The Effects of Temper Traits and Study Method (Full-Time vs. Extramural) on Polish Students’ Adaptability to Online Learning as a Result of COVID-19. A Pilot Study
Abstract
:1. Introduction
1.1. Online vs. Offline Education—Different Cultures and Psychological Fit
1.2. Full-Time vs. Extramural Studies
2. Materials and Methods
2.1. Sample
2.2. Research Procedure
2.3. Research Measures
2.3.1. Positive Attitude towards Online Learning Scale
2.3.2. Formal Characteristics of Behavior–Temperament Inventory (FCB-TI(R))
3. Results
3.1. Online or Face-to-Face? Learning Preferences and Attitudes
3.2. Who Prefers Online Learning More—Full-Time or Extramural Students?
3.3. Characteristics of Temperament and Learning Preferences
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chakraborty, P.; Mittal, P.; Gupta, M.S.; Yadav, S. Opinion of students on online education during the COVID-19 pandemic. Hum. Behav. Emerg. Technol. 2020, 3, 357–365. [Google Scholar] [CrossRef]
- Bączek, M.; Zagańczyk-Bączek, M.; Szpringer, M.; Jaroszyński, A.; Wożakowska-Kapłon, B. Students’ perception of online learning during the COVID-19 pandemic. A survey study of Polish medical students. Medicine 2021, 100, e24821. [Google Scholar] [CrossRef]
- Lockee, B.B. Online education in the post-COVID era. Nat. Electron. 2021, 4, 5–6. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, V. Reshaping Learning. The Hindu. 2020. Available online: https://www.thehindu.com/education/how-the-pandemic-has-changed-some-elements-of-teaching-learning-permanently/article32694224.ece (accessed on 13 August 2021).
- Yamin, K. Mixed Response but Online Classes to Stay Post COVID-19. University World News. 2020. Available online: https://www.universityworldnews.com/post.php?story=20200514121749886 (accessed on 13 August 2021).
- Jung, I. Cultural influences on online learning. In Culture and Online Learning: Global Perspectives and Research; Jung, I., Gunawardena, C.N., Eds.; Stylus: Sterling, VA, USA, 2014; pp. 15–24. [Google Scholar] [CrossRef]
- Juan, A.; Daradoumis, T.; Faulin, J.; Xhafa, F. SAMOS: A model for monitoring students’ and groups’ activities in collaborative e-learning. Int. J. Learn. Technol. 2009, 4, 53–72. [Google Scholar] [CrossRef]
- Calvet Liñán, L.; Juan Pérez, Á.A. Educational Data Mining and Learning Analytics: Differences, similarities, and time evolution. RUSC. Univ. Knowl. Soc. J. 2015, 12, 98–112. [Google Scholar] [CrossRef]
- Abdullah, F.; Ward, R. Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Comput. Hum. Behav. 2016, 56, 238–256. [Google Scholar] [CrossRef]
- Kemp, A.C.; Palmer, E.; Strelan, P. A taxonomy of factors affecting attitudes towards educational technologies for use with technology acceptance models. Br. J. Educ. Technol. 2019, 50, 2394–2413. [Google Scholar] [CrossRef]
- Matthews, G.; Deary, I.; Whiteman, M. Personality, performance and information-processing. In Personality Traits; Matthews, G., Deary, I.J., Whiteman, M.C., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 325–356. [Google Scholar] [CrossRef]
- Mathews, G. Personality and information processing: A cognitive-adaptive theory. In The Sage Handbook of Personality Theory and Testing: Volume 1. Personality Theories and Models; Boyle, G.J., Mathews, G., Saklofske, D.H., Eds.; Sage: Thousand Oaks, CA, USA, 2008; pp. 56–79. [Google Scholar]
- Baumert, A.; Schmitt, M. Personality and Information Processing. Eur. J. Personal. 2012, 26, 87–89. [Google Scholar] [CrossRef]
- Sales, S.M. Need for stimulation as a factor in social behavior. J. Personal. Soc. Psychol. 1971, 19, 124–134. [Google Scholar] [CrossRef]
- McCrae, R.R.; Costa, P.T. A five-factor theory of personality. In Handbook of Personality: Theory and Research; Pervin, L.A., John, O.P., Eds.; Guilford Press: New York, NY, USA, 1999; pp. 139–153. [Google Scholar]
- Rettew, D.C.; McGinnis, E.W.; Copeland, W.; Nardone, H.Y.; Bai, Y.; Rettew, J.; Devadenam, V.; Hudziak, J.J. Personality trait predictors of adjustment during the COVID pandemic among college students. PLoS ONE 2021, 16, e0248895. [Google Scholar] [CrossRef]
- Holmes, T.H.; Rahe, R.H. The Social Readjustment Rating Scale. J. Psychosom. Res. 1967, 11, 213–218. [Google Scholar] [CrossRef]
- Yang, C.; Chen, A.; Chen, Y. College students’ stress and health in the COVID-19 pandemic: The role of academic workload, separation from school, and fears of contagion. PLoS ONE 2021, 16, e0246676. [Google Scholar] [CrossRef]
- Fruehwirth, J.C.; Biswas, S.; Perreira, K.M. The Covid-19 pandemic and mental health of first-year college students: Examining the effect of Covid-19 stressors using longitudinal data. PLoS ONE 2021, 16, e0247999. [Google Scholar] [CrossRef]
- Clabaugh, A.; Duque, J.F.; Fields, L.J. Academic Stress and Emotional Well-Being in United States College Students Following Onset of the COVID-19 Pandemic. Front. Psychol. 2021, 12, 628787. [Google Scholar] [CrossRef] [PubMed]
- APA Dictionary of Psychology. 2021. Available online: https://dictionary.apa.org/temperament (accessed on 15 August 2021).
- Cloninger, S. Conceptual issues in personality theory. In The Cambridge Handbook of Personality Psychology; Corr, P.J., Matthews, G., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 3–26. [Google Scholar]
- Zuckerman, M. Models of Adult Temperament. In Handbook of Temperament; Zentner, M., Shiner, R.L., Eds.; The Guilford Press: New York, NY, USA, 2012; pp. 41–66. [Google Scholar]
- Strelau, J. The concept of temperament in personality research. Eur. J. Personal. 1987, 1, 107–117. [Google Scholar] [CrossRef]
- Strelau, J. Temperament as a Regulator of Behavior: After 50 Years of Research; Werner: Clifton Corners, NY, USA, 2008. [Google Scholar]
- Strelau, J.; Zawadzki, B. The Formal Characteristics of Behavior—Temperament Inventory (FCB-TI): Theoretical assumptions and scale construction. Eur. J. Personal. 1993, 7, 313–336. [Google Scholar] [CrossRef]
- Cyniak-Cieciura, M.; Zawadzki, B.; Strelau, J. [Formal Characteristic of Behaviour—Temperament Inventory: Revised Version FCB-TI(R). Handbook]; Pracownia Testów Psychologicznych PTP: Warszawa, Poland, 2016. [Google Scholar]
- Akiskal, H.S.; Akiskal, K. Cyclothymic, hyperthymic and depressive temperaments as subaffective variants of mood disorders. In Annual Review; Tasman, A., Riba, M.B., Eds.; American Psychiatric Press: Washington, DC, USA, 1992; Volume 11, pp. 43–62. [Google Scholar]
- Moccia, L.; Janiri, D.; Pepe, M.; Dattoli, L.; Molinaro, M.; De Martin, V.; Chieffo, D.; Janiri, L.; Fiorillo, A.; Sani, G.; et al. Affective temperament, attachment style, and the psychological impact of the COVID-19 outbreak: An early report on the Italian general population. Brain Behav. Immun. 2020, 87, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Gori, A.; Topino, E.; Palazzeschi, L.; Di Fabio, A. Which personality traits can mitigate the impact of the pandemic? Assessment of the relationship between personality traits and traumatic events in the COVID-19 pandemic as mediated by defense mechanisms. PLoS ONE 2021, 16, e0251984. [Google Scholar] [CrossRef]
- Wei, M. Social Distancing and Lockdown—An Introvert’s Paradise? An Empirical Investigation on the Association between Introversion and the Psychological Impact of COVID19-Related Circumstantial Changes. Front. Psychol. 2020, 11, 561609. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Jang, J.; Cho, E.; Choi, K.H. Investigating how individual differences influence responses to the COVID-19 crisis: The role of maladaptive and five-factor personality traits. Personal. Individ. Differ. 2021, 176, 110786. [Google Scholar] [CrossRef]
- Rivers, D.J. The role of personality traits and online academic self-efficacy in acceptance, actual use and achievement in Moodle. Educ. Inf. Technol. 2021, 26, 4353–4378. [Google Scholar] [CrossRef] [PubMed]
- Aschwanden, D.; Strickhouser, J.E.; Sesker, A.A.; Lee, J.H.; Luchetti, M.; Stephan, Y.; Sutin, A.R.; Terracciano, A. Psychological and Behavioural Responses to Coronavirus Disease 2019: The Role of Personality. Eur. J. Personal. 2020, 10, 51–66. [Google Scholar] [CrossRef]
- El-Seoud, S.A.; El-Khouly, M.M.; Taj-Eddin, I.A.T.F. Motivation in E-Learning: How Do We Keep Learners Motivated in an E-Learning Environment? Int. J. Learn. Teach. 2016, 2, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Hartnett, M. The Importance of Motivation in Online Learning. In Motivation in Online Education; Springer: Singapore, 2016; pp. 5–32. [Google Scholar] [CrossRef]
- Patricia Aguilera-Hermida, A. College Student’s Use and Acceptance of Emergency Online Learning Due to COVID-19. Int. J. Educ. Res. Open 2020, 1, 100011. [Google Scholar] [CrossRef]
- Stark, E. Examining the Role of Motivation and Learning Strategies in the Success of Online vs. Face-to-Face Students. Online Learn. 2019, 23, 234–251. [Google Scholar] [CrossRef] [Green Version]
- Gherhes, V.; Stoian, C.E.; Farcasiu, M.A.; Stanici, M. E-learning vs Face-To Face Learning: Analyzing Students’ Preferences and Behaviors. Sustainability 2021, 13, 4381. [Google Scholar] [CrossRef]
- Muthuprasad, T.; Aiswarya, S.; Aditya, K.S.; Girish, K.J. Students’ perception and preference for online education in India during COVID -19 pandemic. Soc. Sci. Humanit. Open 2021, 3, 100101. [Google Scholar] [CrossRef] [PubMed]
- GUS (Statistics Poland), Higher Education and Its Finances in 2019. 2020. Available online: https://stat.gov.pl/obszary-tematyczne/edukacja/edukacja/szkolnictwo-wyzsze-i-jego-finanse-w-2019-roku,2,16.html (accessed on 18 August 2021).
- Cyniak-Cieciura, M.; Zawadzki, B.; Strelau, J. The development of the revised version of the Formal Characteristics of Behaviour—Temperament Inventory FCB-TI(R). Personal. Individ. Differ. 2018, 127, 117–126. [Google Scholar] [CrossRef]
- Dikaya, L.A.; Avanesian, G.; Dikiy, I.S.; Kirik, V.A.; Egorova, V.A. How Personality Traits Are Related to the Attitudes toward Forced Remote Learning During COVID-19: Predictive Analysis Using Generalized Additive Modeling. Front. Educ. 2021, 6, 108. [Google Scholar] [CrossRef]
- Paechter, M.; Maier, B. Online or face-to-face? Student’s experiences and preferences in e-learning. Internet High. Educ. 2010, 13, 292–297. [Google Scholar] [CrossRef]
- GUS (Statistics Poland). Entry of Young People into the Labour Market in Poland in 2009. 2010. Available online: https://stat.gov.pl/cps/rde/xbcr/gus/pw_wejscie_ludzi_mlodych_na_ryn_prac_2009.pdf (accessed on 22 November 2021).
- Zajonc, R.B. Attitudinal effects of mere exposure. J. Personal. Soc. Psychol. 1968, 9, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. Extrinsic and intrinsic motivation to use computers in the workplace. J. Appl. Soc. Psychol. 1992, 22, 1111–1132. [Google Scholar] [CrossRef]
- Asaph, A.; Raja, B.W.D. Efficient e-learning by dint of cognitive abilities. I-Manag. J. Educ. Technol. 2016, 13, 7–10. [Google Scholar]
- Kurbakova, S.N.; Volkova, Z.N.; Kurbakov, A.V. Developing Students’ Cognitive Abilities in E-Learning Environment. In Proceedings of the 12th International Conference on E-Education, E-Business, E-Management, and E-Learning, Tokyo, Japan, 10–13 January 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 124–130. [Google Scholar] [CrossRef]
Factor 1 | Factor 2 | |
---|---|---|
| 0.91 | 0.12 |
| 0.69 | 0.21 |
| 0.79 | 0.01 |
| 0.72 | 0.44 |
| 0.14 | 0.90 |
| 0.49 | 0.06 |
| 0.80 | 0.25 |
| 0.68 | 0.04 |
| 0.12 | 0.88 |
| 0.73 | 0.35 |
SS loadings | 4.36 | 2.01 |
Proportion var | 0.44 | 0.20 |
Proportion Explained | 0.68 | 0.32 |
Full-Time Students (n = 91) | Extramural Students (n = 94) | U Mann–Whitney | |
---|---|---|---|
| 2.28 (0.85) | 2.81 (0.94) | 2889 *** |
| 3.11 (0.79) | 2.88 (0.93) | 4790.5 (ns) |
| 3.01 (0.83) | 2.61 (0.92) | 5224.5 ** |
| 2.77 (0.78) | 3.01 (0.82) | 3499.5 * |
| 2.66 (0.85) | 3.01 (0.80) | 3271 ** |
| 1.87 (0.66) | 2.10 (0.73) | 3535 * |
| 1.98 (0.79) | 2.43 (0.90) | 3066 *** |
| 3.09 (0.82) | 3.27 (0.75) | 3741 (ns) |
| 2.66 (0.78) | 2.35 (0.90) | 5090 * |
| 2.88 (0.89) | 2.51 (0.83) | 5287 ** |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
| - | |||||||||
| 0.97 ** | - | ||||||||
| 0.56 ** | 0.34 ** | - | |||||||
| −0.00 | −0.01 | −0.04 | - | ||||||
| −0.11 | −0.11 | −0.08 | 0.54 ** | - | |||||
| −0.16 * | −0.15 * | −0.11 | −0.31 ** | −0.23 ** | - | ||||
| 0.14 * | 0.12 | 0.19 * | −0.31 ** | −0.26 ** | 0.20 ** | - | |||
| 0.07 | 0.05 | 0.09 | −0.12 | −0.18 * | 0.05 | 0.17 * | - | ||
| 0.09 | 0.06 | 0.13 | 0.04 | 0.24 ** | 0.12 | 0.11 | 0.06 | - | |
| 0.06 | 0.05 | 0.07 | −0.39 ** | −0.31 ** | 0.35 ** | 0.33 ** | 0.00 | 0.09 | - |
| 0.30 ** | 0.39 ** | 0.27 ** | 0.10 | 0.06 | −0.16 * | 0.03 | −0.04 | 0.06 | 0.08 |
M | 2.42 | 2.67 | 2.45 | 2.77 | 3.09 | 2.56 | 2.75 | 2.14 | 2.90 | 2.28 |
SD | (0.60) | (0.75) | (0.55) | (0.58) | (0.41) | (0.52) | (0.45) | (0.57) | (0.31) | (0.53) |
Step | Predictor | B | SE | Beta | R2 | R2 Change | F | 95% Confidence Interval for B |
---|---|---|---|---|---|---|---|---|
1 | Study method | 0.331 | 0.078 | 0.300 *** | 0.090 | 0.090 | 17.981 *** | (0.177–0.485) |
2 | Study method | 0.324 | 0.077 | 0.293 *** | 0.129 | 0.039 | 8.093 ** | (0.173–0.475) |
Briskness | 0.242 | 0.085 | 0.197 ** | (0.074–0.410) | ||||
3 | Study method | 0.298 | 0.077 | 0.270 *** | 0.150 | 0.021 | 4.491 * | (0.146–0.449) |
Briskness | 0.282 | 0.086 | 0.230 *** | (0.111–0.452) | ||||
Activity | −0.161 | 0.076 | −0.151 * | (−0.311–−0.011) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworek, M.A. The Effects of Temper Traits and Study Method (Full-Time vs. Extramural) on Polish Students’ Adaptability to Online Learning as a Result of COVID-19. A Pilot Study. Sustainability 2021, 13, 14017. https://doi.org/10.3390/su132414017
Jaworek MA. The Effects of Temper Traits and Study Method (Full-Time vs. Extramural) on Polish Students’ Adaptability to Online Learning as a Result of COVID-19. A Pilot Study. Sustainability. 2021; 13(24):14017. https://doi.org/10.3390/su132414017
Chicago/Turabian StyleJaworek, Magdalena Anna. 2021. "The Effects of Temper Traits and Study Method (Full-Time vs. Extramural) on Polish Students’ Adaptability to Online Learning as a Result of COVID-19. A Pilot Study" Sustainability 13, no. 24: 14017. https://doi.org/10.3390/su132414017
APA StyleJaworek, M. A. (2021). The Effects of Temper Traits and Study Method (Full-Time vs. Extramural) on Polish Students’ Adaptability to Online Learning as a Result of COVID-19. A Pilot Study. Sustainability, 13(24), 14017. https://doi.org/10.3390/su132414017