be 1.5 billion in 2050 [8].

As a result, a safety device or system is one of the community’s required components
to guarantee that the community’s occupants have a safer living or working environment.

1.2. Related Works

Several related works are surveyed as follows. Dutta et al. proposed a system called
“enhanced security system for smart building using IoT (ES3B) [9]. The authors proposed
an IoT device with Arduino, RFID, and Bluetooth for access control. An exception to avoid
non-resident going into the building, the guest information also can be built by a resident
with an RFID owner. Except for the access control, another author Prasetyo et al. proposed
an IoT device with multiple sensors (e.g., metal sensor, fire sensor, vibrator sensor, PIR
Sensor, etc.) and a Raspberry Pi camera to detect the threats in the office [10]. The device
can detect threats as follows: dangerous objects made from metals, fires, earthquakes,
intruders, or theft.

Moreover, Saad et al. designed a fire detection system to prevent fire hazards [11].
The system proposed by the authors is implemented with ZigBee technology as a protocol
to receive the data from multiple sensors, such as smoke sensor, gas sensor, heat sensor,
and UI/IV sensor. Then, the system processes the data with Raspberry Pi to identify fire.
Furthermore, Taryudi et al. proposed a home security and monitoring system with various
types of sensors and integrated with a microcontroller [12]. The system can be monitored
and controlled remotely with the smartphone application. To allow building security
guards to monitor all the building status more effectively, Al-Hudhud et al. proposed a
security guard system with an infrared biosensor and augmented reality device to monitor
the IoT status [13].

The above-mentioned authors proposed safety systems with IoT, but some security
issues will cause the IoT system to disable. Ray et al. pointed out the security issues and
challenges in the smart home system [14]: what is important is that the network between
routers or gateway to IoT will be the vulnerabilities of the system. Except for the physical
network equipment that should be improved, more researchers are implementing the IoT
system with blockchain technology in recent years. Khan et al. proposed a data verification
system for surveillance cameras with blockchain [15]. Rahman et al. proposed a distributed
IoT Software-Defined Network(IoT-SDN) model to ensure the security and privacy of
condominium networks [16]. Furthermore, Khalid et al. also designed an authentication
mechanism for IoT systems with blockchain [17]. Unfortunately, the authors did not
analyze their system security to prove that their proposed scheme is feasible.

As evident in the above-mentioned research, not all research can provide complete
system architecture and system security analysis. The research gap has been addressed
as follows: (1) Although many researchers proposed IoT applications in smart cities or
smart buildings, fewer established a decentralized or blockchain-based system. (2) Less
research exists that shows the completed architecture for a community safety application
in a blockchain system. (3) There seems to be no scheme to protect the device or system
against threats (such as message repudiation, data integrity, cyberattacks, and so on), and
there is no security analysis for the proposed scheme. (4) If a dispute occurs, there is a lack
of discussion in reading the historical record in encrypted data for clarification process.

In recent years, more and more scholars or industries have begun to use blockchain
as the basis of system architecture to execute or store records because of the advantages

Sustainability 2021, 13, 13994 3 of 37

of blockchain, such as decentralization, unforgeable data, traceability, and clarifiable
illegal records. The type of blockchain can be separated into public, private, hybrid
blockchain [18,19]. The public blockchain is a high decentralized blockchain, permission-
less, with high power consumption, and low throughput for executing smart contracts.
Conversely, the private blockchain is a low decentralized blockchain, access controlled,
low power consumption, and high throughput. The representative private blockchain
today is Hyperledger Fabric [20]. There are more and more applications implemented
based on the Hyperledger Fabric, such as hospital information system [21], access control
system [22], supply chain management [23], etc. In addition, Chen et al. have also proposed
blockchain-based schemes in brand clothing industries [24] and insurance industrial [25].

As a consequence, we proposed a more secure IoT safety security system that applies
IoT and blockchain technologies. We proposed a system with the HyperledgerFabric-
based [20] blockchain. HyperledgerFabric-based blockchain’s characteristics make it
suitable to be used in the community safety system, and it is utilized to improve the
system’s security.

The outline of the remaining sections is as follows. Section 2 introduces the tech-
nologies that are used in our research. Section 3 proposes our architecture and research
method. Then, the security issues analysis and some performance discussion are given in
Sections 4 and 5. Lastly, we conclude this paper in Section 6.

2. Preliminary
2.1. Internet of Things (IoT) Devices

Internet of Things (IoT) is an electronic “thing” that can connect to the internet.
Scholars have also made a clear definition of IoT: “the pervasive presence around us of a variety
of “things” or “objects”, such as RFID, sensors, actuators, mobile phones, which, through unique
addressing schemes, are able to interact with each other and cooperate with their neighboring “smart”
components to reach common goals” [26]. In this generation, IoT is continuously implemented
and applied around us; our lives are gradually inseparable from IoT. The IoTs are widely
used in agriculture, retailers, smart manufacturing, smart home, smart building, smart
transportation, smart city, and so on.

In this research, we apply the IoT on the application in building safety. According to
the research we found, it can be found that various types of IoT devices are proposed to
apply to building safety applications, such as:

• Fire detection: device with detection sensor, smoke detection sensor to prevent a fire
hazard [27,28].

• Poison gas alert: device with a variety of gas sensors to prevent gas leaks, such as
methane, carbon monoxide, smoke, nitrogen dioxide, and propane [29–31].

• Motion detection: device with infrared sensor or camera to detect motion in an
area [32–34].

• Abnormal detection: smart surveillance system implemented by Artificial Intelligence
(AI) that can detect some abnormal situation in the images [35–38].

• Human intruder detection: detect humans by analyzing ground vibrations [39].
• Fall detection: detect with cameras or 3-axis sensors to prevent human falls in the

building [40–44].
• Smart door: authentication with face recognition, fingerprint, smartphone, or pin code

to unlock the door without keys [45–47].
• Earthquake detection: microelectromechanical systems accelerometer detects vibration

of an area [48–50].

From the above IoT device application, we can know that IoT technology is already
a very mature technology. Therefore, these functional IoT devices or algorithms can be
applied or integrated into our proposed safety security system.

Sustainability 2021, 13, 13994 4 of 37

2.2. Blockchain-Based Smart Contract

The smart contract is an execution program that is full of transaction logic, which
comes from the transformation of a traditional contract in the real world. In today’s era,
we can meet smart contracts all around the world, such as vending machines and online
shopping platforms. Many smart contracts require cash, credit card, or digital currency to
process the transactions, but with the rapid development of blockchain and cryptocurrency,
many smart contract applications have begun to be deployed on the blockchain network.

Szabo has developed a concept of decentralized digital assets called “Bit Gold”. It is
considered a pioneer before the advent of Bitcoin [51,52]. The technology of Bitcoin was
carried forward by Nakamoto [53], who proposed and announced Bitcoin in a mysterious
fashion. Bitcoin is a blockchain-based cryptocurrency technology. All transaction records
of Bitcoin must be verified by most hosts before they can be synchronized to all participant
hosts to avoid problems such as tampering and forgery.

In addition to Bitcoin, the most popular cryptocurrency on the market is Ethereum [54].
Ethereum provides faster and more stable transaction capabilities than Bitcoin. It also
provides the function of deploying smart contracts to the public blockchain. With the
characteristics of Ethereum, more commercial frameworks of blockchain systems have
been developed, such as Hyperledger Fabric [20], Corda [55], and Azure Blockchain [56].

In particular, Hyperledger Fabric is an open-source licensed blockchain framework.
It is a blockchain framework that was proposed by IBM in 2018 [57]. It adopts a modular
universal framework, unique identity management, access control functions, and channels
to transfer data. Those features are suitable for various industrial applications, such as sup-
ply chain tracking [58,59], financial management [60], insurance financial [61], healthcare
records [62,63], etc. The advantages of the blockchain’s characteristics are listed as follows:

1. Decentralization: The operating mode of the blockchain is a technology composed of
multiple decentralized peers. All ledger data will be synchronized to all participating
peers.

2. Authentication: All participants need to be registered on the blockchain’s Certificate
Authority (CA); the participant receives the authentication certificates from the CA.
Then, the participants’ transactions can be updated to the ledger after authentication.

3. Privacy and anonymity: Unlike the other public blockchains like Ethereum, Fabric-
based blockchains have a feature that allows peer-to-peer transactions privately in
the channel. Except for the transaction, any log of transactions saved in the ledger is
kept secret and anonymous.

4. Unforgeable data: Every peer is storing the same content of the ledger in the blockchain.
All the transactions invoked by participants need to be saved as logs in the ledger,
the data are chaining between block to block. Every block also records the previous
block’s hash value as a link between blocks, so it is hard to forge data.

5. Traceability: Because of the unforgeable data characteristics of the blockchain men-
tioned above, this also makes the modification record of the data traceable.

6. Clarifying illegal records: All change records will be synced in the blockchain peer’s
ledger. There are signatures or timestamp data to provide evidence to protect the
rights of the community’s occupants if any conflicts arise in the future.

Therefore, the characteristics of HyperledgerFabric-based blockchain with the smart
contract are much more suitable to implement in our safety security system.

2.3. Threat Model

Furthermore, we have sorted out the threat that must be addressed, such as system
security vulnerabilities and attacks from third parties. The related threats are described
as follows:

1. Message repudiation issues: In the general safety security system, some issues should
be solved. Message repudiation is one of the issues, and we must ensure that the
message sent to the receiver was indeed sent by the sender [64].

Sustainability 2021, 13, 13994 5 of 37

2. Data integrity issues: Sometimes a network or attacker will damage the data during
transfer, which makes the data come to non-integrity. Moreover, data integrity must
be maintained in the database so that there are no inconsistencies when security
records are traced later [64,65].

3. Transmission intercept: The message that is transmitted in the network is easily
intercepted by the attackers, for example, man-in-the-middle attacks. The action
makes the message sent between sender and receiver become disclosed [66,67].

4. Replay attacks: When attackers intercept an original message sent in the network,
the attacker can resend the same message to pretend the attacker is the original
sender [68,69].

3. Proposed Architecture and Methods

We proposed a community safety security system with IoT and blockchain technolo-
gies. The proposed system architecture is presented in Figure 1. The proposed system
is constituted of the following parties: blockchain center, occupants, security guards, log
server, and IoT devices (including cameras and sensors).

Figure 1. Proposed system architecture.

3.1. System Architecture

Firstly, all the involved parties in this system are introduced as follows in detail:

1. Blockchain Center (BC): A blockchain center composed of multiple device nodes
that are storing all the records from IoT. All the involved parties must register in
the blockchain center. The monitoring records of the community are saved in the
blockchain center. The records in the blockchain center are unforgeable and verifiable.

Sustainability 2021, 13, 13994 6 of 37

When the parties request to view the specified record in detail, the blockchain center
will send votes to other occupants. If more than half of the votes are agreed, the
parties can view with the security guard.

2. Community (CM): We separate the community type into three types: residential,
commercial, and mixed. It is a physical structure in which occupants live or work.
Inside the community is installed with several public or private domain IoT devices,
variance age or type of occupants, and at least one security guard.

3. Occupants (OP): The occupants who live or work in the residential/commercial/mixed
community. All occupants involved in this system are given the option to choose
whether to install the IoT devices in their private spaces to ensure the safety of their
property. Every occupant must have a mobile phone with a decentralized applica-
tion (dAPP). The dAPP in the mobile phone is an application that connects to the
blockchain center. The application needs to registers and login with the blockchain
center. The occupants have the right to give the security guard permission to view
the monitoring records from his/her private domain IoT.

4. Security Guard (SG): The security guard hired by the community’s management
administrator. The SG must monitor the condition of the community at all times. If a
dangerous incident occurs, the SG must deal with it immediately to ensure the safety
of the community. To view any public or private domain IoT record, SG must request
the blockchain center to read the records.

5. Supervisor (SP): The security guards’ supervisor is in charge of the responsibility of
managing security guards. The supervisor is hired by the community’s management
administrator. The security guards who are on duty need the supervisor’s permission
to check for the public domain history record.

6. Internet of Things devices (IoT): The IoT included the security sensor, for example,
cameras and sensors. The cameras take images from the corners of the community
and detect suspicious events, e.g., burglary and abnormal behaviors.

a. The cameras in the community can be categorized into two types: public
domain cameras and private domain cameras. Public domain cameras are
installed at the public corner of the community, the installation of the private
domain cameras can be chosen by occupants, and they can choose how many
cameras and which position they need to install.

b. The sensors in the community can be smoke detectors, motion detectors, emer-
gency buttons, or more devices that can help to notice dangerous moments.

7. Log Server (LS): Every video record and event from the camera and sensors in the
community are saved to the server. The server can be a physical device in a community
or a cloud service on the internet. SG needs access to the log server to read the records.

Figure 1 shows the overall system architecture, and the detailed process flow with
numbered is description is as follows:

Step 1. Every participant must register and get a private key and public key from BC.
Step 2. An alarm event triggered by an IoT device.
Step 3. The IoT device updates the event information and status to LS and updates the

information via chaincode to BC.
Step 4. If the triggered IoT device is the public domain device, it will send the event

information to SG in the next step (step 5), otherwise, the information will be sent
to the relevant occupant in step 8.

Step 5. The event information sends to the security guard in the community, the security
guard received the event in a surveillance system on the LS.

Step 6. SG receive the event information and check for the video record immediately to
verify the situation.

Step 7. When the situation is checked, SG starts to resolve the alarm event and update
the resolved information as a remark to LS and update the information to BC via
chaincode.

Sustainability 2021, 13, 13994 7 of 37

Step 8. If the IoT device is a private domain, the alarm event information will be sent to
the related occupant’s mobile phone application.

Step 9. The occupant checks the situation with his/her application on the mobile phone.
Step 10. The occupant responds and updates the event information to BC. If the occupant

needs SG to resolve the situation of the alarm event, then go to step 4. SG will
be notified, and SG will help to deal with it. Every action chosen from OP will
update to BC via invoking chaincode.

3.2. Notations

The notations used in the following sections are described as shown in Table 1.

Table 1. The description of the notations.

Notations Description

IDX
X is the identity of the participant (such as IoT devices and

occupants), issued by the blockchain center.

IDE
The event ID that generated by IoT devices, included the ID of IoT

and User. The format is [UserID + IoTID + timestamp]
q A k-bit of prime number

GF(q) Finite group of q
E The elliptic curve defined on finite group
G A generating point based on the elliptic curve E
ki The ith random value on the elliptic curve

(rXi , sXi) Elliptic curve signature value of X
(xXi , yXi) The ECDSA signature value of X

dX The ECDSA’s private key of participant X
QX The ECDSA’s public key of participant X

PukX The public key of party X, issued by the BC’s CA
PrkX The private key of party X, issued by the BC’s CA
CXi The ith ciphertext of X

H(M) One way hash function
hXi The ith hash value of X
Ti The ith timestamp
τ The threshold for checking the validity of a timestamp

Mi The ith message from a sender

EPukX (M)/DPrkxX (M)
Encrypt or decrypt message M with a public key or private key of

participant X

3.3. Initialization and Registration Phase

All participants that want to be a part of the system need to register with BC’s
certificate authority (CA). CA generates the public key and private key pair and sends
it to the participant. Figures 2 and 3 show the chaincode’s data structures and types of
information of a user, IoT, and event information. Note that the “chaincode” is a “smart
contract” that is defined in Hyperledger Fabric. It is almost the same function as the “smart
contract” we mentioned before, which can execute the code in the blockchain.

Figure 4 shows the process of the registration phase between the new participant (X)
and the blockchain center’s certificate authority (CA). The steps are described as follows:

Step 1. Participant X sends the information of registration to CA.
Step 2. CA generates a set of a private key dX and a public key QX of the Elliptic Curve

Digital Signature Algorithm (ECDSA) [70]. The QX is generated by the follows
equation:

QX = dXG (1)

Sustainability 2021, 13, 13994 8 of 37

Figure 2. Structure of user information, IoT information, and the enumeration of three types (Role,
IoT, and Privacy).

Figure 3. Structure of triggered event information.

Sustainability 2021, 13, 13994 9 of 37

Figure 4. The flowchart of the registration phase for a participant.

Next, CA invokes the chaincode function “Registration” in Algorithm 1 to gener-
ate participant X’s user IDX. The chaincode also updates the user’s information to the
BC ledger.

Step 3. Participant X gets and saves the unique parameters IDX, QX, and dX for future
transactions.

Algorithm 1. Chaincode function of registration and add IoT.

var UserList []User_Information
func Registration (var user User_Information) (User_ID string) {
User_ID = GenerateUniqueID()
user.User_ID = User_ID
UserList = append (UserList, user)
return User_ID
}
func Add_IoT(User_ID string, IoT IoT_Information) (IoT_ID string, d string, Q string) {
index: = SearchUID(User_ID)
IoT.IoT_ID = GenerateUniqueIoTID()
UserList[index].IoTs = append(UserList[index].IoTs, IoT)
d = GenerateECDSAPrivateKey()
Q = d * G
return (IoT.IoT_ID, d, Q)
}

Furthermore, every IoT device in the CM must also register with CA. The registration
flow of adding a new IoT is shown in Figure 5. The details are as follows:

Step 1. Firstly, user X generates a random number k1, then generates the message with a
sender ID, receiver ID, IoT’s information, and timestamp.

M1 = (IDX ||IDCA||< IoT_In f ormation >||T1) (2)

A hash value hX1 is calculated by a hash function.

hX1 = H(M1) (3)

Then, X executes the “Sign” function with parameters in Algorithm 2 to get a set
of ECDSA signatures (rX1 , sX1). The detailed calculation is described in the authentica-
tion phase.

(rX1 , sX1) = Sign(hX1 , k1, dX) (4)

Sustainability 2021, 13, 13994 10 of 37

Figure 5. The flowchart of the registration phase for IoT devices.

Next, user X encrypts the message M1 into a cipher message CX1 . Then, user X sends
cipher messages with signatures (IDX , IDCA, CX1 , (rX1 , sX1)) to CA.

CX1 = EPukCA(M1) (5)

Step 2. After CA receives the message from X, CA decrypts the cipher message with its
private key and gets the decrypted messages.

M1 = DPrkCA(CX1) (6)

CA also check the validity of the message’s timestamp.

Check (T2 − T1)
?
≤ τ (7)

Then, CA calculates the hash value hX2
′ from the message M1 and invokes the “Verify”

function in Algorithm 2 to check the validity of signatures. The “Verify” function is
described in the next subsection “authentication phase”.

hX2
′ = H(M3) (8)

Sustainability 2021, 13, 13994 11 of 37

(valid/invalid) = Veri f y(hX1
′, rX1 , sX1) (9)

If the signatures are valid, CA invokes a chaincode function “Add_IoT” in Algorithm
1 to update the IoT device’s information into BC. Then, CA sends a response message to
user X. Firstly, CA generates a random number k2 and a response message with the IoT’s
ID IDIoT and ECDSA parameters dIoT and QIoT .

M2 = (IDCA||IDX ||IDIoT ||dIoT ||QIoT ||T3) (10)

Then, CA calculates signatures with the hash value hCA1 . The signatures are calculated
by calling the “Sign” function in Algorithm 2, then returning the signatures (rCA1 , sCA1).

hCA1 = H(M2) (11)

(rCA1 , sCA1) = Sign(hCA1 , k2, dCA) (12)

Next, CA encrypts the message to cipher message by using user X’s public key.

CCA1 = EPukX (M2) (13)

Step 3. User X receives the response message from CA. Then, user X decrypts the cipher
message with his/her private key and gets the decrypted messages.

M2 = DPrkX (CCA1) (14)

User X checks the message’s timestamp is valid or not:

Check (T4 − T3)
?
≤ τ (15)

Then, user Y calculates the hash value hCA1
′ from the message and invokes the “Verify”

function in Algorithm 2 to check the validity of signatures by the following equations.

hCA1
′ = H(M2) (16)

(valid/invalid) = Veri f y(hCA1
′, rCA1 , sCA1) (17)

The function returns “valid” if the signatures sent from user Y are valid. Then the IoT
device saves parameters (IDIoT , dIoT , QIoT) to its configurations for future communication
in the system.

3.4. Authentication Phase

In the authentication phase, we assigned user X as a sender and user Y as a receiver.
As shown in Figure 6, every sender and receiver need to sign and verify their message
by invoking the “Sign” and “Verify” function in Algorithm 2. The following are the steps
in detail.

Step 1. User X generates a random number k3 and generates a message with a timestamp,
sender ID, and receiver ID.

M3 = (IDX ||IDY||T5) (18)

Then, a hash value hX2 is calculated by a hash function

hX2 = H(M3) (19)

Sustainability 2021, 13, 13994 12 of 37

Figure 6. The flowchart of the phase of authentication.

Then, X executes the “Sign” function with parameters in Algorithm 2 to return a set of
ECDSA signatures (rX2 , sX2). The details are described in the following equations.

(xX2 , yX2) = k3G (20)

rX2 = xX2modn (21)

sX2 = xX2
−1(hX2 + rX2 dX)modn (22)

Next, user X encrypts the message M3 into a cipher message CX2 . Then, user X sends
cipher messages with signatures (IDX , IDY, CX2 , (rX2 , sX2)) to user Y:

CX2 = EPukY (M3) (23)

Step 2. User Y receives the message from user X. Then, user Y decrypts the cipher message
with his/her private key and gets the decrypted messages.

Sustainability 2021, 13, 13994 13 of 37

M3 = DPrkY (CX2) (24)

Then, user Y checks whether the message’s timestamp is valid or not.

T6 − T5
?
≤ τ (25)

Then, user Y calculates the hash value hX2
′ from the message M3 and invokes the

“Verify” function in Algorithm 2 to check the validity of signatures.

hX2
′ = H(M3) (26)

u1 = h2
′sX2

−1modn (27)

u2 = rX2 sX2
−1modn (28)

(xX2
′, yX2

′) = u1G + u2QX (29)

Check xX2
′ ?
= rX2modn (30)

If the signatures are valid, then user Y sends a response message to user X. Firstly,
user Y generates a random number k4 and a response message with a timestamp.

M4 = (IDY||IDX ||T7) (31)

Then, user Y calculates signatures with the hash value hY1 . The signatures are calcu-
lated by calling the “Sign” function in Algorithm 2, and the function returns the signatures
(rY1 , sY1) after the following calculations.

hY1 = H(M4) (32)

(xY1 , yY1) = k4G (33)

rY1 = xY1modn (34)

sY1 = xY1
−1(hY1 + rY1 dY)modn (35)

Then, user Y encrypts the message to cipher message with user X’s public key.

CY1 = EPukX (M4) (36)

Step 3. User X receives the response message from Y. Then, user X decrypts the cipher
message with his/her private key and gets the decrypted messages.

M4 = DPrkX (CY1) (37)

Then, user X check whether the message’s timestamp is valid or not:

Check (T8 − T7)
?
≤ τ (38)

Then, user Y calculates the hash value hY1
′ from the message and invokes the “Verify”

function in Algorithm 2 to check the validity of signatures by the following equations.

hY1
′ = H(M4) (39)

u1 = hY1
′sY1
−1modn (40)

u2 = rY1 sY1
−1modn (41)

(xY1
′, yY1

′) = u1G + u2QY (42)

Sustainability 2021, 13, 13994 14 of 37

Check xY1
′ ?
= rY1modn (43)

The function return is valid if the signatures sent from user Y are legal.

Algorithm 2. The function of authentication with the sign and verify.

func Sign (h string, k string, d string) (r string, s string) {
(x, y) = k * G;
r = x % n
s = (h + r * d)/x % n
return r, s
}
func Verify (h string, r string, s string) (result string) {
u1 = h/s % n
u2 = r/s % n
(x, y) = u1 * G + u2 * Q
if x = r {
return “valid”
}else{
return “invalid”
}
}

3.5. Alarm Triggered Phase

When an IoT device detects an abnormal occurrence, it must trigger and send informa-
tion to the LS immediately. The flow of the alarm triggered phase is provided in Figure 7,
and the descriptions are as follows.

Step 1. IoT generates a random number k5, then invokes the chaincode function “Event_
Trigger” as shown in Algorithm 3. This will send a transaction and update the
information to the BC’s ledger. The function also returns an event’s ID, and the
IoT generates a message and adds with the event’s ID and a timestamp.

M5 = (IDIoT ||IDLS||IDOP||IDE||T9) (44)

A hash value hIoT1 is calculated by a hash function.

hIoT1 = H(M5) (45)

Then, IoT executes the “Sign” function with parameters in Algorithm 2 to generate a
set of ECDSA signatures (rIoT1 , sIoT1).

(rIoT1 , sIoT1) = Sign(hIoT1 , k5, dIoT) (46)

Next, IoT encrypts the message M5 into a cipher message CIoT1 with LS’s public key.
Then, IoT sends cipher messages with signatures (IDIoT , IDLS, CIoT1 , (rIoT1 , sIoT1)) to LS.

CIoT1 = EPukLS(M5) (47)

Step 2. After LS receives the message from IoT, LS decrypts the cipher message with its
private key and gets the decrypted messages.

M5 = DPrkLS(CIoT1) (48)

Then, LS checks the interval of the message’s timestamp.

Check (T10 − T9)
?
≤ τ (49)

Sustainability 2021, 13, 13994 15 of 37

Figure 7. The flowchart of the alarm triggered phase.

Next, LS calculates the hash value hIoT1
′ from the message M5 and invokes the “Verify”

function in Algorithm 2 to check the validity of signatures.

hIoT1
′ = H(M5) (50)

(valid/invalid) = Veri f y(hIoT1
′, rIoT1 , sIoT1) (51)

If the signatures are valid, the LS invokes the chaincode function “Event_Received_LS”
as shown in Algorithm 3 which updates the LS’s received timestamp and signature of the
event to BC. After that, LS generates a random number k6 and a response message M6,
then transmits the message to IoT later.

M6 = (IDLS||IDIoT ||T11) (52)

Then, CA calculates signatures with the hash value hLS1 . The signatures are calculated
by calling the “Sign” function in Algorithm 2, then the function returns the signatures
(rLS1 , sLS1).

hLS1 = H(M6) (53)

(rLS1 , sLS1) = Sign(hLS1 , k6, dLS) (54)

Sustainability 2021, 13, 13994 16 of 37

LS encrypts the message to cipher message with IoT’s public key and sends the
message to IoT.

CLS1 = EPukIoT (M6) (55)

Step 3. IoT receives the response message from LS. Then, IoT decrypts the cipher message
with its private key and gets the decrypted messages.

M6 = DPrkIoT (CLS1) (56)

Then, IoT checks whether the message’s timestamp is valid or not:

Check (T12 − T11)
?
≤ τ (57)

Next, IoT calculates the hash value hLS1
′ from the message and invokes the “Verify”

function in Algorithm 2 to check the validity of signatures by the following equations.

hLS1
′ = H(M6) (58)

(valid/invalid) = Veri f y(hLS1
′, rLS1 , sLS1) (59)

Algorithm 3. Chaincode function of alarm triggered phase.

var EventLog []Event_Information
func Event_Trigger (OPID string, IoTID string, type IoTType, signature string) (EventID string) {
EventID = GenerateUniqueEventID()
EventLog = append (EventLog, new Event_Information{
Event_ID:EventID,
IoT_ID: IoTID,
User_ID: OPID,
IoT_Type: type,
Triggered_Datetime: time.Now(),
IoT_Triggered_Signature: signature
})
return EventID
}
func Event_Received_LS (Event_ID string, signature string) {
index: = SearchEventID(Event_ID)
EventLog[index].LS_Received_Datetime = time.Now()
EventLog[index].LS_Received_Signature = signature
}

3.6. Notification Phase

When an IoT device detects an abnormal occurrence, the IoT must alert relevant
personnel at the same time. If the IoT is set to the public domain, the notice will be
delivered to SG; otherwise, if the IoT is set to the private domain, the notification will be
sent to OP. The flow of the notification phase is depicted in Figure 8, the descriptions are
as follows.

Sustainability 2021, 13, 13994 17 of 37

Figure 8. The flowchart of the notification phase.

Step 1. Firstly, IoT generates a random number k7 and a message with IoT’s ID, security
guard/occupant’s ID, IoT occupant’s ID, event’s ID, and send timestamp.

M7 = (IDIoT ||IDSO||IDOP||IDE||T13) (60)

A hash value hIoT2 is calculated by a hash function.

hIoT2 = H(M7) (61)

Then, IoT executes the “Sign” function with parameters in Algorithm 2 to generate a
set of signatures (rIoT2 , sIoT2).

(rIoT2 , sIoT2) = Sign(hIoT2 , k7, dIoT) (62)

Next, IoT encrypts the message M7 into a cipher message CIoT2 .

CIoT2 = EPukSO(M7) (63)

Sustainability 2021, 13, 13994 18 of 37

A chaincode function “Event_Update_Notification” as shown in Algorithm 4 is in-
voked by IoT to update the IoT notification timestamp and signature of the event to BC.
Then, IoT sends cipher messages with signatures (IDIoT , IDSO, CIoT2 , (rIoT2 , sIoT2)) to the
security guard or occupant depending on the IoT type. We abbreviate the security guard or
occupant to SO.

Step 2. After SO receives the message from IoT, SO decrypts the cipher message with
his/her private key and gets the decrypted messages.

M7 = DPrkSO(CIoT2) (64)

Then, SO checks the interval of the message’s timestamp.

Check (T14 − T13)
?
≤ τ (65)

Next, LS calculates the hash value hIoT2
′ from the message M7 and invokes the “Verify”

function in Algorithm 2 to check the validity of signatures.

hIoT2
′ = H(M7) (66)

(valid/invalid) = Veri f y(hIoT2
′, rIoT2 , sIoT2) (67)

If the signatures are valid, the SO invokes the chaincode function “Event_Received_User”
as shown in Algorithm 4 which updates the SO’s received timestamp and signature to BC.
After that, SO generates a random number k8 and a response message M8.

M8 = (IDSO||IDIoT ||T15) (68)

Then, SO calculates signatures with the hash value hSO1 . The signatures are calculated
by executing the “Sign” function in Algorithm 2, then the function returns the signatures
(rSO1 , sSO1).

hSO1 = H(M8) (69)

(rSO1 , sSO1) = Sign(hSO1 , k8, dSO) (70)

Then, SO encrypts the message to cipher message with IoT’s public key, then SO sends
the message to IoT.

CSO1 = EPukIoT (M8) (71)

Step 3. IoT receives the response message from SO. Then, IoT decrypts the cipher message
with its private key and gets the decrypted messages.

M8 = DPrkIoT (CSO1) (72)

Then, IoT checks whether the message’s timestamp is valid or not:

Check (T16 − T15)
?
≤ τ (73)

Next, IoT calculates the hash value hSO1
′ from the message and invokes the “Verify”

function in Algorithm 2 to check the validity of signatures by the following equations.

hSO1
′ = H(M8) (74)

(valid/invalid) = Veri f y(hSO1
′, rSO1 , sSO1) (75)

The real situation must be verified or checked by SO. The response message should be
sent to LS in the next phase after being checked or solved.

Sustainability 2021, 13, 13994 19 of 37

Algorithm 4. Chaincode function of notification phase.

func Event_Update_Notification (Event_ID string) {
index := SearchEventID(Event_ID)
EventLog[index].Notify_Datetime = time.Now()
}

func Event_Received_User (Event_ID string, signature string) {
index := SearchEventID(Event_ID)
EventLog[index].User_Received_Datetime = time.Now()
EventLog[index].User_Received_Signature = signature
}

3.7. Response Phase (Security Guard with Public Domain IoT)

The security guard must report the results back to LS once the public IoT alarm has
been investigated or solved by the security guard. Figure 9 shows the flow of the response
phase with public domain IoT, and the details of the steps are as follows.

Figure 9. The flowchart of the response phase from the security guard.

Step 1. Initially, SG generates a random number k9 and a message with the event’s ID
and a timestamp.

Sustainability 2021, 13, 13994 20 of 37

M9 = (IDSG||IDLS||IDE||T17) (76)

A hash value hSG1 is calculated by a hash function.

hSG1 = H(M9) (77)

Next, SG executes the “Sign” function with parameters in Algorithm 2 to generate a
set of signatures (rSG1 , sSG1).

(rSG1 , sSG1) = Sign(hSG1 , k9, dSG) (78)

Then, SG encrypts the message M9 into a cipher message CSG1 with LS’s public key.

CSG1 = EPukLS(M9) (79)

SG invokes a chaincode function “Event_Update_Response” in Algorithm 5 to update
the SG’s response message, timestamp, and signature of the event to BC. Then, SG sends
cipher messages with signatures (IDSG, IDLS, CSG1 , (rSG1 , sSG1)) to the LS.

Step 2. LS receives the message from SG and decrypts the cipher message with its private
key and gets the decrypted messages.

M9 = DPrkLS(CSG1) (80)

Then, LS checks the interval of the message’s timestamp.

Check (T18 − T17)
?
≤ τ (81)

Next, LS calculates the hash value hSG1
′ from the message M9 and invokes the “Verify”

function in Algorithm 2 to check the validity of signatures.

hSG1
′ = H(M9) (82)

(valid/invalid) = Veri f y(hSG1
′, rSG1 , sSG1) (83)

If the signatures are valid, the LS invokes the chaincode function “Event_Received_
Response” in Algorithm 5 to update the LS’s received timestamp and signature to BC.
Afterward, LS generates a random number k10 and a response message M10.

M10 = (IDLS||IDSG||T19) (84)

LS calculates signatures with the hash value hLS2 . The signatures (rLS2 , sLS2) are
calculated by executing the “Sign” function in Algorithm 2.

hLS2 = H(M10) (85)

(rLS2 , sLS2) = Sign(hLS2 , k10, dLS) (86)

Then, LS encrypts the message to cipher message with SG’s public key, then sends the
message to SG.

CLS2 = EPukSG (M10) (87)

Step 3. SG receives the message from LS. Then, SG decrypts the cipher message with
his/her private key and gets the decrypted messages.

M10 = DPrkSG (CLS2) (88)

Sustainability 2021, 13, 13994 21 of 37

After that, SG checks whether the message’s timestamp is valid or not.

Check (T20 − T19)
?
≤ τ (89)

Next, SG calculates the hash value hLS2
′ from the message and invokes the “Verify”

function in Algorithm 2 to check the validity of signatures.

hLS2
′ = H(M10) (90)

(valid/invalid) = Veri f y(hLS2
′, rLS2 , sLS2) (91)

Algorithm 5. Chaincode function of response phase from security guard.

func Event_Update_Response (Event_ID string, signature string, message string) {
index: = SearchEventID(Event_ID)
EventLog[index].User_Response_Datetime = time.Now()
EventLog[index].User_Response_Signature = signature
EventLog[index].ResponseMessage = message
}

func Event_Received_Response (Event_ID string, signature string) {
index: = SearchEventID(Event_ID)
EventLog[index].LS_Received_Datetime = time.Now()
EventLog[index].LS_Received_Signature = signature
}

3.8. Response Phase (Occupant with Private Domain IoT)

If the IoT is in the private domain, the occupant has the alternative of resolving it
himself/herself or authorizing the security guard to solve the alarm situation. Figure 10
shows the flow of the response phase with private domain IoT. The details of the steps are
as follows.

Step 1. Firstly, OP generates a random number k11 and a message with the event’s ID, a
timestamp, and the option of self or permitting guard to solve < Sel f /Guard >.

M11 = (IDOP||IDLS||IDE||T21||< Sel f /Guard >) (92)

A hash value hOP1 is calculated by a hash function.

hOP1 = H(M11) (93)

Next, OP executes the “Sign” function with parameters in Algorithm 2 to generate a
set of signatures (rOP1 , sOP1).

(rOP1 , sOP1) = Sign(hOP1 , k11, dOP) (94)

Then, OP encrypts the message M11 into a cipher message COP1 with LS’s public key.

COP1 = EPukLS(M11) (95)

OP invokes a chaincode function “Event_Update_Response” in Algorithm 6. The
function updates the OP’s response message, timestamp, and signature to BC. Then, OP
sends cipher messages with signatures (IDOP, IDLS, COP1 , (rOP1 , sOP1)) to the LS.

Sustainability 2021, 13, 13994 22 of 37

Figure 10. The flowchart of the response phase from an occupant.

Step 2. LS receives the message from OP. LS decrypts the cipher message with its private
key and gets the decrypted messages.

M11 = DPrkLS(COP1) (96)

Sustainability 2021, 13, 13994 23 of 37

Then, LS checks the interval of the message’s timestamp.

Check (T22 − T21)
?
≤ τ (97)

Next, LS calculates the hash value hOP1
′ from the message M11 and invokes the “Verify”

function in Algorithm 2 to check the validity of signatures.

hOP1
′ = H(M11) (98)

(valid/invalid) = Veri f y(hOP1
′, rOP1 , sOP1) (99)

If the signatures are valid, the LS invokes the chaincode function “Event_Received_
Response” in Algorithm 6 to update the LS’s received timestamp and signature to BC.
Afterward, LS generates a random number k12 and a response message M12.

M12 = (IDLS||IDOP||IDE||T23) (100)

LS calculates signatures with the hash value hLS3 . The signatures (rLS3 , sLS3) are
calculated by executing the “Sign” function in Algorithm 2.

hLS3 = H(M12) (101)

(rLS3 , sLS3) = Sign(hLS3 , k12, dLS) (102)

Then, LS encrypts the message to cipher message with OP’s public key, then sends the
message (IDLS, IDOP, CLS3 , (rLS3 , sLS3)) to OP.

CLS3 = EPukOP(M12) (103)

Step 3. OP receives the message from LS. Then, OP decrypts the cipher message with
his/her private key.

M12 = DPrkOP(CLS3) (104)

After that, OP check whether the message’s timestamp is valid or not.

Check (T24 − T23)
?
≤ τ (105)

Next, OP calculates the hash value hLS3
′ from the message and invokes the “Verify”

function in Algorithm 2 to check the validity of signatures.

hLS3
′ = H(M12) (106)

(valid/invalid) = Veri f y(hLS3
′, rLS3 , sLS3) (107)

Step 1. If the OP permits the security guard in the community to solve the situation, then
LS will send the notification to the security guard as provided in the following
step. LS generates a random number k13 and a response message M13.

M13 = (IDLS||IDSG||IDE||T25) (108)

LS calculates signatures with the hash value hLS4 . The signatures (rLS4 , sLS4) are
calculated by executing the “Sign” function in Algorithm 2.

hLS4 = H(M13) (109)

(rLS4 , sLS4) = Sign(hLS4 , k13, dLS) (110)

Sustainability 2021, 13, 13994 24 of 37

Then, LS encrypts the message to cipher message with SG’s public key, then sends the
message (IDLS, IDSG, CLS4 , (rLS4 , sLS4)) to SG.

CLS4 = EPukSG (M13) (111)

Step 2. SG received the message from LS. Then, SG decrypts the cipher message with
his/her private key.

M13 = DPrkSG (CLS4) (112)

After that, SG checks the validity of the message’s timestamp.

Check (T26 − T25)
?
≤ τ (113)

Next, SG calculates the hash value hLS4
′ from the message and invokes the “Verify”

function in Algorithm 2 to check the validity of signatures.

hLS4
′ = H(M13) (114)

(valid/invalid) = Veri f y(hLS4
′, rLS4 , sLS4) (115)

SG invokes a chaincode function “Event_Update_Received_SG” in Algorithm 6. The
function updates the SG response message, timestamp, and signature of the event to BC.
Afterward, SG generates a random number k14 and a response message M14.

M14 = (IDSG||IDLS||IDE||T27) (116)

SG calculates signatures with the hash value hSG2 . The signatures (rSG2 , sSG2) are
calculated by executing the “Sign” function in Algorithm 2.

hSG2 = H(M14) (117)

(rSG2 , sSG2) = Sign(hSG2 , k14, dSG) (118)

Then, SG encrypts the message to cipher message with LS’s public key, then sends the
cipher message to SG.

CSG2 = EPukLS(M14) (119)

Then, SG sends cipher messages with signatures (IDSG, IDLS, CSG2 , (rSG2 , sSG2)) to LS.

Step 3. LS receives the message from SG, LS decrypts the cipher message with its private
key and gets the decrypted messages.

M14 = DPrkLS(CSG2) (120)

Then, LS checks the interval of the message’s timestamp.

Check (T28 − T27)
?
≤ τ (121)

Next, LS calculates the hash value hSG2
′ from the message M14 and invokes the “Verify”

function in Algorithm 2 to check the validity of signatures.

hSG2
′ = H(M14) (122)

(valid/invalid) = Veri f y(hSG2
′, rSG2 , sSG2) (123)

If the signatures are valid, the LS invokes the chaincode function “Event_Received_
Response_SG” in Algorithm 6 to update the LS’s received timestamp and signature to BC.

Sustainability 2021, 13, 13994 25 of 37

Algorithm 6. Chaincode function of response phase from an occupant.

func Event_Update_Response (Event_ID string, signature string, message string) {
index: = SearchEventID(Event_ID)
EventLog[index].User_Response_Datetime = time.Now()
EventLog[index].User_Response_Signature = signature
EventLog[index].ResponseMessage = message
}

func Event_Received_Response (Event_ID string, signature string) {
index: = SearchEventID(Event_ID)
EventLog[index].LS_Received_Datetime = time.Now()
EventLog[index].LS_Received_Signature = signature
}

func Event_Update_Recieved_SG (Event_ID string, signature string) {
index: = SearchEventID(Event_ID)
EventLog[index].SG_Received_Datetime = time.Now()
EventLog[index].SG_Received_Signature = signature
}

func Event_Received_Response_SG (Event_ID string, signature string) {
index: = SearchEventID(Event_ID)
EventLog[index].SG_Response_Datetime = time.Now()
EventLog[index].SG_Response_Signature = signature
}

3.9. Check for History Records Phase

In this stage, the system is designed in two ways to obtain history videos or records.
It is divided into the private and public domain. Figure 11 shows how OP viewing for the
public records through SG. The detailed step is as follows:

Step 1. OP requests for viewing the private domain IoT devices videos or records from
SG face to face.

Step 2. The SG sends his/her encryption key and request information (such as start date
and time, end date and time, and name or ID of private domain IoT device(s)) to
LS. Then, the LS sends that information to BC for verification.

Step 3. BC notifies the related occupant’s mobile device and asks for permission to let SG
and OP view the related records.

Step 4. The related occupant replies to the permission request back to BC by mobile de-
vice.

Step 5. If the related occupant accepts the request, then BC shows the history videos or
records in the security system. Otherwise, BC responds to the SG and OP that the
request is not permitted.

Furthermore, the SG can also request for viewing the private domain IoT devices
videos or records himself/herself without OP; the authorization of the relevant occupant is
also required. On the other hand, SG needs SP to authorize to view the public records, as
shown in Figure 12. The major steps of obtaining authorization are the same, the difference
is only the step of notifying and asking permission from SG’s supervisor SP, who is not
related to OP. The detailed step is described as follows:

Step 1. SG requests for viewing the public domain IoT devices’ videos or records. The
SG sends his/her encryption key and request information (such as start date and
time, end date and time, and name or ID of private domain IoT device(s)) to LS.

Step 2. Then, the LS sends that information to BC for verification.
Step 3. BC notifies SG’s supervisor (SP) and asks for permission to let SG view the

related records.
Step 4. The SP replies to the permission request back to BC by mobile device.

Sustainability 2021, 13, 13994 26 of 37

Step 5. If the related occupant accepts the request, then BC shows the history videos
or records in the security system to SG. Otherwise, BC responds to the SG that
request is not permitted.

Figure 11. The phase of obtaining authorization when viewing the private history videos or records.

Figure 12. The phase of obtaining authorization when viewing the public history videos or records.

3.10. Clarification Phase

When any party’s participating role determines that there is a problem with the secure
record, it can request a third-party impartial unit or person to verify it. Figure 13 shows
the flow of clarifying the information of safety security system logs. The explanation is
as follows:

Step 1. The participant (such as security guard or occupant, SO) sends a clarifying request
with the specified event ID and signatures to a third party (TP).

Step 2. TP sends the request message and his/her signature to BC.
Step 3. The signatures are checked by the BC, then the event’s information are sent to TP.
Step 4. The TP checks the validity of every signature in the event’s information.

Sustainability 2021, 13, 13994 27 of 37

a. Check if the event is triggered from a public domain IoT: go to step 4b if it
is “no”, else go to step 4d.

b. If the SG response signature is not valid, then the information is forged
by LS.

c. If the SG received signature is not valid, then the information is forged
by SG.

d. If the LS response signature is not valid, then the information is forged
by LS.

e. If the SO response signature is not valid, then the information is forged
by SO.

f. If the SO received signature is not valid, then the information is forged
by SO.

g. If the LS received signature is not valid, then the information is forged
by LS.

h. If the IoT triggered signature is not valid, then the information is forged
by IoT.

i. The specified event information is valid if all the signatures are legal.

Figure 13. The flow of clarifying information and signature.

Sustainability 2021, 13, 13994 28 of 37

4. Security Analysis

In this research, we have done some important security analyses to prevent the
system’s vulnerabilities or attacks from the proposed scheme. The analyses are explained
in the following subsections, such as the data integrity, non-repudiation of the message,
unforgeable data, traceability of records, man-in-the-middle attack, and replay attack.

4.1. Data Integrity

Firstly, we analyzed the integrity of the message in this subsection. The hash function
with the ECDSA algorithm is used to ensure the integrity of the message. Every sender
must calculate a hash value from the message and generate a set of signatures, and the
receiver needs to verify the validation of the message in hash value and signatures by the
“Verify” function in Algorithm 2.

For example, in the phase of registration of IoT, the sender X sends the message M1
to the receiver CA. The sender needs to generate hX1 and calculate (rX1 , sX1) with the
“Sign” function in Algorithm 2. Next sender sends M1 in cipher message with a signature
(rX1 , sX1) to the receiver, then the receiver decrypts and generates hash value hX1

′ by the
message M1. Lastly, the hash value hX1

′ with the signature (rX1 , sX1) is verified in the
“Verify” function of Algorithm 2. All detailed messages in every phase are listed in Table 2
respectively.

Table 2. Verification of data integrity of the proposed scheme.

Phase
Party

Message Hash Value Verification
Sender Receiver

Registration
of IoT

X CA M1 = (IDX ||IDCA||< IoT_In f ormation >||T1) hX1 = H(M1) Veri f y(hX1
′, rX1 , sX1)

CA X M2 = (IDCA||IDX ||IDIoT ||dIoT ||QIoT ||T3) hCA1 = H(M2) Veri f y(hCA1
′, rCA1 , sCA1)

Authentication
X Y M3 = (IDX ||IDY ||T5) hX2 = H(M3) Veri f y(hX1

′, rX1 , sX1)

Y X M4 = (IDY ||IDX ||T7) hY1 = H(M4) Veri f y(hY1
′, rY1 , sY1)

Alarm
triggered

IoT LS M5 = (IDIoT ||IDLS||IDOP||IDE||T9) hIoT1 = H(M5) Veri f y(hIoT1
′, rIoT1 , sIoT1)

LS IoT M6 = (IDLS||IDIoT ||T11) hLS1 = H(M6) Veri f y(hLS1
′, rLS1 , sLS1)

Notification
IoT SG/OP M7 = (IDIoT ||IDSO||IDOP||IDE||T13) hIoT2 = H(M7) Veri f y(hIoT2

′, rIoT2 , sIoT2)

SG/OP IoT M8 = (IDSO||IDIoT ||T15) hSO1 = H(M8) Veri f y(hSO1
′, rSO1 , sSO1)

Response
(Public IoT)

SG LS M9 = (IDSG ||IDLS||IDE||T17) hSG1 = H(M9) Veri f y(hSG1
′, rSG1 , sSG1)

LS SG M10 = (IDLS||IDSG ||T19) hLS2 = H(M10) Veri f y(hLS2
′, rLS2 , sLS2)

Response
(Private IoT)

OP LS M11 = (IDOP||IDLS||IDE||T21) hOP1 = H(M11) Veri f y(hOP1
′, rOP1 , sOP1)

LS OP M12 = (IDLS||IDOP||IDE||T23) hLS3 = H(M12) Veri f y(hLS3
′, rLS3 , sLS3)

LS SG M13 = (IDLS||IDSG ||IDE||T25) hLS4 = H(M13) Veri f y(hLS4
′, rLS4 , sLS4)

SG LS M14 = (IDSG ||IDLS||IDE||T27) hSG2 = H(M14) Veri f y(hSG2
′, rSG2 , sSG2)

4.2. Non-Repudiation

Furthermore, we also analyzed the non-repudiation of the message in this subsection.
The sign function with the ECDSA algorithm is used to ensure the signature is from the
sender. Every sender must generate the signature from the message, and the receiver needs
to verify the signatures by the “Verify” function in Algorithm 2.

For example in the phase of registration of IoT, the sender X generates (rX1 , sX1) with
the ECDSA “Sign” function in Algorithm 2 by multiple parameters, such as hash value
hX1 , random number k1, and its ECDSA parameter dX. Then, the receiver generates a
hash value hX1

′ by the received message. The hash value hX1
′ and signature (rX1 , sX1) are

verified in the ECDSA “Verify” function in Algorithm 2. The signature is signed by the
sender if the verification return is valid. All the signatures and verification in every phase
are listed in Table 3.

Sustainability 2021, 13, 13994 29 of 37

Table 3. Verify non-repudiation of the proposed scheme.

Phase
Party

Signature Verification
Sender Receiver

Registration of IoT
X CA (rX1 , sX1) = Sign(hX1 , k1, dX) Veri f y(hX1

′, rX1 , sX1)

CA X (rCA1 , sCA1) = Sign(hCA1 , k2, dCA) Veri f y(hCA1
′, rCA1 , sCA1)

Authentication
X Y (rX2 , sX2) = Sign(hX2 , k3, dX) Veri f y(hX1

′, rX1 , sX1)

Y X (rY1 , sY1) = Sign(hY1 , k4, dY) Veri f y(hY1
′, rY1 , sY1)

Alarm triggered
IoT LS (rIoT1 , sIoT1) = Sign(hIoT1 , k5, dIoT) Veri f y(hIoT1

′, rIoT1 , sIoT1)

LS IoT (rLS1 , sLS1) = Sign(hLS1 , k6, dLS) Veri f y(hLS1
′, rLS1 , sLS1)

Notification
IoT SG/OP (rIoT2 , sIoT2) = Sign(hIoT2 , k7, dIoT) Veri f y(hIoT2

′, rIoT2 , sIoT2)

SG/OP IoT (rSO1 , sSO1) = Sign(hSO1 , k8, dSO) Veri f y(hSO1
′, rSO1 , sSO1)

Response
(Public IoT)

SG LS (rSG1 , sSG1) = Sign(hSG1 , k9, dSG) Veri f y(hSG1
′, rSG1 , sSG1)

LS SG (rLS2 , sLS2) = Sign(hLS2 , k10, dLS) Veri f y(hLS2
′, rLS2 , sLS2)

Response
(Private IoT)

OP LS (rOP1 , sOP1) = Sign(hOP1 , k11, dOP) Veri f y(hOP1
′, rOP1 , sOP1)

LS OP (rLS3 , sLS3) = Sign(hLS3 , k12, dLS) Veri f y(hLS3
′, rLS3 , sLS3)

LS SG (rLS4 , sLS4) = Sign(hLS4 , k13, dLS) Veri f y(hLS4
′, rLS4 , sLS4)

SG LS (rSG2 , sSG2) = Sign(hSG2 , k14, dSG) Veri f y(hSG2
′, rSG2 , sSG2)

All the important signatures and received timestamps will be sent via chaincode in
the alarm triggered phase, notification phase, and response phase. When there is a dispute
that has to be resolved, Section 3.10 offers a clarification phase to determine whether there
are any signature issues.

4.3. Unforgeable Data and Traceability

In the proposed system we applied HyperledgerFabric-based blockchain technology
in the proposed scheme. It is hard to forge any data stored in the BC compared to the tradi-
tional database storing scheme. In every phase we designed in the system, every participant
must invoke the chaincode function and update the related information to BC, especially
updating the signature and timestamp when processing the IoT’s triggered alarm.

Figure 14 shows how the data are updated in the BC. When a participant invokes a
chaincode function, the chaincode mechanism will be proposed to every peer (the peer
could be more than 1, we demonstrated 3 peers in the scheme) in the blockchain center.
Every peer sign and response after the transaction is proofed. After that, the ledger will be
updated to every peer via an ordering peer (OP) after sending those endorsed signs and
the transaction.

Because of the chaincode mechanism, it is impossible to forge data in the blockchain
center; every transaction and ledger are duplicated in all the peers in BC, and the only way
to update the data in the ledger is from pre-designed chaincode.

According to the characteristics of the blockchain, every transaction record will be
chained and stored in the ledger of every peer. Therefore, the records can be traced in the
ledger, and they are also unforgeable. In addition, we designed a clarification phase in
Section 3.10. The section can help participants to clarify the record in the blockchain with
the third party. If any signatures cannot be verified in the phase of clarifying, it means
some signatures are being forged during executing chaincode in other phases.

4.4. Man-in-the-Middle Attack

We implemented asymmetric encryption and decryption in every communication
message to defend from the man-in-the-middle attack. Every message that sends from

Sustainability 2021, 13, 13994 30 of 37

the sender must encrypt with the receiver’s public key. After the receiver received the
encrypted cipher message, the receiver uses its private key to decrypt the message. Table 4
shows all the asymmetric encryption and decryption in every phase.

Figure 14. Update data to Blockchain Center.

Table 4. Encryption and decryption to prevent man-in-the-middle attack.

Phase
Party

Encryption Decryption
Sender Receiver

Registration of IoT
X CA CX1 = EPukCA (M1) M1 = DPrkCA (CX1)

CA X CCA1 = EPukX (M2) M2 = DPrkX (CCA1)

Authentication
X Y CX2 = EPukY (M3) M3 = DPrkY (CX2)

Y X CY1 = EPukX (M4) M4 = DPrkX (CY1)

Alarm triggered
IoT LS CIoT1 = EPukLS (M5) M5 = DPrkLS (CIoT1)

LS IoT CLS1 = EPuk IoT (M6) M6 = DPrk IoT (CLS1)

Notification
IoT SG/OP CIoT2 = EPukSO (M7) M7 = DPrkSO (CIoT2)

SG/OP IoT CSO1 = EPuk IoT (M8) M8 = DPrk IoT (CSO1)

Response
(Public IoT)

SG LS CSG1 = EPukLS (M9) M9 = DPrkLS (CSG1)

LS SG CLS2 = EPukSG (M10) M10 = DPrkSG (CLS2)

Response
(Private IoT)

OP LS COP1 = EPukLS (M11) M11 = DPrkLS (COP1)

LS OP CLS3 = EPukOP (M12) M12 = DPrkOP (CLS3)

LS SG CSG2 = EPukLS (M13) M13 = DPrkLS (CSG2)

SG LS CLS4 = EPukSG (M14) M14 = DPrkSG (CLS4)

Sustainability 2021, 13, 13994 31 of 37

For example, in the phase of registration of IoT, X sends a message M1 encrypted
by CA’s public key EPukCA(M1), then generates a cipher message CX1 . Next, X sends the
cipher message CX1 to CA, and CA decrypts the cipher message CX1 by his/her private
key DPrkCA(CX1) = M1 to get the original message M1. Consequently, the attacker is not
able to decrypt the message without having a private key of the receiver.

4.5. Replay Attack

To prevent the replay attack, we added a timestamp in every message sent from the
sender. The receiver needs to calculate the difference of the timestamp when receiving the
message. If the interval of two timestamps is over a threshold value, it means the message
is being replayed. Table 5 shows all timestamp validation in every phase.

Table 5. Timestamp validation to prevent man-in-the-middle attack.

Phase
Party

Send Time Receive Time Validation
Sender Receiver

Registration of IoT
X CA T1 T2 Check (T2 − T1)

?
≤ τ

CA X T3 T4 Check (T4 − T3)
?
≤ τ

Authentication
X Y T5 T6 Check (T6 − T5)

?
≤ τ

Y X T7 T8 Check (T8 − T7)
?
≤ τ

Alarm triggered
IoT LS T9 T10 Check (T10 − T9)

?
≤ τ

LS IoT T11 T12 Check (T12 − T11)
?
≤ τ

Notification
IoT SG/OP T13 T14 Check (T14 − T13)

?
≤ τ

SG/OP IoT T15 T16 Check (T16 − T15)
?
≤ τ

Response
(Public IoT)

SG LS T17 T18 Check (T18 − T17)
?
≤ τ

LS SG T19 T20 Check (T20 − T19)
?
≤ τ

Response
(Private IoT)

OP LS T21 T22 Check (T22 − T21)
?
≤ τ

LS OP T23 T24 Check (T24 − T23)
?
≤ τ

LS SG T25 T26 Check (T26 − T25)
?
≤ τ

SG LS T27 T28 Check (T28 − T27)
?
≤ τ

5. Discussion
5.1. Computation Cost

In this subsection, we calculated the computation costs as shown in Table 6. We con-
sider all computational costs in all phases of communication protocol. The costs included
hash operation, additional operation, subtraction operation, multiplication operation,
division operation, and asymmetrical encryption/decryption.

Sustainability 2021, 13, 13994 32 of 37

Table 6. Computation costs of the proposed scheme.

Phase Participant 1 Participant 2

Registration of IoT User X:
2Th + 2Tadd + 1Tsub + 4Tmul + 3Tdiv + 2Tasy

Certificate Authority:
2Th + 2Tadd + 1Tsub + 3Tmul + 3Tdiv + 2Tasy

Authentication User X:
2Th + 2Tadd + 1Tsub + 4Tmul + 3Tdiv + 2Tasy

User Y:
2Th + 2Tadd + 1Tsub + 3Tmul + 3Tdiv + 2Tasy

Alarm triggered Internet of Things:
2Th + 2Tadd + 1Tsub + 4Tmul + 3Tdiv + 2Tasy

Log Server:
2Th + 2Tadd + 1Tsub + 3Tmul + 3Tdiv + 2Tasy

Notification Internet of Things:
2Th + 2Tadd + 1Tsub + 4Tmul + 3Tdiv + 2Tasy

Security Guard/Occupant:
2Th + 2Tadd + 1Tsub + 3Tmul + 3Tdiv + 2Tasy

Response
(Public IoT)

Security Guard:
2Th + 2Tadd + 1Tsub + 4Tmul + 3Tdiv + 2Tasy

Log Server:
2Th + 2Tadd + 1Tsub + 3Tmul + 3Tdiv + 2Tasy

Response
(Private IoT)

Occupant:
2Th + 2Tadd + 1Tsub + 4Tmul + 3Tdiv + 2Tasy

Log Server:
2Th + 2Tadd + 1Tsub + 3Tmul + 3Tdiv + 2Tasy

Log Server:
2Th + 2Tadd + 1Tsub + 4Tmul + 3Tdiv + 2Tasy

Security Guard:
2Th + 2Tadd + 1Tsub + 3Tmul + 3Tdiv + 2Tasy

Notes: Th: a hash operation; Tadd: an additional operation; Tsub: a subtraction operation; Tmul: a multiplication operation; Tdiv: a division
operation; Tasy: asymmetrical encryption/decryption.

5.2. Communication Cost

In this subsection, we calculated the communication costs as shown in Table 7. We
calculated the total message length transmitted in every phase with 4G and 5G networks.
The maximum speed is 100 Mbps (Megabit Per Second) in the 4G network and 20 Gbps in
the 5G network. We assume that the length of an ID (LID) is 144 bits, the length of a cipher
message (Lm) is 512 bits, and the length of a set of signatures (Lsig) is 1024 bits in the trans-
mission message. For example, in the phase of registration of IoT, the calculation of message
length is 4 × LID + 2 × Lm + 2 × Lsig = 4 × 144 bits + 2 × 512 bits + 2 × 1024 bits = 3648 bits.
Therefore, the communication cost in the 4G network is 3648 bits/100 Mbps = 35 ms, and
the communication cost in the 5G network is 3648 bits/20 Gbps = 0.17 ms.

Table 7. Communication costs of the proposed scheme.

Phase Message Length 4G (100 Mbps) 5G (20 Gbps)

Registration of IoT 3648 bits 35 ms 0.17 ms

Authentication 3648 bits 35 ms 0.17 ms

Alarm triggered 3648 bits 35 ms 0.17 ms

Notification 3648 bits 35 ms 0.17 ms

Response (Public IoT) 3648 bits 35 ms 0.17 ms

Response (Private IoT) 7296 bits 70 ms 0.34 ms
Notes: LID: an ID (144 bits); Lm: a cipher message (512 bits); Lsig: signature parameters (1024 bits).

5.3. Comparison

Table 8 shows the comparison with the previous researches we surveyed. In this
research, we proposed a more secure IoT system with blockchain technology. Our research
also provides a complete system architecture and scheme, then the security issues of the
proposed method are proven in the security analysis section.

Sustainability 2021, 13, 13994 33 of 37

Table 8. Comparison with surveyed related works.

Authors Year Objective Technologies 1 2 3 4 5 6

Dutta et al. [9] 2018 IoT security system IoT, Arduino Y N Y N N N

Prasetyo et al. [10] 2018 Smart office system with threat detection IoT, Arduino, Raspberry Pi Y N Y Y N N

Saeed et al. [11] 2018 Smart home environment for fire prevention ZigBee Y N Y N Y N

Taryudi et al. [12] 2018 Home security and monitoring system with various types of
sensor, such as PIR, DHT-22, rain, fire, LDR sensors. Arduino-nano, NodeMCU ESP8266 Y N Y N N N

Al-Hudhud et al. [13] 2019 Security guard system with augmented reality to monitor
IoT status Infrared biosensor, google glass Y N Y Y Y N

Ray et al. [14] 2020 The security issues of smart home network Information security, networking Y N Y Y Y N

Khan et al. [15] 2020 Data verification system for surveillance cameras Blockchain, IoT Y Y Y Y Y N

Rahman et al. [16] 2020 Distributed IoT-SDN Model for condominium Blockchain, IoT-SDN Y Y Y N Y N

Khairuddin et al. [71] 2021 Smart building system with face detection and recognition Image processing, Raspberry Pi Y N Y Y Y N

Our proposed method 2021 A Blockchain-based community safety security system with
IoT secure devices Blockchain, IoT Y Y Y Y Y Y

Notes: 1: Application for community or building safety, 2: Blockchain-based architecture, 3: Internet of Things (IoT), 4: Surveillance Camera, 5: Complete architecture or framework, 6: Security analysis, Y: Yes,
N: No.

Sustainability 2021, 13, 13994 34 of 37

5.4. Limitations

The legal effect of the privacy issues for installing the IoT to surveillance will depend
on the legal provisions in various countries. In the proposed scheme, before using the
system, every participant must register with the blockchain center and have their relevant
data filled in during the registration process; other relevant information is also required.
After successful registration, they need to obtain the public key and private key pair of the
elliptic curve signature before they participate in this system.

The most important thing is that all communities must have basic and stable electricity
and networks to operate IoT devices and safety security systems. The establishment of
a backup power supply in the building or community can also prevent the proposed
approach from failing due to power problems. Alternatively, if the community does not
have a stable Internet access network, a local network safety security system can be realized
with the same architecture of the proposed scheme. Concerning the notification phase
or response phase, it would be a better solution to use a more traditional Short Message
Service (SMS) to send messages to related occupant or security guard mobile phones
instead of network transmission.

Overall, there are some limitations to the proposed system. The proposed scheme in
this article is focused on applying blockchain technology to solve security and clarification
issues. Therefore, the unpopularity or the slow speed of the Internet environment will be
potential issues.

6. Conclusions

Working or living in a community is frequently inextricably linked to the issue of
safety. To solve the problem of community safety, we proposed a community security
system based on blockchain and IoT security devices. Our research proposes a complete
system architecture and provides a communication flow for multiple phases after the alarm
is triggered. Security mechanisms are also integrated into the communication flow to
prevent the system from being attacked.

First, all participants and IoT devices must register with BC for future communication
authentication. When an IoT device triggers an alarm in the community, the message
will be sent to the LS to record the alarm message, and the relevant personnel (occupier
or security guard) will be notified that there is a possibility of an unsafe situation in the
community. Relevant personnel must confirm and respond to LS to record. In the process
of all status updates of the phase, all senders and receivers must update their signatures to
BC by invoking a chaincode we provide. The chaincode execution updates all the peers’
ledgers in the BC.

We have also devised different methods for managing both private and public IoT
devices. Any participant that needs to check for the history records must obtain the right
from the IoT’s owner. The private IoT devices should be permitted by the occupant, and
the public IoT should be permitted by the SG’s supervisor to ensure the privacy of the
occupants. Furthermore, when a participant in this system raises a dispute, the participant
can raise questions about the community safety handling process with a third party in the
clarification phase. The third-party can obtain the signature and timestamp data through
the BC by the IoT trigger alarm ID specified by the participant. Then the third party
confirms the legality of the process by verifying the validity of the signature.

With the proposed method, we achieved the following features in the safety secu-
rity system:

(1) Blockchain decentralization and authentication to ensure the privacy and anonymity
of participants.

(2) Unforgeable and traceability of data by the blockchain characteristic.
(3) The privacy protection when grabbing a history records from Log Server.
(4) Designed a clarifying phase for clarifying the safety system process.
(5) Signature mechanism to ensure message repudiation during communication.
(6) Asymmetrical encryption/decryption to ensure data integrity during communication.

Sustainability 2021, 13, 13994 35 of 37

(7) Transmission intercept prevention, prevent replay attacks from cyberattacks.
(8) Multiple security analyses have also been presented to prove the system’s security.
(9) The features of other works and our proposed scheme are also compared and con-

cluded in Table 8.

Finally, we expect that the system can be applied to various communities to strengthen
the safety of the community and avoid unnecessary disputes and tragedies.

Author Contributions: The authors’ contributions are summarized below. Z.-Y.L. and C.-L.C. made
substantial contributions to the conception and design. Z.-Y.L. and C.-L.C. were involved in drafting
the manuscript. Z.-Y.L. acquired data and analyzed and conducted the interpretation of the data. The
critically important intellectual content of this manuscript was revised by H.-C.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Ministry of Science and Technology, Taiwan,
R.O.C., under Contract MOST 110-2218-E-305-001–MBK, Contract MOST 110-2410-H-324-004-MY2.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yahoo News: Taiwan’s ‘Ghost Building’ Fire: A Death Trap for Dozens of Elderly. Available online: https://news.yahoo.com/

taiwans-ghost-building-fire-death-122230630.html (accessed on 1 November 2021).
2. The New York Times: Taiwan Couple Are Suspected of Negligent Homicide in Building Fire. Available online: https://www.

nytimes.com/2021/10/18/world/asia/taiwan-building-fire.html (accessed on 1 November 2021).
3. Kammersgaard, T. Private security guards policing public space: Using soft power in place of legal authority. Polic. Soc. 2019, 31,

117–130. [CrossRef]
4. Nalla, M.K.; Crichlow, V.J. Have the standards for private security guards become more stringent in the post 9/11 era? An

assessment of security guard regulations in the US from 1982 to 2010. Secur. J. 2017, 30, 523–537. [CrossRef]
5. Gurinskaya, A.L.; Nalla, M.K.; Rafailova, D.K. Are Private Security Guards Capable of Protecting Life and Property? Exploring

Russian Youth’s Perceptions. Russ. J. Criminol. 2018, 12, 338–348. [CrossRef]
6. Van Steden, R.; Nalla, M.K. Citizen satisfaction with private security guards in the Netherlands: Perceptions of an ambiguous

occupation. Eur. J. Criminol. 2010, 7, 214–234. [CrossRef]
7. Smart Buildings Market by Component (Solution (Safety and Security Management, Energy Management, Building Infrastructure

Management, Network Management, IWMS), Services), Building Type (Residential, Commercial, Industrial), Region—Global
Forecast to 2025. Available online: https://www.marketsandmarkets.com/Market-Reports/smart-building-market-1169.html#:
~{}:text=According%20to%20MarketsandMarkets%2C%20the%20global,14.2%25%20during%20the%20forecast%20period (ac-
cessed on 1 November 2021).

8. Medical Alert Systems Market by Type (Personal Emergency Response System (PERS) [Home-based/Landline-based System,
Mobile PERS], Nurse Calling System (NCS) [Button-Based Systems, Integrated Communication Systems, Mobile Systems,
Intercom Systems] and Smart Belt) by Offering (Hardware, Services and Software), by Connection Type (Wired, Wireless), by
End, and by Region, Forecast to 2028. Available online: https://www.reportsanddata.com/report-detail/medical-alert-systems-
market (accessed on 1 November 2021).

9. Dutta, J.; Wang, Y.; Maitra, T.; Islam, S.H.; Rawal, B.S.; Giri, D. ES3B: Enhanced Security System for Smart Building Using IoT. In
Proceedings of the 2018 IEEE International Conference on Smart Cloud (SmartCloud), New York, NY, USA, 21–23 September
2018; pp. 158–165.

10. Prasetyo, T.F.; Zaliluddin, D.; Iqbal, M. Prototype of smart office system using based security system. J. Phys. Conf. Ser. 2018, 1013,
012189. [CrossRef]

11. Saeed, F.; Paul, A.; Rehman, A.; Hong, W.H.; Seo, H. IoT-Based Intelligent Modeling of Smart Home Environment for Fire
Prevention and Safety. J. Sens. Actuator Netw. 2018, 7, 11. [CrossRef]

12. Taryudi; Adriano, D.B.; Ciptoning Budi, W.A. Iot-based Integrated Home Security and Monitoring System. J. Phys. Conf. Ser.
2018, 1140, 012006. [CrossRef]

13. Al-Hudhud, G.; AlSaeed, D.; Al-Baity, H.; Al-Humaimeedy, A.; Al-Turaiki, I. iGuard: Mobile security guard system with infrared
biosensor and google glass article information. Biosci. Biotechnol. Res. Commun. 2019, 12, 333–337. [CrossRef]

14. Ray, A.K.; Bagwari, A. IoT based Smart home: Security Aspects and security architecture. In Proceedings of the 2020 IEEE 9th
International Conference on Communication Systems and Network Technologies (CSNT), Gwalior, India, 10–12 April 2020;
pp. 218–222.

15. Khan, P.W.; Byun, Y.C.; Park, N. A Data Verification System for CCTV Surveillance Cameras Using Blockchain Technology in
Smart Cities. Electronics 2020, 9, 484. [CrossRef]

https://news.yahoo.com/taiwans-ghost-building-fire-death-122230630.html
https://news.yahoo.com/taiwans-ghost-building-fire-death-122230630.html
https://www.nytimes.com/2021/10/18/world/asia/taiwan-building-fire.html
https://www.nytimes.com/2021/10/18/world/asia/taiwan-building-fire.html
http://doi.org/10.1080/10439463.2019.1688811
http://doi.org/10.1057/sj.2014.21
http://doi.org/10.17150/2500-4255.2018.12(3).338-348
http://doi.org/10.1177/1477370809359264
https://www.marketsandmarkets.com/Market-Reports/smart-building-market-1169.html#:~{}:text=According%20to%20MarketsandMarkets%2C%20the%20global,14.2%25%20during%20the%20forecast%20period
https://www.marketsandmarkets.com/Market-Reports/smart-building-market-1169.html#:~{}:text=According%20to%20MarketsandMarkets%2C%20the%20global,14.2%25%20during%20the%20forecast%20period
https://www.reportsanddata.com/report-detail/medical-alert-systems-market
https://www.reportsanddata.com/report-detail/medical-alert-systems-market
http://doi.org/10.1088/1742-6596/1013/1/012189
http://doi.org/10.3390/jsan7010011
http://doi.org/10.1088/1742-6596/1140/1/012006
http://doi.org/10.21786/bbrc/12.2/16
http://doi.org/10.3390/electronics9030484

Sustainability 2021, 13, 13994 36 of 37

16. Rahman, A.; Islam, M.J.; Rahman, Z.; Reza, M.M.; Anwar, A.; Mahmud, M.A.P.; Nasir, M.K.; Noor, R.M. DistB-Condo: Distributed
Blockchain-Based IoT-SDN Model for Smart Condominium. IEEE Access 2020, 8, 209594–209609. [CrossRef]

17. Khalid, U.; Asim, M.; Baker, T.; Hung, P.C.K.; Tariq, M.A.; Rafferty, L. A decentralized lightweight blockchain-based authentication
mechanism for IoT systems. Cluster Comput. 2020, 23, 2067–2087. [CrossRef]

18. Van Wassenaer, L.; Verdouw, C.; Wolfert, S. What Blockchain Are We Talking About? An Analytical Framework for Understanding
Blockchain Applications in Agriculture and Food. Front. Blockchain 2021, 4, 20. [CrossRef]

19. Johar, S.; Ahmad, N.; Asher, W.; Cruickshank, H.; Durrani, A. Research and Applied Perspective to Blockchain Technology: A
Comprehensive Survey. Appl. Sci. 2021, 11, 6252. [CrossRef]

20. Hyperledger Fabric. Available online: https://www.hyperledger.org/use/fabric (accessed on 1 November 2021).
21. Leng, Z.; Tan, Z.; Wang, K. Application of Hyperledger in the Hospital Information Systems: A Survey. IEEE Access 2021, 9,

128965–128987. [CrossRef]
22. Iftekhar, A.; Cui, X.; Tao, Q.; Zheng, C. Hyperledger Fabric Access Control System for Internet of Things Layer in Blockchain-Based

Applications. Entropy 2021, 23, 1054. [CrossRef] [PubMed]
23. Kamilaris, A.; Fonts, A.; Prenafeta-Boldύ, F.X. The rise of blockchain technology in agriculture and food supply chains. Trends

Food Sci. Technol. 2019, 91, 640–652. [CrossRef]
24. Chen, C.-L.; Shang, X.; Tsaur, W.-J.; Weng, W.; Deng, Y.-Y.; Wu, C.-M.; Cui, J. An Anti-Counterfeit and Traceable Management

System for Brand Clothing with Hyperledger Fabric Framework. Symmetry 2021, 13, 2048. [CrossRef]
25. Chen, C.-L.; Deng, Y.-Y.; Tsaur, W.-J.; Li, C.-T.; Lee, C.-C.; Wu, C.-M. A Traceable Online Insurance Claims System Based on

Blockchain and Smart Contract Technology. Sustainability 2021, 13, 9386. [CrossRef]
26. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
27. Chen, S.J.; Hovde, D.C.; Peterson, K.A.; Marshall, A.W. Fire detection using smoke and gas sensors. Fire Saf. J. 2007, 42, 507–515.

[CrossRef]
28. Maguluri, L.P.; Srinivasarao, T.; Ragupathy, R.; Syamala, M.; Nalini, N.J. Efficient Smart Emergency Response System for Fire

Hazards using IoT. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 314–320.
29. Jacob, T.P.; Pravin, A. Environmental Pollution Alerting System Using IOT. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 403–406.
30. Lee, J.; Kim, J.; Im, J.P.; Lim, S.Y.; Kwon, J.Y.; Lee, S.M.; Moon, S.E. MEMS-Based NO2 Gas Sensor Using ZnO Nano-Rods for

Low-Power IoT Application. J. Korean Phys. Soc. 2017, 70, 924–928. [CrossRef]
31. Suh, J.H.; Cho, I.; Kang, K.; Kweon, S.J.; Lee, M.; Yoo, H.J.; Park, I. Fully integrated and portable semiconductor-type multi-gas

sensing module for IoT applications. Sens. Actuator B Chem. 2018, 265, 660–667. [CrossRef]
32. Gu, Z.M. Home smart motion system assisted by multi-sensor. Microprocess. Microsyst. 2021, 80. [CrossRef]
33. Choo, K.D.; Xu, L.; Kim, Y.; Seol, J.H.; Wu, X.; Sylvester, D.; Blaauw, D. Energy-Efficient Motion-Triggered IoT CMOS Image

Sensor With Capacitor Array-Assisted Charge-Injection SAR ADC. IEEE J. Solid State Circuit 2019, 54, 2921–2931. [CrossRef]
34. Kim, J.W.; Sul, S.H.; Choi, J.B. Development of real-time Internet of Things motion detection platform applying non-contact

sensor based on open source hardware. Int. J. Distrib. Sens. Netw. 2020, 16, 20. [CrossRef]
35. McCay, K.D.; Ho, E.S.L.; Shum, H.P.H.; Fehringer, G.; Marcroft, C.; Embleton, N.D. Abnormal Infant Movements Classification

With Deep Learning on Pose-Based Features. IEEE Access 2020, 8, 51582–51592. [CrossRef]
36. Shehzed, A.; Jalal, A.; Kim, K. Multi-Person Tracking in Smart Surveillance System for Crowd Counting and Normal/Abnormal

Events Detection. In Proceedings of the 2019 International Conference on Applied and Engineering Mathematics (ICAEM), Taxila,
Pakistan, 27–29 August 2019; pp. 163–168.

37. Sreenu, G.; Saleem Durai, M.A. Intelligent video surveillance: A review through deep learning techniques for crowd analysis. J.
Big Data 2019, 6, 48. [CrossRef]

38. Zhou, S.; Shen, W.; Zeng, D.; Fang, M.; Wei, Y.; Zhang, Z. Spatial–temporal convolutional neural networks for anomaly detection
and localization in crowded scenes. Signal Process. Image Commun. 2016, 47, 358–368. [CrossRef]

39. Ermis, A.; Yurttadur, A.A.; Karacay, T. Human Intruder Detection by Measuring and Analysing Ground Vibrations. J. Fac. Eng.
Archit. Gazi Univ. 2015, 30, 207–215.

40. Auvinet, E.; Multon, F.; Saint-Arnaud, A.; Rousseau, J.; Meunier, J. Fall Detection With Multiple Cameras: An Occlusion-Resistant
Method Based on 3-D Silhouette Vertical Distribution. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 290–300. [CrossRef]

41. Kong, X.; Meng, Z.; Meng, L.; Tomiyama, H. A Privacy Protected Fall Detection IoT System for Elderly Persons Using Depth
Camera. In Proceedings of the 2018 International Conference on Advanced Mechatronic Systems (ICAMechS), Zhengzhou, China,
30 August–2 September 2018; pp. 31–35.

42. Leone, A.; Diraco, G.; Siciliano, P. Detecting falls with 3D range camera in ambient assisted living applications: A preliminary
study. Med. Eng. Phys. 2011, 33, 770–781. [CrossRef] [PubMed]

43. Shojaei-Hashemi, A.; Nasiopoulos, P.; Little, J.J.; Pourazad, M.T. Video-based Human Fall Detection in Smart Homes Using Deep
Learning. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May
2018; pp. 1–5.

44. Gia, T.N.; Sarker, V.K.; Tcarenko, I.; Rahmani, A.M.; Westerlund, T.; Liljeberg, P.; Tenhunen, H. Energy efficient wearable sensor
node for IoT-based fall detection systems. Microprocess. Microsyst. 2018, 56, 34–46. [CrossRef]

45. Kim, T.; Park, H.; Hong, S.H.; Chung, Y. Integrated System of Face Recognition and Sound Localization for a Smart Door Phone.
IEEE Trans. Consum. Electron. 2013, 59, 598–603. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3039113
http://doi.org/10.1007/s10586-020-03058-6
http://doi.org/10.3389/fbloc.2021.653128
http://doi.org/10.3390/app11146252
https://www.hyperledger.org/use/fabric
http://doi.org/10.1109/ACCESS.2021.3112608
http://doi.org/10.3390/e23081054
http://www.ncbi.nlm.nih.gov/pubmed/34441194
http://doi.org/10.1016/j.tifs.2019.07.034
http://doi.org/10.3390/sym13112048
http://doi.org/10.3390/su13169386
http://doi.org/10.1016/j.comnet.2010.05.010
http://doi.org/10.1016/j.firesaf.2007.01.006
http://doi.org/10.3938/jkps.70.924
http://doi.org/10.1016/j.snb.2018.03.099
http://doi.org/10.1016/j.micpro.2020.103591
http://doi.org/10.1109/JSSC.2019.2939664
http://doi.org/10.1177/1550147720944024
http://doi.org/10.1109/ACCESS.2020.2980269
http://doi.org/10.1186/s40537-019-0212-5
http://doi.org/10.1016/j.image.2016.06.007
http://doi.org/10.1109/TITB.2010.2087385
http://doi.org/10.1016/j.medengphy.2011.02.001
http://www.ncbi.nlm.nih.gov/pubmed/21382737
http://doi.org/10.1016/j.micpro.2017.10.014
http://doi.org/10.1109/TCE.2013.6626244

Sustainability 2021, 13, 13994 37 of 37

46. Huang, Z.G.; Zhang, L.; Meng, X.Y.; Choo, K.K.R. Key-Free Authentication Protocol Against Subverted Indoor Smart Devices for
Smart Home. IEEE Internet Things J. 2020, 7, 1039–1047. [CrossRef]

47. Song, S.J.; Nam, H. Visible light Identification System for Smart Door Lock Application with Small Area Outdoor Interface. Curr.
Opt. Photonics 2017, 1, 90–94. [CrossRef]

48. Won, J.; Park, J.; Park, J.W.; Kim, I.H. BLESeis: Low-Cost IoT Sensor for Smart Earthquake Detection and Notification. Sensors
2020, 20, 13. [CrossRef]

49. Taale, A.; Ventura, C.E.; Marti, J. On the feasibility of IoT-based smart meters for earthquake early warning. Earthq. Spectra 2021,
37, 2066–2083. [CrossRef]

50. Khan, I.; Choi, S.; Kwon, Y.W. Earthquake Detection in a Static and Dynamic Environment Using Supervised Machine Learning
and a Novel Feature Extraction Method. Sensors 2020, 20, 21. [CrossRef] [PubMed]

51. Popper, N. Decoding the enigma of Satoshi Nakamoto and the birth of Bitcoin. New York Times, 15 May 2015.
52. Peck, M.E. The cryptoanarchists’ answer to cash. IEEE Spectrum 2012, 49, 50–56. [CrossRef]
53. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 29

December 2020).
54. Buterin, V. A next-generation smart contract and decentralized application platform. Ethereum White Pap. 2014, 3, 36.
55. Corda. Available online: https://www.corda.net/ (accessed on 1 November 2021).
56. Azure Blockchain. Available online: https://azure.microsoft.com/en-us/solutions/blockchain/ (accessed on 1 November 2021).
57. Nasir, Q.; Qasse, I.A.; Abu Talib, M.; Nassif, A.B. Performance Analysis of Hyperledger Fabric Platforms. Secur. Commun. Netw.

2018, 2018, 3976093. [CrossRef]
58. Chen, C.-L.; Lim, Z.-Y.; Liao, H.-C.; Deng, Y.-Y.; Chen, P. A Traceable and Verifiable Tobacco Products Logistics System with GPS

and RFID Technologies. Appl. Sci. 2021, 11, 4939. [CrossRef]
59. Iftekhar, A.; Cui, X.H. Blockchain-Based Traceability System That Ensures Food Safety Measures to Protect Consumer Safety and

COVID-19 Free Supply Chains. Foods 2021, 10, 12. [CrossRef] [PubMed]
60. Zhang, Y.; Wang, Z.; Deng, J.; Gong, Z.; Flood, I.; Wang, Y. Framework for a Blockchain-Based Infrastructure Project Financing

System. IEEE Access 2021, 9, 141555–141570. [CrossRef]
61. Xiao, Z.; Li, Z.; Yang, Y.; Chen, P.; Liu, R.W.; Jing, W.; Pyrloh, Y.; Sotthiwat, E.; Goh, R.S.M. Blockchain and IoT for Insurance: A

Case Study and Cyberinfrastructure Solution on Fine-Grained Transportation Insurance. IEEE Trans. Comput. Soc. Syst. 2020, 7,
1409–1422. [CrossRef]

62. Tanwar, S.; Parekh, K.; Evans, R. Blockchain-based electronic healthcare record system for healthcare 4.0 applications. J. Inf. Secur.
Appl. 2020, 50, 102407. [CrossRef]

63. Jayaraman, R.; Salah, K.; King, N. Improving Opportunities in Healthcare Supply Chain Processes via the Internet of Things and
Blockchain Technology. Int. J. Healthc. Inf. Syst. Inf. 2019, 14, 49–65. [CrossRef]

64. Mohamed, K.S. Cryptography Concepts: Integrity, Authentication, Availability, Access Control, and Non-repudiation. In
New Frontiers in Cryptography: Quantum, Blockchain, Lightweight, Chaotic and DNA; Mohamed, K.S., Ed.; Springer International
Publishing: Cham, Switzerland, 2020; pp. 41–63. [CrossRef]

65. Yuan, H.; Chen, X.; Wang, J.; Yuan, J.; Yan, H.; Susilo, W. Blockchain-based public auditing and secure deduplication with fair
arbitration. Inf. Sci. 2020, 541, 409–425. [CrossRef]

66. Conti, M.; Dragoni, N.; Lesyk, V. A Survey of Man In The Middle Attacks. IEEE Commun. Surv. Tutor. 2016, 18, 2027–2051.
[CrossRef]

67. Zhao, Y.; Li, Y.; Mu, Q.; Yang, B.; Yu, Y. Secure Pub-Sub: Blockchain-Based Fair Payment With Reputation for Reliable Cyber
Physical Systems. IEEE Access 2018, 6, 12295–12303. [CrossRef]

68. Feng, Y.; Wang, W.; Weng, Y.; Zhang, H. A Replay-Attack Resistant Authentication Scheme for the Internet of Things. In
Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; pp. 541–547.

69. Zaman, A.; Safarinejadian, B.; Birk, W. Security analysis and fault detection against stealthy replay attacks. Int. J. Control. 2020,
1–14. [CrossRef]

70. Johnson, D.; Menezes, A.; Vanstone, S. The Elliptic Curve Digital Signature Algorithm (ECDSA). Int. J. Inf. Secur. 2001, 1, 36–63.
[CrossRef]

71. Khairuddin, M.H.; Shahbudin, S.; Kassim, M. A smart building security system with intelligent face detection and recognition.
IOP Conf. Ser. Mater. Sci. Eng. 2021, 1176, 012030. [CrossRef]

http://doi.org/10.1109/JIOT.2019.2948622
http://doi.org/10.3807/COPP.2017.1.2.090
http://doi.org/10.3390/s20102963
http://doi.org/10.1177/8755293020981964
http://doi.org/10.3390/s20030800
http://www.ncbi.nlm.nih.gov/pubmed/32024153
http://doi.org/10.1109/MSPEC.2012.6203968
https://bitcoin.org/bitcoin.pdf
https://www.corda.net/
https://azure.microsoft.com/en-us/solutions/blockchain/
http://doi.org/10.1155/2018/3976093
http://doi.org/10.3390/app11114939
http://doi.org/10.3390/foods10061289
http://www.ncbi.nlm.nih.gov/pubmed/34199825
http://doi.org/10.1109/ACCESS.2021.3119589
http://doi.org/10.1109/TCSS.2020.3034106
http://doi.org/10.1016/j.jisa.2019.102407
http://doi.org/10.4018/IJHISI.2019040104
http://doi.org/10.1007/978-3-030-58996-7_3
http://doi.org/10.1016/j.ins.2020.07.005
http://doi.org/10.1109/COMST.2016.2548426
http://doi.org/10.1109/ACCESS.2018.2799205
http://doi.org/10.1080/00207179.2020.1862917
http://doi.org/10.1007/s102070100002
http://doi.org/10.1088/1757-899X/1176/1/012030

	Introduction
	Background
	Related Works

	Preliminary
	Internet of Things (IoT) Devices
	Blockchain-Based Smart Contract
	Threat Model

	Proposed Architecture and Methods
	System Architecture
	Notations
	Initialization and Registration Phase
	Authentication Phase
	Alarm Triggered Phase
	Notification Phase
	Response Phase (Security Guard with Public Domain IoT)
	Response Phase (Occupant with Private Domain IoT)
	Check for History Records Phase
	Clarification Phase

	Security Analysis
	Data Integrity
	Non-Repudiation
	Unforgeable Data and Traceability
	Man-in-the-Middle Attack
	Replay Attack

	Discussion
	Computation Cost
	Communication Cost
	Comparison
	Limitations

	Conclusions
	References

