Soil Water Erosion Vulnerability and Suitability under Different Irrigation Systems Using Parametric Approach and GIS, Ismailia, Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. In-Situ Field Investigations
2.3. Parametric Approach for Soil Suitability
2.4. Assessment of Soil, Water Erosion Vulnerability
- -
- Region: That the evaluated region is a set of field-units. Moreover, it can be named evaluating-scenario.
- -
- Field-unit: To identify each spatial unit that is analyzed and will be evaluated in the ImpelERO model. The field-unit is composed of climate, soil, and management components [27].
- -
- Soil: The set of soil characteristics that referred to as the soil types which will define the field-unit [27].
- -
- Climate: The set of land characteristics (LC’s) referred to as the climate, which defines a field-unit [27].
- -
- Management: Management characteristics (MC’s), that mainly consider the crop properties and cultivation practices [27].
3. Results and Discussion
3.1. Characterization of the Studied Soil
3.1.1. Morphological Description and Analytical Results
3.1.2. Weighted Mean of Soil Characteristics
3.2. Parametric System and Land Suitability for Different Irrigation Methods
3.3. Assessment of Soil Erosion Vulnerability and Potential Impact on Crop Productivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zelenakova, M.; Purcz, P.; Pintilli, R.; Blistan, P.; Hlustik, P.; Oravcova, A.; Abu-Hashim, M. Spatio-temporal Variations in Water Quality Parameter Trends in River Waters. Rev. Chim. 2018, 69, 2940–2974. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Zelenakova, M.; Straface, S.; Vranayová, Z.; Abu-Hashim, M. Integrated Modelling for Groundwater Contamination from Polluted Streams Using New Protection Process Techniques. Water 2019, 11, 2321. [Google Scholar] [CrossRef] [Green Version]
- Abdelhafez, A.A.; Metwalley, S.M.; Abbas, H. Irrigation: Water Resources, Types and Common Problems in Egypt. In Technological and Modern Irrigation Environment in Egypt, Best Mangment Practices and Evaluation; Springer Water: Cham, Switzerland, 2020; pp. 15–34. [Google Scholar]
- Ramamurthy, V.; Challa, O.; Naidu, L.; Kumar, K.A.; Singh, S.; Mamatha, D.; Ranjitha, K.; Mishra, B.B. Land Evaluation and Land Use Planning. The Soils of India; Springer: Berlin/Heidelberg, Germany, 2020; pp. 191–214. [Google Scholar]
- Bray, E.A.; Bailey-Serres, J.; Weretilnyk, E. Responses to abiotic stresses. In Biochemistry and Molecular Biology of Plants; Gruissem, W., Buchannan, B., Jones, R., Eds.; ASPP: Rockville, MD, USA, 2000; pp. 1158–1249. [Google Scholar]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality—A review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Abu-Hashim, M.; AbdelRahman, M.A.; Schütt, B.; Lasaponara, R. Evaluating the effects of human activity over the last decades on the soil organic carbon pool using satellite imagery and GIS techniques in the Nile Delta Area, Egypt. Sustainability 2019, 11, 2644. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Mawgowd, A.M.; El-Nemr, M.A.; Tantawy, A.S.; Habib, H.A. Alleviation of salinity effects on green bean plants using some environmental friendly materials. J. Appl. Sci. Res. 2010, 6, 871–878. [Google Scholar]
- Darwish, K.H.; Safaa, M.; Momou, A.; Saleh, S.A. Egypt: Land degradation issues with special reference to the impact of climate change. In Combating Desertification in Asia, Africa and Middle East, Proven Practices; Heshmati, G.A., Squires, V.R., Eds.; Springer: Dordrecht, The Netherlands, 2013; Chapter 6; pp. 113–136. [Google Scholar]
- Abu-Hashim, M.; Elsayed, M.; Belal, A.E. Effect of land-use changes and site variables on surface soil organic carbon pool at Mediterranean Region. J. Afr. Earth Sci. 2016, 114, 78–84. [Google Scholar] [CrossRef]
- Quda, S. Major Crops and Water Scarcity in Egypt: Irrigation Water Management under Changing Climate; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-21771-0. [Google Scholar]
- Badr, M.A.; Abou Hussein, S.D.; El-Tohamy, W.A.; Gruda, N. Efficiency of subsurface drip irrigation for potato production under different dry stress conditions. Gesunde Pflanz. 2010, 62, 63–70. [Google Scholar] [CrossRef]
- Saleh, S.A.; El-Shal, Z.S.; Fawzy, Z.S.; El-Bassiony, A.M. Effect of water amounts on artichoke productivity irrigated with brackish water. Aust. J. Basic Appl. Sci. 2012, 6, 54–61. [Google Scholar]
- Abu-Hashim, M.S.D.; Shaban, K.A. Deficit Irrigation Management as Strategy to Adapt Water Scarcity—Potential Application on Mediterranean Saline Soils. Egypt J. Soil Sci. 2017, 57, 261–271. [Google Scholar]
- Ali, H.; Ahmed, N.; Abu-Hashim, M.S. Potential Effect of Irrigation Intervals and Potassium Phthalate on Fennel Plants Grown in Semi-Arid Regions. Egypt J. Soil. Sci. 2020, 60, 83–98. [Google Scholar] [CrossRef]
- Kang, S.Z.; Zhang, L.; Liang, Y.L. Effect of limited irrigation on yield and water use efficiency of winter wheat in the loess plateau of China. Agric. Water Manag. 2002, 55, 203–216. [Google Scholar] [CrossRef]
- Rosa, D.D.L. Soil quality evaluation and monitoring based on land evaluation. Land Degrad. Dev. 2005, 16, 551–559. [Google Scholar] [CrossRef]
- Sayed, A.S.A. Evaluation of the Land Resources for Agricultural Development-Case Study: El-Hammam Canal and Its Extension, NW Coast of Egypt. Ph.D. Thesis, Department Geowissenschaften der Universitä Hamburg, Hamburg, Germany, January 2013; p. 241. [Google Scholar]
- Talaat, A.M.; Abd-El Mottaleb, O.M.A.; Abd El-Ghany, G.B.; Ahmed, S.A. Comparison among Different Irrigation Systems Based on the Parametric Evaluation Approach in Siwa Oasis, Egypt. Egypt. J. Appl. Sci. 2018, 33, 169–183. [Google Scholar]
- Albaji, M.; Shahnazari, M.A.; Behzad, A.; Naseri, S.; Nasab, B.; Golabi, M. Comparison of different irrigation methods based on the parametric evaluation approach in Dosalegh plain: Iran. Agric. Water Manag. 2010, 97, 1093–1098. [Google Scholar] [CrossRef]
- Albaji, M.; Nasab, S.B.; Kashkoli, H.A.; Naseri, A. Comparison of different irrigation methods based on the parametric evaluation approach in the plain west of Shush, Iran. Irrig. Drain. 2010, 59, 547–558. [Google Scholar] [CrossRef]
- Albaji, M.; Naseri, S.A.; Jafari, S. Comparison of different irrigation methods based on the parametric evaluation approach in abbas plain: Iran. J. Irrig. Drain. Eng. 2010, 136, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Albaji, M.; Nasab, S.B.; Hemadi, J. Comparison of Different Irrigation Methods Based on the Parametric Evaluation Approach in West North Ahwaz Plain. Probl. Perspect. Chall. Agric. Water Manag. 2012, 259–274. [Google Scholar]
- Albaji, M.M.; Golabi, S.; Nasab, B.; Zadeh, F.N. Investigation of surface, sprinkler and drip irrigation methods based on the parametric evaluation approach in Jaizan Plain. J. Saudi Soc. Agric. Sci. 2015, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Belal, A.A.; Mohamed, E.S.; Abu-Hashim, M.S.D. Land Evaluation Based on GIS-Spatial Multi-Criteria Evaluation (SMCE) for Agricultural Development in Dry Wadi, Eastern Desert, Egypt. Int. J. Soil Sci. 2015, 10, 100–116. [Google Scholar] [CrossRef]
- De la Rosa, D.; Mayol, F.; Moreno, J.A.; Bonson, T.; Lozano, S. An expert system/neural network model for evaluating agricultural soil erosion in Andalucia region, southern Spain. Agric. Ecosyst. Environ. 1999, 73, 211–226. [Google Scholar] [CrossRef]
- Rounsevell, M. The IMPEL Project. Final Report. 1999. Available online: http://www.cranfield.ac.uk/sslrc/projects/climchan/impel/impel.htm (accessed on 19 January 2021).
- Shahbazi, F.; Jafarzadeh, A.A.; Rosa, D.D.; Anaya-Romero, M. Soil erosion assessment and monitoring by using ImpelERO model in east Azerbaijan province, Iran. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Díaz-Pereira, E.; Prange, N.; Fernández, M.; de la Rosa, D.; Moreno, F. Predicting soil water erosion using the ImpelERO model and a mapped reference area in the Sevilla province (Spain). Adv. GeoEcol. 2002, 35, 533–542. [Google Scholar]
- Moheb, N.; El Rayes, A.; Geriesh, M.; Kaiser, M.; Gadou, H. Geologic Factors Controlling Urban Planning of Ismailia City, Suez Canal Province, Egypt. Catrina Int. J. Environ. Sci. 2015, 12, 1–6. [Google Scholar]
- Environmental Action Plan of Ismailia. In Egyptian Environmental Affairs Agency Cairo Environmental Profile of Ismailia; Ministry of Environment, Egyptian Environmental Affairs Agency: Cairo, Egypt, 2008.
- El-Omla, M.M.; Aboulela, H.A. Environmental and mineralogical studies of the sabkhas soil at Ismailia—Suez roadbed, southern of Suez Canal district, Egypt. Open J. Geol. 2012, 2, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Geriesh, M.H.; Balke, K.D.; El-Rayes, A.E. Problems of drinking water treatment along Ismailia Canal Province, Egypt. J. Zhejiang Univ. Sci. 2008, 9, 232–242. [Google Scholar] [CrossRef]
- FAO. Guidelines for Soil Profile Description, 3rd ed.; Soil Resources, Management and Conservation Service, Land and Water Development Division, FAO: Rome, Italy, 1990. [Google Scholar]
- FAO. Guidelines for Soil Description; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Day, P.; Black, C. Methods of Soil Analysis, Part 2; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 935–951. [Google Scholar]
- Sys, C.; Van Ranst, E.; Debaveye, I.J. Land Evaluation. Part 1: Principles in Land Evaluation and Crop Production Calculations; Part 2: Methods in Land Evaluation; Part 3: Crop Requirements; Agricultural Publications No. 7; General Administration for Development Cooperation: Brussels, Belgium, 1991. [Google Scholar]
- Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C.; Broderson, W.D. Field Book for Describing and Sampling Soils, Version 2.0. Agriculture; Natural Resources Conservation Service, USDA, National Soil Survey Center: Washington, DC, USA, 2002.
- Communications, Experiment Station, and Oregon State. Soil Test Interpretation Guide. Rehabilitation 1999, 3, 1–8. [Google Scholar]
- Fipps, G. Irrigation Water Quality Standards and Salinity Management Strategies. 2003. Available online: https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/87829/pdf_94.pdf?seq (accessed on 18 January 2021).
- Kawy, W.A.; Darwish, K.M. Assessment of land degradation and implications on agricultural land in Qalyubia Governorate, Egypt. Bull. Natl. Res. Cent. 2019, 43, 70. [Google Scholar] [CrossRef]
- Mbodj, C.; Mahjoub, I.; Sghaiev, N. Land evaluation in the oud rmel catchment, Tunisia. In Proceedings of the 24th Course Professional Master, Geomatics and Natural Resources Evaluation, Florence, Italy, 8 November 2004–23 June 2005. [Google Scholar]
- Zeleňáková, M.; Harabinová, S.; Mesároš, P.; Abd-Elhamid, H.F.; Purcz, P. Modelling of Erosion and Transport Processes. Water 2019, 11, 2604. [Google Scholar] [CrossRef] [Green Version]
- Dengiz, O. Comparison of different irrigation methods based on the parametric evaluation approach. Turk. J. Agric. For. 2006, 30, 21–29. [Google Scholar]
Capability Index | Definition | Symbol | |
---|---|---|---|
>80 | Excellent | Highly suitable | S1 |
60–80 | Suitable | Moderately suitable | S2 |
45–59 | Slightly suitable | Marginally suitable | S3 |
30–44 | Almost unsuitable | Currently not suitable | N1 |
<30.0 | Unsuitable | Permanently not suitable | N2 |
Profile | Land | Surface Characteristics | Erosion | Drainage | Depth/cm | Color | Texture | Structure | Consistence | Lime | Gravel | Boundary | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Use | Topography | Vegetation and | Category | Dry | Moist | Dry or | Wet/ | Wet/ | ||||||||
and Slope | Surface Cover | Degree | Moist | Stickiness | Plasticity | % | % | ||||||||||
1 | None | Almost flat | None | W | WD | 0–20 | 10YR 7/6 | 10YR 6/6 | FS | SG | L | NST | NPL | MO | VF | A | S |
Nearly level | Drift sand | S | 20–60 | 10YR 7/6 | 10YR 6/6 | MS | MA | SO | NST | NPL | MO | Few | C | S | |||
60–80 | 10YR 7/6 | 10YR 6/6 | MS | MA | SO | NST | NPL | SL | VF | D | S | ||||||
80–120 | 10YR 7/6 | 10YR 6/6 | MS | MA | SO | NST | NPL | SL | VF | C | S | ||||||
120–150 | 10YR 7/6 | 10YR 6/6 | FS | SG | L | NST | NPL | MO | VF | ||||||||
16 | Cultivated land | Almost flat | Olive and Citrus | WA | WD | 0–30 | 10YR 7/6 | 10YR 6/6 | MS | MA | SO | NST | NPL | MO | VF | C | S |
Very gently sloping | Drift sand | M | 30–100 | 10YR 6/4 | FS | MA | FR | NST | NPL | MO | VF | D | S | ||||
100–150 | 10YR 6/4 | MS | MA | FR | NST | NPL | MO | VF | |||||||||
13 | Cultivated land | Almost flat | Olive and Citrus | W | SP | 0–35 | 10YR 6/4 | SCL | MA | VFR | ST | PL | MO | VF | A | S | |
Nearly level | Few scattered desert shrubs | S | 35–100 | 10YR 5/4 | SCL | MA | FR | ST | PL | MO | VF | C | S | ||||
100–150 | 7.5 YR 5/4 | SL | MA | FR | SST | SPL | MO | VF | |||||||||
27 | Cultivated land | Almost flat | Fodders and vegetables | W | MW | 0–25 | 10YR 7/4 | 10YR 6/4 | FS | MA | SHA | NST | NPL | MO | VF | D | S |
Nearly level | Alfalfa and tomatoes | M | 25–100 | 10YR 7/6 | 10YR 6/6 | MS | MA | SHA | NST | NPL | MO | VF | C | S | |||
100–150 | 10YR 6/6 | CS | MA | FR | NST | NPL | MO | VF |
Profile | Depth | CaCO3 | Gravel | Particle Size Distribution (%) | Sand | Silt | Clay | Soil | |||||
No | Cm | % | % | 2–1 mm | 1–0.5 mm | 0.5–0.25 mm | 0.25–0.125 | 0.125–0.063 | <0.063 | Texture | |||
1 | 0–20 | 3.52 | 0.80 | 2.60 | 6.80 | 25.20 | 40.00 | 22.20 | 3.20 | FS | |||
20–60 | 3.19 | 2.80 | 17.90 | 32.10 | 29.80 | 15.70 | 3.70 | 0.80 | MS | ||||
60–80 | 1.43 | 0.90 | 5.90 | 30.90 | 58.90 | 2.90 | 0.40 | 1.00 | MS | ||||
80–120 | 0.80 | 1.80 | 4.40 | 19.20 | 33.70 | 40.70 | 1.00 | 1.00 | MS | ||||
120–150 | 3.52 | 0.50 | 11.24 | 12.25 | 25.32 | 26.93 | 18.82 | 5.44 | FS | ||||
16 | 0–30 | 9.75 | 0.40 | 5.90 | 30.90 | 58.90 | 2.90 | 0.40 | 1.00 | MS | |||
30–100 | 3.37 | 0.80 | 7.87 | 15.62 | 25.62 | 26.24 | 18.25 | 6.40 | FS | ||||
100–150 | 5.80 | 0.60 | 67.40 | 13.40 | 1.40 | 14.40 | 1.40 | 2.00 | MS | ||||
13 | 0–35 | 8.80 | 1.60 | 55.0 | 14.0 | 31.0 | SCL | ||||||
35–100 | 7.60 | 0.80 | 57.0 | 12.86 | 30.14 | SCL | |||||||
100–150 | 7.90 | 1.60 | 66.25 | 21.6 | 12.15 | SL | |||||||
27 | 0–25 | 6.20 | 1.80 | 7.20 | 10.60 | 28.94 | 34.63 | 16.94 | 1.69 | FS | |||
25–100 | 4.60 | 1.20 | 8.73 | 10.92 | 38.62 | 21.33 | 16.53 | 3.87 | MS | ||||
100–150 | 6.60 | 0.80 | 12.48 | 18.50 | 33.08 | 20.85 | 12.66 | 2.43 | CS | ||||
Profile | Depth | EC. | pH | Soluble Cation and Anions meq/l | CEC | ESP | |||||||
No | Cm | dSm−1 | Na+ | K+ | Ca++ | Mg++ | Cl− | CO3− | HCO3− | SO4− | meq/100 g | % | |
1 | 0–20 | 3.68 | 8.05 | 20.80 | 0.54 | 9.77 | 4.44 | 32.20 | tr. | 1.50 | 1.85 | 3.50 | 11.00 |
20–60 | 2.41 | 8.18 | 13.60 | 0.73 | 6.75 | 2.64 | 21.20 | tr. | 2.00 | 0.52 | 3.54 | 10.39 | |
60–80 | 0.49 | 9.56 | 12.40 | 0.25 | 3.04 | 1.17 | 2.30 | tr. | 2.00 | 0.16 | 2.10 | 9.47 | |
80–120 | 0.37 | 9.77 | 2.04 | 0 47 | 1.70 | 0.44 | 1.47 | tr. | 1.00 | 1.71 | 5.59 | 9.42 | |
120–150 | 1.47 | 8.40 | 10.60 | 0.52 | 2.32 | 1.50 | 11.91 | tr. | 1.00 | 2.03 | 6.36 | 9.94 | |
16 | 0–30 | 0.41 | 8.90 | 2.17 | 0.42 | 2.21 | 1.55 | 1.88 | tr. | 3.00 | 1.47 | 3.90 | 9.44 |
30–100 | 0.94 | 9.00 | 7.40 | 0.15 | 4.72 | 2.51 | 7.35 | tr. | 2.00 | 5.43 | 5.80 | 9.69 | |
100–150 | 1.51 | 8.40 | 7.10 | 0.90 | 5.76 | 2.13 | 14.30 | tr. | 1.00 | 0.59 | 3.33 | 9.96 | |
13 | 0–35 | 4.50 | 8.19 | 1.16 | 0.72 | 1.54 | 0.63 | 1.74 | tr. | 1.00 | 1.31 | 28.70 | 9.41 |
35–100 | 9.79 | 8.94 | 90.80 | 2.10 | 16.37 | 7 74 | 98.20 | tr. | 2.00 | 9.07 | 27.30 | 13.92 | |
100–150 | 8.60 | 9.29 | 18.60 | 0.54 | 9.77 | 4.44 | 30.50 | tr. | 1.00 | 1.85 | 16.30 | 10.22 | |
27 | 0–25 | 5.34 | 7.70 | 66.20 | 2.10 | 13.31 | 7.90 | 66.30 | tr. | 1.00 | 22.21 | 6.55 | 11.79 |
25–100 | 1.44 | 9.27 | 14.20 | 2.80 | 8.00 | 3.71 | 12.60 | tr. | 2.00 | 14.11 | 5.50 | 9.93 | |
100–150 | 0.33 | 9.20 | 2.17 | 0.42 | 2.21 | 1.55 | 1.88 | tr. | 3.00 | 1.47 | 4.98 | 9.40 |
Profile | Drainage Classes | Soil Depth | Gravel | Soil | CaCO3 | Soil Salinity | Soil Alkalinity | Organic Matter | CEC | Bulk Density | Water |
---|---|---|---|---|---|---|---|---|---|---|---|
No | cm | % | texture | % | dSm−1 | pH | % | meq/100 g | g/cm3 | µmhos | |
1 | Well-drained | 150 | 1.55 | FS | 2.43 | 1.59 | 8.81 | 0.46 | 4.45 | 1.53 | 2995 |
2 | 150 | 0.79 | FS | 3.76 | 2.08 | 7.94 | 0.42 | 4.30 | |||
3 | 150 | 0.59 | MS | 1.72 | 1.23 | 8.52 | 0.46 | 3.50 | |||
4 | 150 | 2.11 | MS | 3.22 | 0.87 | 9.03 | 0.55 | 3.60 | |||
5 | 150 | 1.84 | MS | 5.23 | 3.20 | 8.32 | 0.75 | 3.53 | |||
7 | 150 | 1.74 | FS | 5.46 | 4.22 | 8.26 | 0.85 | 5.12 | 1.53 | 2575 | |
8 | 150 | 0.90 | CS | 3.57 | 1.06 | 9.20 | 0.56 | 4.58 | |||
16 | Well drained | 150 | 0.65 | CS | 5.46 | 1.02 | 8.78 | 0.27 | 4.60 | 1.53 | 2575 |
17 | 150 | 0.59 | CS | 3.19 | 5.07 | 8.70 | 0.46 | 3.55 | 1.53 | 5295 | |
18 | 150 | 0.67 | MS | 3.75 | 3.39 | 8.00 | 0.42 | 3.49 | |||
19 | 150 | 0.74 | MS | 3.57 | 2.91 | 9.00 | 0.81 | 4.67 | |||
22 | 150 | 0.56 | CS | 4.30 | 0.79 | 9.63 | 0.56 | 3.76 | 1.53 | 3663 | |
23 | 150 | 0.39 | CS | 3.61 | 0.90 | 8.59 | 0.46 | 3.92 | |||
24 | 150 | 1.58 | CS | 5.51 | 1.49 | 8.93 | 0.27 | 3.71 | |||
25 | 150 | 1.97 | CS | 3.33 | 1.87 | 9.11 | 0.82 | 3.73 | |||
26 | 150 | 2.97 | CS | 4.78 | 8.74 | 8.40 | 0.62 | 3.53 | 1.53 | 3515 | |
27 | 150 | 1.17 | MS | 5.53 | 1.72 | 8.99 | 0.46 | 5.50 | |||
28 | 150 | 2.85 | CS | 2.89 | 4.84 | 8.10 | 0.42 | 4.59 | |||
10 | Moderately drained | 150 | 0.95 | SCL | 6.91 | 4.45 | 7.96 | 0.68 | 26.46 | 1.58 | 3950 |
11 | 150 | 1.04 | SC | 7.15 | 1.81 | 8.09 | 0.82 | 27.16 | 1.52 | ||
13 | 150 | 1.23 | SCL | 7.94 | 8.20 | 8.91 | 0.74 | 23.91 | 1.59 |
Profile | Surface Irrigation | Sprinkler Irrigation | Drip Irrigation | |||
---|---|---|---|---|---|---|
No | Capability Index | Suitability Classes | Capability Index | Suitability Classes | Capability Index | Suitability Class |
1 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
2 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
3 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
4 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
5 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
7 | 23.09 | N2 | 58.66 | S3 | 42.87 | N1 |
8 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
10 | 64.98 | S2 | 72.20 | S2 | 77.16 | S2 |
11 | 72.20 | S2 | 76.00 | S2 | 81.23 | S1 |
13 | 36.10 | N1 | 38.00 | N1 | 40.61 | N1 |
16 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
17 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
18 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
19 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
22 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
23 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
24 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
25 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
26 | 20.52 | N2 | 52.49 | S3 | 38.36 | N1 |
27 | 25.65 | N2 | 61.75 | S2 | 45.13 | S3 |
28 | 23.09 | N2 | 58.66 | S3 | 42.87 | N1 |
Surface Irrigation | Sprinkler Irrigation | Drip Irrigation | ||||||
---|---|---|---|---|---|---|---|---|
Ratio | Area per | Ratio | Area per | Ratio | Area per | |||
Suitability Class | % | Feddan | Suitability Class | % | Feddan | Suitability Class | % | Feddan |
N2 | 78.2 | 273.8 | N1 | 41.9 | 146.6 | N1 | 1.5 | 5.1 |
N1 | 9.9 | 34.7 | S3 | 47.8 | 167.2 | S3 | 30.0 | 105.0 |
S3 | 3.8 | 13.1 | S2 | 9.9 | 34.7 | S2 | 68.5 | 239.9 |
S2 | 8.1 | 28.4 | S1 | 0.4 | 1.5 |
Profile No | Soil Texture | Land Use | Soil Loss Prediction | Impact on Crop Productivity: Reduction (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Vulnerability Index | Risk Class | Soil Loss Rate | Soil Depth Loss | Productivity Reduction | |||||
(Vi: 0.00–1.00) | (V1–V6) | Mg/ha/y | (0–120) | 2020 | 2050 | 2100 | |||
1 | Sandy soil | Control | 0.44 | V3 | 37.9 | 0.25 | 0.0 | 6.8 | 19.1 |
10 | Sandy clay loam | Alfalfa | 0.34 | V3 | 17.7 | 0.08 | 0.0 | 2.3 | 6.2 |
11 | Sandy clay | Olive | 0.21 | V2 | 7.1 | 0.03 | 0.0 | 0.9 | 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Hashim, M.; Sayed, A.; Zelenakova, M.; Vranayová, Z.; Khalil, M. Soil Water Erosion Vulnerability and Suitability under Different Irrigation Systems Using Parametric Approach and GIS, Ismailia, Egypt. Sustainability 2021, 13, 1057. https://doi.org/10.3390/su13031057
Abu-Hashim M, Sayed A, Zelenakova M, Vranayová Z, Khalil M. Soil Water Erosion Vulnerability and Suitability under Different Irrigation Systems Using Parametric Approach and GIS, Ismailia, Egypt. Sustainability. 2021; 13(3):1057. https://doi.org/10.3390/su13031057
Chicago/Turabian StyleAbu-Hashim, Mohamed, Ahmed Sayed, Martina Zelenakova, Zuzana Vranayová, and Mohamed Khalil. 2021. "Soil Water Erosion Vulnerability and Suitability under Different Irrigation Systems Using Parametric Approach and GIS, Ismailia, Egypt" Sustainability 13, no. 3: 1057. https://doi.org/10.3390/su13031057
APA StyleAbu-Hashim, M., Sayed, A., Zelenakova, M., Vranayová, Z., & Khalil, M. (2021). Soil Water Erosion Vulnerability and Suitability under Different Irrigation Systems Using Parametric Approach and GIS, Ismailia, Egypt. Sustainability, 13(3), 1057. https://doi.org/10.3390/su13031057