Study on Relationship of Land Cover Changes and Ecohydrological Processes of the Tuul River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Hydrometeorology Methods
2.3.2. Land Cover Methods
2.3.3. Analysis and Estimation of Hydrometeorology and Land Cover Variables Influence in the Tuul River Basin
3. Results and Discussion
3.1. Analysis of Hydrometeorology
3.2. Analysis of Land Cover
3.3. Analysis of Interrelationships of Ecohydrological Processes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danielaini, T.T.; Maheshwari, B.; Hagare, D. Defining rural–urban interfaces for understanding ecohydrological processes in West Java, Indonesia: Part II. Its application to quantify rural–Urban interface ecohydrology. Ecohydrol. Hydrobiol. 2018, 18, 37–51. [Google Scholar] [CrossRef]
- Taffarello, D.; Calijuri, M.d.C.; Viani, R.A.G.; Marengo, J.A.; Mendiondo, E.M. Hydrological services in the Atlantic Forest, Brazil: An ecosystem-based adaptation using ecohydrological monitoring. Clim. Serv. 2017, 8, 1–16. [Google Scholar] [CrossRef]
- Krause, S.; Lewandowski, J.; Grimm, N.B.; Hannah, D.M.; Pinay, G.; McDonald, K.; Martí, E.; Argerich, A.; Pfister, L.; Klaus, J.; et al. Ecohydrological interfaces as hot spots of ecosystem processes. Water Resour. Res. 2017, 53, 6359–6376. [Google Scholar] [CrossRef] [Green Version]
- Moreydo, V.; Millionshchikova, T.; Chalov, S. Modelling future hydroclimatic effects on the Coregonus migratorius spawning migration in the Selenga River and Lake Baikal. Proc. Int. Assoc. Hydrol. Sci. 2019, 381, 113–119. [Google Scholar]
- Dorjsuren, B.; Yan, D.; Wang, H.; Chonokhuu, S.; Enkhbold, A.; Davaasuren, D.; Girma, A.; Abiyu, A.; Jing, L.; Gedefaw, M. Observed trends of climate and land cover changes in Lake Baikal basin. Environ. Earth Sci. 2018, 77, 725. [Google Scholar] [CrossRef]
- Vladimirov, I.N. The ecological potential of Baikal region’s geosystems. IOP Conf. Ser. Earth Environ. Sci. 2018, 190, 012017. [Google Scholar] [CrossRef] [Green Version]
- Potemkina, T.; Sutyrina, E.; Potemkin, V. Changing of the riverine sediment load supply into Lake Baikal: The natural and anthropogenic causes (Russia). Quat. Int. 2019, 524, 57–66. [Google Scholar] [CrossRef]
- Malsy, M.; Flörke, M.; Borchardt, D. What drives the water quality changes in the Selenga Basin: Climate change or socio-economic development? Reg. Environ. Chang. 2017, 17, 1977–1989. [Google Scholar] [CrossRef]
- Fan, M. Achieving Sustainable Integrated Water Resources Management in Mongolia: The Role of River Basin Organizations; The Asian Development Bank: Manila, Philippines, 2020. [Google Scholar] [CrossRef]
- Krueger, E.; Rao, P.S.C.; Borchardt, D. Quantifying urban water supply security under global change. Glob. Environ. Chang. 2019, 56, 66–74. [Google Scholar] [CrossRef]
- Kasimov, N.; Karthe, D.; Chalov, S. Environmental change in the Selenga River—Lake Baikal Basin. Reg. Environ. Chang. 2017, 17, 1945–1949. [Google Scholar] [CrossRef]
- Goodwell, A.E.; Kumar, P.; Fellows, A.W.; Flerchinger, G.N. Dynamic process connectivity explains ecohydrologic responses to rainfall pulses and drought. Proc. Natl. Acad. Sci. USA 2018, 115, E8604–E8613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, G.; Hallema, D.; Asbjornsen, H. Ecohydrological processes and ecosystem services in the Anthropocene: A review. Ecol. Process. 2017, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Andrade, E.M.; Guerreiro, M.J.S.; Palácio, H.A.Q.; Campos, D.A. Ecohydrology in a Brazilian tropical dry forest: Thinned vegetation impact on hydrological functions and ecosystem services. J. Hydrol. Reg. Stud. 2020, 27, 100649. [Google Scholar] [CrossRef]
- Guo, Y.; Fang, G.; Xu, Y.-P.; Tian, X.; Xie, J. Identifying how future climate and land use/cover changes impact streamflow in Xinanjiang Basin, East China. Sci. Total Environ. 2020, 710, 136275. [Google Scholar] [CrossRef]
- Rodríguez-Morales, M.; Acevedo-Novoa, D.; Machado, D.; Ablan, M.; Dugarte, W.; Dávila, F. Ecohydrology of the Venezuelan páramo: Water balance of a high Andean watershed. Plant Ecol. Divers. 2019, 12, 573–591. [Google Scholar] [CrossRef]
- Batbayar, G.; Pfeiffer, M.; von Tümpling, W.; Kappas, M.; Karthe, D. Chemical water quality gradients in the Mongolian sub-catchments of the Selenga River basin. Environ. Monit. Assess. 2017, 189, 420. [Google Scholar] [CrossRef]
- Tsujimura, M.; Ikeda, K.; Tanaka, T.; Janchivdorj, L.; Erdenchimeg, B.; Unurjargal, D.; Jayakumar, R. Groundwater and surface water interactions in an alluvial plain, Tuul River Basin, Ulaanbaatar, Mongolia. Sci. Cold Arid Reg. 2013, 5, 0126–0132. [Google Scholar]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Girma, A.; Yan, D.; Wang, H.; Song, X.; Qin, T.; Dorjsuren, B.; Gedefaw, M.; Abiyu, A.; Fikir, D.; Wang, J.; et al. Trends of Hydroclimate Variables in the Upper Huai River Basin: Implications of Managing Water Resource for Climate Change Mitigation. Adv. Meteorol. 2020, 2020, 8817068. [Google Scholar] [CrossRef]
- Şen, Z. Hydrological trend analysis with innovative and over-whitening procedures. Hydrol. Sci. J. 2017, 62, 294–305. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Qian, H.; Chen, J. Improved partial trend method to detect rainfall trends in Hainan Island. Theor. Appl. Climatol. 2019, 137, 2539–2547. [Google Scholar] [CrossRef]
- Nisansala, W.D.S.; Abeysingha, N.S.; Islam, A.; Bandara, A.M.K.R. Recent rainfall trend over Sri Lanka (1987–2017). Int. J. Climatol. 2020, 40, 3417–3435. [Google Scholar] [CrossRef]
- Belihu, M.; Abate, B.; Tekleab, S.; Bewket, W. Hydro-meteorological trends in the Gidabo catchment of the Rift Valley Lakes Basin of Ethiopia. Phys. Chem. EarthParts A/B/C 2018, 104, 84–101. [Google Scholar] [CrossRef]
- Girma, A.; Qin, T.; Wang, H.; Yan, D.; Gedefaw, M.; Abiyu, A.; Batsuren, D. Study on Recent Trends of Climate Variability Using Innovative Trend Analysis: The Case of the upper Huai River Basin. Pol. J. Environ. Stud. 2020, 29, 2199–2210. [Google Scholar] [CrossRef]
- Fathian, F.; Dehghan, Z.; Bazrkar, M.H.; Eslamian, S. Trends in hydrological and climatic variables affected by four variations of the Mann-Kendall approach in Urmia Lake basin, Iran. Hydrol. Sci. J. 2016, 61, 892–904. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Determining the most accurate program for the Mann-Kendall method in detecting climate mutation. Theor. Appl. Climatol. 2020, 142, 847–854. [Google Scholar] [CrossRef]
- Abate, T.; Angassa, A. Conversion of savanna rangelands to bush dominated landscape in Borana, Southern Ethiopia. Ecol. Process. 2016, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Paul, G.C.; Hembram, T.K. Classification of terrain based on geo-environmental parameters and their relationship with land use/land cover in Bansloi River basin, Eastern India: RS-GIS approach. Appl. Geomat. 2020, 12, 55–71. [Google Scholar] [CrossRef]
- Boé, J.; Terray, L.; Habets, F.; Martin, E. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol. 2007, 27, 1643–1655. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Nazemosadat, S.M.J.; Motamedvaziri, B.; Ahmadi, H. Land Use-Land Cover Change and Its Relationships with the Groundwater Table and the Plants’ Altitudinal Zones: A Case Study of Arsanjan County, Iran. Iran. J. Sci. Technol. Trans. Civ. Eng. 2020. [Google Scholar] [CrossRef]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data Discuss. 2020, 2020, 1–31. [Google Scholar] [CrossRef]
- Dibs, H.; Hasab, H.A.; Al-Rifaie, J.K.; Al-Ansari, N. An Optimal Approach for Land-Use/Land-Cover Mapping by Integration and Fusion of Multispectral Landsat OLI Images: Case Study in Baghdad, Iraq. WaterAirSoil Pollut. 2020, 231, 488. [Google Scholar] [CrossRef]
- Gwet, K. Kappa statistic is not satisfactory for assessing the extent of agreement between raters. Stat. Methods Inter-Rater Reliab. Assess. 2002, 1, 1–6. [Google Scholar]
- Viera, A.J.; Garrett, J.M. Understanding interobserver agreement: The kappa statistic. Fam. Med. 2005, 37, 360–363. [Google Scholar]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Nakano, T.; Bat-Oyun, T.; Shinoda, M. Responses of palatable plants to climate and grazing in semi-arid grasslands of Mongolia. Glob. Ecol. Conserv. 2020, 24, e01231. [Google Scholar] [CrossRef]
- Sukhbaatar, C.; Sodnom, T.; Hauer, C. Challenges for hydropeaking mitigation in an ice-covered river: A case study of the Eg hydropower plant, Mongolia. River Res. Appl. 2020, 36, 1416–1429. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Zhang, C.; Pan, T. Variations in ecosystem service value in response to land use/land cover changes in Central Asia from 1995–2035. PeerJ 2019, 7, e7665. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Bao, A.; Jiapaer, G.; Guo, H.; Zheng, G.; Jiang, L.; Chang, C.; Tuerhanjiang, L. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982–2015. Sci. Total Environ. 2019, 653, 1311–1325. [Google Scholar] [CrossRef] [PubMed]
- Potemkina, T.G.; Potemkin, V.L.; Fedotov, A.P. Climatic factors as risks of recent ecological changes in the shallow zone of Lake Baikal. Russ. Geol. Geophys. 2018, 59, 556–565. [Google Scholar] [CrossRef]
- Yin, J.; He, F.; Xiong, Y.J.; Qiu, G.Y. Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrol. Earth Syst. Sci. 2017, 21, 183. [Google Scholar] [CrossRef] [Green Version]
№ | Station | φ | Z | β |
---|---|---|---|---|
1 | Terelj | 5.08 *** | 5.44 *** | 0.06 |
2 | Ulaanbaatar | 14.11 *** | 9.84 *** | 0.06 |
3 | Altanbulag | 2.82 ** | 1.40 *** | 0.04 |
4 | Ondorshireet | 4.65 *** | 4.75 *** | 0.08 |
5 | Lun | 3.29 *** | 2.38 ** | 0.06 |
6 | Bayannuur | 4.25 *** | 2.99 ** | 0.05 |
7 | Orkhontuul | 4.75 *** | 0.92 | 0.01 |
8 | Average | 7.02 *** | 1.46 * | 0.04 |
№ | Station | φ | Z | β |
---|---|---|---|---|
1 | Terelj | −2.44 ** | −2.41 ** | −3.29 *** |
2 | Ulaanbaatar | −0.49 | 1.25 * | 0.55 |
3 | Altanbulag | 1.7 * | 2.03 ** | 3.11 *** |
4 | Ondorshireet | 1.17 * | 4.99 *** | 2.33 ** |
5 | Lun | −0.27 | 1.80 * | 3.03 *** |
6 | Bayannuur | 1.38 * | 2.02 ** | 1.84 * |
7 | Orkhontuul | 0.96 | 0.61 | 1.57 * |
8 | Average | 0.60 | 1.85 ** | 2.46 ** |
№ | Station | φ | Z | β |
---|---|---|---|---|
1 | Terelj | −2.72 ** | −3.03 *** | −35.56 *** |
2 | Ulaanbaatar | −5.63 *** | −3.32 *** | −144.12 *** |
3 | Altanbulag | 5.07 *** | 0.76 | 0.07 |
4 | Lun | 3.42 *** | 1.29 * | 119.47 *** |
5 | Orkhontuul | 5.34 *** | 0.43 | 2.13 ** |
6 | Average | −0.92 | −0.50 | 39.40 *** |
Land Cover Types | Land Cover (2000) | Land Cover (2010) | Land Cover (2020) | |||
---|---|---|---|---|---|---|
Km2 | % | Km2 | % | Km2 | % | |
Artificial surfaces (As) | 204.50 | 0.41 | 208.30 | 0.42 | 307.03 | 0.62 |
Cultivated land (Cu) | 2232.00 | 4.50 | 2204.00 | 4.44 | 2013.12 | 4.06 |
Forest (Fo) | 1934.00 | 3.90 | 1937.00 | 3.90 | 2036.00 | 4.10 |
Grassland (Gr) | 40,932.00 | 82.49 | 40991.00 | 82.61 | 40,612.33 | 81.85 |
Shrubland (Sh) | 4222.00 | 8.51 | 4218.00 | 8.50 | 4410.14 | 8.89 |
Water bodies (Wb) | 81.95 | 0.17 | 36.06 | 0.07 | 110.31 | 0.22 |
Wetland (We) | 11.17 | 0.02 | 23.03 | 0.05 | 23.38 | 0.05 |
Bareland (Ba) | 104.79 | 0.21 | ||||
All types | 49,617.62 | 100.00 | 49617.39 | 100.00 | 49,617.09 | 100.00 |
Land cover initial state (2000) | |||||||||
Land cover initial state (2010) | Cu | Fo | Gr | We | Wb | As | Sh | Total | |
Cu | 2162.09 | 0.001 | 41.02 | 0.001 | 0.01 | 0.93 | 2204.05 | ||
Fo | 0.001 | 1916.88 | 5.21 | 0.04 | 2.04 | 1924.17 | |||
Gr | 69.95 | 1.67 | 40965.87 | 8.21 | 44.89 | 0.37 | 3.56 | 41094.52 | |
We | 3.7 | 12 | 2.46 | 3.75 | 0.07 | 1.25 | 23.23 | ||
Wb | 0.48 | 4.14 | 0.43 | 29.16 | 0.01 | 0.93 | 35.15 | ||
As | 0.01 | 0.001 | 2.78 | 0.07 | 204.22 | 1.79 | 208.86 | ||
Sh | 0.22 | 0.001 | 1.73 | 0.32 | 1.03 | 0.04 | 4126.11 | 4129.45 | |
Total | 2232.27 | 1922.73 | 41032.76 | 11.45 | 80.94 | 204.71 | 4134.57 | 49619.43 | |
Size | 0–10 | 11–100 | 101–up | Total |
Land cover initial state (2000) | |||||||||
Land cover initial state (2020) | As | Cu | Fo | Gr | Sh | Wb | We | Total | |
As | 199.10 | 2.77 | 0.07 | 96.63 | 8.70 | 0.07 | 307.33 | ||
Ba | 0.003 | 2.19 | 31.93 | 70.48 | 0.18 | 0.002 | 104.79 | ||
Cu | 0.01 | 1932.90 | 0.004 | 79.02 | 1.19 | 0.0002 | 2013.12 | ||
Fo | 0.08 | 0.003 | 1473.77 | 557.77 | 0.22 | 4.08 | 0.08 | 2036.00 | |
Gr | 5.13 | 292.95 | 438.02 | 37658.46 | 2177.62 | 36.55 | 3.59 | 40612.33 | |
Sh | 0.29 | 3.57 | 0.57 | 2531.30 | 1861.03 | 9.29 | 4.09 | 4410.14 | |
Wb | 0.09 | 0.06 | 4.02 | 62.13 | 13.91 | 28.55 | 1.55 | 110.31 | |
We | 0.01 | 3.71 | 14.03 | 1.11 | 2.26 | 2.24 | 23.38 | ||
Total | 204.71 | 2232.25 | 1922.36 | 41031.27 | 4134.26 | 80.99 | 11.55 | 49617.39 | |
Size | 0–10 | 11–100 | 101–up | Total |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorjsuren, B.; Batsaikhan, N.; Yan, D.; Yadamjav, O.; Chonokhuu, S.; Enkhbold, A.; Qin, T.; Weng, B.; Bi, W.; Demberel, O.; et al. Study on Relationship of Land Cover Changes and Ecohydrological Processes of the Tuul River Basin. Sustainability 2021, 13, 1153. https://doi.org/10.3390/su13031153
Dorjsuren B, Batsaikhan N, Yan D, Yadamjav O, Chonokhuu S, Enkhbold A, Qin T, Weng B, Bi W, Demberel O, et al. Study on Relationship of Land Cover Changes and Ecohydrological Processes of the Tuul River Basin. Sustainability. 2021; 13(3):1153. https://doi.org/10.3390/su13031153
Chicago/Turabian StyleDorjsuren, Batsuren, Nyamdavaa Batsaikhan, Denghua Yan, Otgonbayar Yadamjav, Sonomdagva Chonokhuu, Altanbold Enkhbold, Tianlin Qin, Baisha Weng, Wuxia Bi, Otgonbayar Demberel, and et al. 2021. "Study on Relationship of Land Cover Changes and Ecohydrological Processes of the Tuul River Basin" Sustainability 13, no. 3: 1153. https://doi.org/10.3390/su13031153
APA StyleDorjsuren, B., Batsaikhan, N., Yan, D., Yadamjav, O., Chonokhuu, S., Enkhbold, A., Qin, T., Weng, B., Bi, W., Demberel, O., Boldsaikhan, T., Gombo, O., Gedefaw, M., Girma, A., & Abiyu, A. (2021). Study on Relationship of Land Cover Changes and Ecohydrological Processes of the Tuul River Basin. Sustainability, 13(3), 1153. https://doi.org/10.3390/su13031153