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Abstract: The Volatility Index (VIX) is a real-time index that has been used as the first measure
to quantify market expectations for volatility, which affects the financial market as a main actor
of the overall economy that is sensitive to the environmental and social aspects of investors and
companies. The VIX is calculated using option prices for the S&P 500 Index (SPX) and is expressed
as a percentage. Taking into account that VIX only shows the implicit volatility of the S&P 500 for
the next 30 days, the authors develop a model for a near-optimal state trying to avoid uncertainty
and insufficient accuracy. The researchers are trying to make a contribution to the theory of socially
responsible portfolio management. The developed approach allows potential investments to make
decisions regarding such important topics as ethical investing, performance analysis, as well as
sustainable investment strategies. The approach of this research allows to use deep probabilistic
convolutional neural networks based on conditional variance as a linear function of errors with
the aim of estimating and predicting the VIX. For this purpose, the use of technical indicators and
economic indexes such as Chicago Board Options Exchange (CBOE) VIX and S&P 500 is considered.
The results of estimating and predicting the VIX with the proposed method indicate high precision
and create a certainty in modeling to achieve the goals.

Keywords: sustainable financial markets; volatility index; deep neural network; convolution of probability

1. Introduction

Contemporary and future challenges in socially responsible portfolio management
consider a wide range of important issues including both ethical investing and performance
analysis, as well as sustainable investment strategies. Authors find interesting various
important works in the area of the research [1–3]. Conventionally, the stock market is
known for providing investors with investment to place their surplus funds [4–7] while
providing companies with the opportunity to raise a variety of capital and expand their
business [8]. On the other hand, while this performance has made the financial market
one of the mainstays of economic research and digitalization, anecdotal evidence over the
past two decades has emphasized the trading of commodities in the cash and derivatives
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markets as an alternative investment class for traditional securities [9–11]. Therefore, from
a policy perspective, understanding the drivers and consequences of volatility in each mar-
ket is important for formulating policies that ensure macroeconomic and macroeconomic
stability [12] and sustainability, which leads to the appropriate selection of investment port-
folios [13–15]. For investors and consumers, on the other hand, this knowledge helps them
to predict prices, diversify risks, and develop strategies for hedging, trading derivatives,
and securities optimization [12].

Accordingly, there is currently a vast body of literature examining how macroeco-
nomics affects the performance of financial markets and commodities to achieve sustained
positive impact in overall economy. Importantly, as an empirical representative of macroe-
conomic conditions, studies in this literature often use one or more different time series
indicators such as unemployment rate, industrial production, GDP growth, and inflation.
These variables are only available with a monthly or quarterly average with a significant
delay and, therefore, hide a lot of information [16].

The researchers consider financial markets and the volatility index (VIX) from a
specific point of view regarding the economic indicators based on deep learning algorithms
and the sustainability concept. The authors take into account that if the value of the VIX
increases, the S&P 500 is likely to fall, and if the value of the VIX implicit volatility index
decreases, the S&P 500 is likely to be stable. This creates uncertainty and insufficient
accuracy, so it is necessary to provide a model for a near-optimal state. The purpose of the
research consists in development of an approach allowing the use of deep probabilistic
convolutional neural networks based on conditional variance as a linear function of errors
with the aim of estimating and predicting the volatility index (VIX). From the authors’
point of view, the developed approach could extend the implementation of the sustainable
portfolio management methodologies.

2. Literature Review

In the field of estimating and predicting fluctuations in stock exchanges and financial
markets, many studies have been conducted, the most recent of which is a case study. In [17],
stock exchange data are analyzed using fuzzy clustering methods for clustering data, but
since this method has weaknesses in training, artificial neural networks have been used
to improve clustering. The authors of [18] present a graph-based approach to forecasting
stocks using big data. First, the dynamic time warping algorithm is used to find a similar
pattern between the data and their adjacent data. In the following, a stepwise regression
analysis has been used to extract the features. In another study presented in [19], stock
market predictions were made using an artificial neural network. NASDAQ shares are the
subject of this study, which is forecast to be conducted in the period from 28 January 2015
to 18 June 2015. The use of the particle swarm optimization (PSO) algorithm with a neural
network with fuzzy functions to predict the stock market of Mexico based on statistical
arbitrage is presented in [20]. The use of the first and second fuzzy types along with the
neural network for classification and the PSO algorithm for extracting features from stock
market data is considered. The presentation of a classification method is conducted with
an observer and with the strengthening of input and training in [21], which uses a standard
data set called KOSPI based on statistical arbitrage.

Reference [22] presented the role of the US implicit volatility index in predicting fluctu-
ations in the Chinese stock market by examining evidence of heterogeneous autoregressive
(HAR) models. The purpose of this article is to evaluate the role of this proxy in predicting
fluctuations in the Chinese stock market. To this end, the authors of this study have devel-
oped six HAR models to change the implicit volatility index to predict fluctuations in the
Chinese stock market. In-sample and out-of-sample results show that changes in the tacit
volatility index can improve the forecast of fluctuations in the Chinese stock market, but
mainly show the improvement for predicting bad fluctuations instead of good fluctuations.
In addition, such a forecast improvement is measurable in the short-term forecast horizon,
but weakens as the forecast horizon increases. The study in [23] examines whether China’s
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volatility index can reflect investor sentiment. This study examines whether China’s official
volatility index can indicate investor interest. Short-term, medium-term, and long-term
fluctuations are obtained by EEMD. Experimental results show that all components of the
implicit volatility index can reflect investor sentiment at the relevant level. The findings
of this study confirm that the tacit volatility index can reflect the common feelings and
expectations of Chinese investors at different time scales.

3. Materials and Methods

Theoretically, various channels have been supported in the literature to support the
relationship between macroeconomic conditions and stock market volatility [24–28]. Some
researchers argue that this relationship is attractive given the potential of macroeconomic
conditions to influence corporate cash flows and systematic overall risk [29]. The two main
approaches to measuring stock returns, such as dividend mitigation model and arbitrage
pricing theory, provide an important theoretical framework for the relationship between
macroeconomic conditions and stock prices. For example, as an absolute pricing model, the
dividend discount model predicts that any (unforeseen) entry of new information about real
economic activity will drive stock prices/returns through the impact on dividends [30]. On
the other hand, as a relative pricing model, arbitrage pricing theory predicts the expected
return on investment based on its risk, which is measured by the sensitivity of individual
assets to the market return index.

Many investors are familiar with the VIX or volatility index, which measures how
much investors expect to see the S&P 500 fluctuate. Economic VIX is important now
because its history during the decades after World War II shows that stocks perform best
when economic volatility in the United States are at their lowest or highest. VIX is a rate at
which the price of a security increases or decreases for a particular set of returns. Volatility
is measured by calculating the standard deviation of annual returns over a specified period
of time, indicating that the price of a security may increase or decrease and measures the
fluctuations of a security risk. It is used in the option pricing formula. Volatility reflects
the pricing behavior of securities and help to estimate volatility that may occur in the
short term. Over the next year, due to the COVID-19 pandemic, we will have an economic
volatility that has not been seen before in the post-war period [31].

The volatility index is released every 15 s from 2:15 am to 8:15 am and from 8:30 am
to 3:15 pm. The final settlement value for futures and VIX options is calculated based on
the Special Opening Quotation (SOQ) of the volatility index using the open prices of the
weekly SPX and SPX options that expire 30 days after the expiration date of the VIX. The
initial prices of the SPX options used in SOQ are set by an automated auction mechanism
in Chicago Board Options Exchange (CBOE) options that matches locked or reverse buy
orders and quotes in the e-order book when opening trades. Even if the SPXW options
expire at 3:00 pm, the settlement amount is calculated at the same time as the SPX options
(8.30 am). The CBOE uses Equation (1) to calculate the VIX [32]:

σ2 =
2
T

n

∑
i=1

∆Ki

K2
i

erT
Q(Ki)−

1
T

(
F

K0
− 1
)2

(1)

where T is the expiration time (US risk-free interest rate). Treasury performance curve for
expiration date of the relevant SPX options includes F, the forward price of the S&P 500,
and K0, which are the first strikes below the level of the F and Ki of the strike price of the
i-th OTM option. Q(Ki) is the midpoint of the bid price of the option with the strike Ki.

More precisely, T is defined as in Equation (2) [32]:

T =

(
McurrentDay + MsettelmentDay + MotherDays

)
Minutes in a year

(2)
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where McurrentDay shows the remaining minutes until current midnight, and MsettelmentDay
indicates minutes from midnight to 8:30 am for standard SPX options and a few minutes
from midnight to 3:00 pm. For SPXW expiration, the MotherDays variable is the total number
of minutes between the days between the current day and the options expiration day. F is
defined as in Equation (3) [32]:

F = Strike Price + erT
.(Call Price− Put Price) (3)

It should be noted that all VIX calculations are calculated for short-term and subse-
quent options. The CBOE identifies short-term options with a remaining time of 23 to
30 days and subsequent options with a remaining time of 31 to 37 days. If two consecutive
zero bids occur, not all of the less objectionable options will not be considered. Considering
these rules and parameters, σ2

1 and σ2
2 can be calculated, which are the short-term and

subsequent components of the VIX. It takes an average of 30 weighted days of σ2
1 and σ2

2 to
obtain the value of the VIX (Equation (4)):

VIX = 100 .

√[
T1.σ2

1 .
(

NT2 − N30

NT2 − NT1

)
+ T2.σ2

2 .
(

N30 − NT1

NT2 − NT1

)]
.
N365

N30
(4)

where the variables are as follows:
T1: Expiration time (as a fraction of the total number of minutes per year) of short-term options;
T2: Expiration time (as a fraction of the total number of minutes per year) of next period options;
NT1 : Number of minutes to settle short-term options;
NT2 : Number of minutes to clear the next period options;
N30: Number of minutes in 30 days (43, 200);
N365: Number of minutes in a year 365 days (525, 600).

Based on the model in [32], which has modeled the estimation of implied and normal
VIX (Equations (1)–(4)), a new model with a combination of deep convolutional neural
network (DCNN) is presented in this section. In general, models based on deep learning
according to [15,16,29–31] are the most widely used econometric models when studying
the implied Volatility and VIX. This research uses convolutional-based image processing
principles to predict the VIX and compare it with deep learning models. In the first step,
the return to the effects is decomposed according to Equation (5):

rt = µ +
m

∑
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variance of a linear function of its errors and delays is assumed to be (Equation (7)): 
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௣
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In addition to the convolutional deep learning model presented below, a simple 
method for predicting the VIX is developed. Similar to [10], who uses historical statistics 
as a predicted risk, this study calculates the standard deviation of the return series in an 
n-day trading window and uses it as a forecast for fluctuations for the next trading day. 
This is a simple but intuitive method and can be used as a benchmark for evaluating other 
methods. The parameter to be estimated is only the window length n. An optimization 

=1
θi(rt−i − µ) +

n

∑
j=1

γjεt−jεt (5)

where µ is the median of rt, and εt is the error. In this study, it is assumed that εt originates
from Equation (6):

εt = zth1/2
t (6)

where zt ∼ N(0, 1). Hence, ht is the conditional variance at time t. Then, the conditional
variance of a linear function of its errors and delays is assumed to be (Equation (7)):

ht = ω +
p

∑
i=1

αiε
2
t−1 +

q

∑
j=1

β jht−j (7)

In addition to the convolutional deep learning model presented below, a simple
method for predicting the VIX is developed. Similar to [10], who uses historical statistics
as a predicted risk, this study calculates the standard deviation of the return series in an
n-day trading window and uses it as a forecast for fluctuations for the next trading day.
This is a simple but intuitive method and can be used as a benchmark for evaluating other
methods. The parameter to be estimated is only the window length n. An optimization
method similar to econometric models is used to obtain the estimate, meaning that the
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best window length is a value that can maximize the probability of sample data to perform
image recognition. Vector formulas can be used to describe the DCNN as in Equation (8):

X =

[
ht−1

xt

]
,

ft = σ
(

W f X + B f

)
,

it = σ(WiX + Bi),
ot = σ(WoX + Bo),

ct = ft∇ct−1 + it∇tanh(WcX + Bc),
ht = ot∇ tan h(ct)

(8)

where ht is the hidden state at time t, and xt represents the input at time t. σ is the
activation function.

This research uses LeakyReLU for the convolutional neural network. ft is for the
torsion layer (convolution), and it is for the polling layer (random and maximal). Similarly,
ot is for the fully connected layer, which gives the final result to the output layer. ∇ shows
point multiplication.

As discussed at the outset, a probability-based loss function is used when training
deep neural network models in estimating the VIX. If rt is the recurrence series observed
from time 1 to time T, σt and T are the volatilities that the model predicts at the same time
step, assuming a normal distribution. The probability of the sample can be calculated as in
Equation (9):

L =
T

∏
i=1

1√
2πσt

exp
(
− r2

t
2σ2

t

)
(9)

Based on this, the log-likelihood function can be obtained according to Equation (10):

log L =
T

∑
i=1
−1

2
log(2π)− log σt −

r2
t

2σ2
t

(10)

Login performance should be maximized through optimization, while deep learning
models are always trained by minimizing their loss performance. Therefore, the negative
logging possibility should be used so that the performance of the loss is deep in the
learning models. To further reduce the computational cost of deep learning models, a
simple function is used as the convolutional loss model function as Equation (11):

loss =
T

∑
i=1

(2 log σt +
r2

t
σ2

t
) (11)

Once all the models discussed so far have been tested, Equation (11) is used to calculate
the probability function of logging the test sample and comparing the values. It does not
matter if all the methods are in the training stages or in the experimental stages, the
forecasting method is implemented day by day. This means that it predicts volatility in
a rolling window, and the window moves forward one trading day at a time. When the
day-to-day volatilities are predicted and the σt volatility series from time 1 to time T is
obtained, it can be used to calculate Equations (10) and (11) in various processes. Other
configuration neural network model settings should also be considered. The number of
input layer units is set to 10, meaning that a 10-day recurrence series is used each time.
The number of hidden layers is two. The first hidden layer has 40 units, and the second
hidden layer has 80 units. The hidden layer activation function is selected as LeakyReLU,
and the threshold in these two layers is set to 0.3. The output layer activation function
is set to sigmoid. The back-propagation error network is used as an optimizer to train
the model. The set size is set to 2048. If the lost portfolio performance is not revoked,
there is an early pause. The convolutional neural network model finally combines time
with a fully connected layer. If the loss function is a distance function used by other
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research studies, the linear activation function can be good enough. However, when the
probability loss function is used as in Equations (3)–(7), some activation functions, such as
the linear function, cannot help the models converge during training. The performance of
the LeakyReLU and sigmoid activation function is a good option in the output layer, and
the proposed model can be successfully trained [33–35].

4. Empirical Results

The available data for predicting the implied VIX have six characteristics, namely
Volume (value of VIX), Date (related dates), VIX Open (the part of VIX that is open to buy),
VIX High (upper rates of implied VIX), VIX Low (lower rates of implied VIX), and VIX
Close (the part where closed to buy VIX). These are the data characteristics and the data
volume is 7898. The data are normalized and there is no need for a normalizing step. When
training deep neural network models in predicting VIX, a probability-based loss function
in DCNN with layering settings and the LeakyReLU stimulus function model and other
settings, mentioned in Section 3, are used. The data are transmitted to a DCNN. It should
be noted that the DCNN operates as a deep multi-channel network during the prediction
operation due to its probabilistic state. Therefore, the structural representation of this
neural network is essential, and adjusting its parameters is very important. Therefore, after
training and testing, the data according to the approach presented in Section 3, Figure 1
illustrate the general neural network structure after training and testing the data. At the
end, the image recognition mode with probabilistic DCNN is used based on conditional
variance as a linear function of errors to improve the prediction of the network results and
showing the VIX time series.
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In this structure in general, once the DCNN makes this prediction, and since the
results are not satisfying, the conditional variance method as a linear function of the errors
also improves the results as much as possible and reduces the dimensions so that a more
accurate forecast can be made for a certain period of time. The data sharing method is
considered random. The core of training for DCNN is the use of the descending gradient
method with momentum and adaptive training rate. In addition, to evaluate the efficiency
of DCNN, the mean square error function has been used. The number of repetitions for
data training is also a maximum of 1000. Figure 2 shows the performance of a DCNN.
Accordingly, at approximately 200 repetitions, the method converges and the data training
diagram (blue diagram) reaches the goal function. Figure 3 shows the training modes with
the gradient, validation, and training rates. In the upper part, the gradient rate during
training in 1000 repetitions is equal to 0.0024989; in the middle part, the validation rate of
the Kfold method is equal to 0 per 1000 repetitions; and in the lower part, the training rate
in 1000 repetitions is equal to 0.34166.
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Figure 4 shows the error histogram for the final goals and outputs of prediction
performed by the DCNN approach based on conditional variance as a linear function of
the errors, most of which are in the training phase. Figure 5, shows that the data are fitted
on the regression line as well as the output (goal) as much as possible.
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In Figure 6, at its initial time, there is an error in identifying training objectives
and responses, which is then retrained by optimizing the final prediction of the VIX by
conditional variance as a linear function of the errors. Figure 7 shows that there is an
autocorrelation error in the DCNN approach, about 0.004%, which is a very small error for
this evaluation criterion.
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function of errors.

Figure 8 shows that there is no input-error cross-correlation. Moreover, a representa-
tion of data prediction with DCNN based on conditional variance as a linear function of
errors can be seen in Figure 9. The data are examined for the next 300 days for forecasting.
The blue diagram shows the proposed and combined approach of the DCNN based on
conditional variance as a linear function of the errors, and the red diagram shows the use
of the DCNN alone. It is clear that in all areas, the results of the combined approach are
better than using only the DCNN.
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The index of possible errors of the implied VIX of the hybrid approach at the time
of prediction is shown in Figure 10. It is clear that there are errors in the forecast time in
300 days, which is in the range of 0 to 1.4%. it can be concluded that the precision of the
proposed approach has an average prediction of up to 98%.
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Figure 10. Index of possible errors of the combined approach at the time of prediction of the
implied VIX.

Figure 11 shows that the combined approach of the deep convolutional neural network
based on conditional variance as a linear function of errors (blue diagram) has a faster
convergence rate than the red diagram using only the deep convolutional neural network.
Finally, the time series for the deep convolutional neural network based on conditional
variance is plotted as a linear function of the errors, which is shown in Figure 12. This
diagram is declining, which shows an improvement in the proposed approach.
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In addition, two other criteria have been used for evaluation, which are the receiver
operating characteristic (ROC) curve and the Area Under the Curve (Figure 13). The ROC
curve is red, and the middle line is the regression. The higher the fit of the data on the
ROC, the better the AUC. The AUC value is 84.60%, which is a good rate. In general, the
results of the evaluation criteria are shown in Table 1.

Sustainability 2021, 13, x FOR PEER REVIEW 11 of 14 
 

 
Figure 12. Time series for conditioned variance-based deep convolutional neural network as a linear 
function of errors. 

In addition, two other criteria have been used for evaluation, which are the receiver 
operating characteristic (ROC) curve and the Area Under the Curve (Figure 13). The ROC 
curve is red, and the middle line is the regression. The higher the fit of the data on the 
ROC, the better the AUC. The AUC value is 84.60%, which is a good rate. In general, the 
results of the evaluation criteria are shown in Table 1. 

 
Figure 13. ROC result and AUC rate of the proposed approach. 

Table 1. Evaluation results of the proposed approach. 

Standard Deviation Recall (%) AUC (%) Precision (%) Mean Squared Error 
0.0201 91.55% 84.50% 95.01% 0.8 

5. Conclusion  

Figure 13. ROC result and AUC rate of the proposed approach.

Table 1. Evaluation results of the proposed approach.

Standard Deviation Recall (%) AUC (%) Precision (%) Mean Squared Error

0.0201 91.55% 84.50% 95.01% 0.8



Sustainability 2021, 13, 14011 12 of 14

5. Conclusions

Since sustainability has become the major trend in every aspect of the academic, finan-
cial, and industrial sectors, together with profitability and some other factors, corporate
social responsibility is considered as a major concern for investing decision-making process
in financial markets and investors tends to invest and select portfolios in socially responsi-
ble corporates. Authors tried to make a contribution to the theory of socially responsible
portfolio management. The developed approach allows potential investments to make
decisions regarding so important topics as ethical investing, performance analysis, as well
as sustainable investment strategies.

The implied volatility index (VIX) is a technical index and a security index that
can include all trades in one transaction. The VIX is arguably the best measure of risk
measurement available to investors and can be used effectively by any trader in any market.
This research identifies what VIX is and how it works. The implied VIX is a measure
of traders’ expectations for volatility in the S&P 500. It is like a chart, and the higher
it goes, the higher traders’ expectations of short-term market volatility are. Based on
the proposed model, the use of deep convolutional neural network (DCNN)-based on
conditional variance as a linear function of errors was presented with the aim of predicting
the implied VIX performed by a valid data set considering its six characteristics. The results
show that the estimation of the implied VIX for the CBOE volatility index, and the S&P
500 index options are considered, indicating an improvement in precision and evaluation
criteria. It has also been observed that the proposed approach, i.e., hybrid DCNN for
implied VIX has a more practical range and better results than using only DCNN.

Authors could discuss the implication of the proposed approach taking into account
the digital transformation as an instrument for implication of both sustainable portfolio
management methodologies and sustainable stock indices, as well as sustainable devel-
opment goals (SDG). The researchers find different interesting approaches to the imple-
mentation of digital twins in logistics [36] and trade networks [37] in the context of both
socially responsible investments [38] and individual sustainable investment [39]. Definitely,
authors should take into account calibrating the conditional value-at-risk (CoVaR) of fi-
nancial institutions based on neural network quantile regression [40]. In this regard, the
use of digital twin and artificial intelligence in a wide scientific area including sustainable
information and reporting and predicting the volatility index, and investing could be a
topic for future research.
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