Technical Efficiency of Chemical Fertilizer Use and Its Influencing Factors in China’s Rice Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model for Measuring TEFU
2.2. Model for Estimating TEFU’s Influencing Factors
3. Results and Discussion
3.1. Estimation of TEFU
3.2. Tobit Estimation of TEFU’s Influencing Factors
3.3. Robustness Check
4. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, L.X.; Zhang, X.H.; Zhou, Y.H. Farm size and fertilizer sustain able use: An empirical study in Jiangsu, China. J. Integr. Agr. 2019, 18, 2898–2909. [Google Scholar] [CrossRef]
- Zhang, F.S.; Wang, J.Q.; Zhang, W.F.; Cui, Z.L.; Ma, W.Q.; Chen, X.P.; Jiang, R.F. Nutrient use efficiencies of major cereals in China and measures for improvement. J. Integr. Agr. 2008, 45, 915–924. [Google Scholar]
- Li, Y.X.; Zhang, W.F.; Ma, L.; Huang, G.Q.; Oenema, O.; Zhang, F.S.; Dou, Z.X. An analysis of China’s fertilizer policies: Impacts on the industry, food security, and the environment. J. Environ. Qual. 2013, 42, 972–981. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook, 1998–2019; China Statistics Press: Beijing, China, 1998–2019. [Google Scholar]
- Reidsma, P.; Feng, S.Y.; van Loon, M.; Luo, X.J.; Kang, C.K.; Lubbers, M.; Kanellopoulos, A.; Wolf, J.; Ittersum, M.K.; Qu, F.T. Integrated assessment of agricultural and use policies on nutrient pollution and sustainable development in Taihu Basin, China. Environ. Sci. Policy 2012, 18, 66–76. [Google Scholar] [CrossRef]
- Jia, X.P.; Huang, J.K.; Xiang, C.; Hou, L.K.; Zhang, F.S.; Chen, X.P.; Bergmann, H. Farmer’s adoption of improved nitrogen management strategies in maize production in China: An experimental knowledge training. J. Integr. Agr. 2013, 12, 364–373. [Google Scholar] [CrossRef]
- Cai, J.; Xia, X.L.; Chen, H.B.; Wang, T.; Zhang, H.L. Decomposition of fertilizer use intensity and its environmental risk in China’s grain production process. Sustainability 2018, 10, 498. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Ma, L.; Strokal, M.; Chu, Y.; Kroeze, C. Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China. Agr. Syst. 2018, 163, 58–72. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.P.; Cui, Z.L.; Fan, M.S.; Vitousek, P.; Zhao, M.; Ma, W.Q.; Wang, Z.L.; Zhang, W.J.; Yan, X.Y.; Yang, J.C.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Shen, J.B.; Cui, Z.L.; Miao, Y.X.; Mi, G.H.; Zhang, H.Y.; Fan, M.S.; Zhang, C.C.; Jiang, R.F.; Zhang, W.F.; Li, H.G.; et al. Transforming agriculture in China: From solely high yield to both high yield and high resource use efficiency. Glob. Food Secur. 2013, 2, 1–8. [Google Scholar] [CrossRef]
- Abler, D.G. Economic evaluation of agricultural pollution control options for China. J. Integr. Agric. 2015, 14, 1045–1056. [Google Scholar] [CrossRef]
- Jin, S.Q.; Zhou, F. Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges. J. Resour. Ecol. 2018, 9, 50–58. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Food Outlook: Biannual Report on Global Food Markets—November 2020. 2020. Available online: http://www.fao.org/3/cb1993en/cb1993en.pdf (accessed on 28 December 2020).
- Nair, K.P. Soil fertility and nutrient management. In Intelligent Soil Management for Sustainable Agriculture; Springer: Cham, Switzerland, 2019. [Google Scholar]
- United Nations. Transforming our world: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf(accessed on 28 December 2020).
- Huang, J.K.; Yang, G.L. Understanding recent challenges and new food policy in China. Glob. Food Secur. 2017, 12, 119–126. [Google Scholar] [CrossRef]
- Shen, J.B.; Zhu, Q.C.; Jiao, X.Q.; Ying, H.; Wang, H.L.; Wen, X.; Xu, W.; Li, T.Y.; Cong, W.F.; Liu, X.J.; et al. Agriculture green development: A model for China and the world. Front. Agric. Sci. Eng. 2020, 7, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture and Rural Affairs of China. Urgent Notice on Initiating the Soil Testing and Formulated Fertilization Operation. 2005. Available online: http://www.moa.gov.cn/ztzl/ctpfsf/xgzl/200504/t20050411_352723.htm (accessed on 28 January 2020).
- Ministry of Agriculture and Rural Affairs of China. Notice on Issuing the Action Plan for Zero Growth in Chemical Fertilizer Usage by 2020. 2015. Available online: http://jiuban.moa.gov.cn/zwllm/tzgg/tz/201503/t20150318_4444765.htm (accessed on 18 March 2020).
- Huang, J.K.; Wei, W.; Cui, Q.; Xie, W. The prospects for China’s food security and imports: Will China starve the world via imports. J. Integr. Agric. 2017, 15, 2933–2944. [Google Scholar] [CrossRef]
- Sun, Y.D.; Hu, R.F.; Zhang, C. Does the adoption of complex fertilizers contribute to fertilizer over use? Evidence from rice production in China. J. Clean. Prod. 2019, 219, 677–685. [Google Scholar] [CrossRef]
- Tian, X.; Yi, F.J.; Yu, X.H. Rising cost of labor and transformations in grain production in China. China Agric. Econ. Rev. 2020, 12, 158–172. [Google Scholar] [CrossRef]
- Huang, J.K.; Rozelle, S.; Zhu, X.K.; Zhao, S.J.; Sheng, Y. Agricultural and rural development in China during the past four decades: An introduction. Aust. J. Agric. Resour. Econ. 2020, 64, 1–13. [Google Scholar] [CrossRef]
- Li, H.L.; Zhang, W.F.; Zhang, F.S.; Du, F.; Li, L.K. Chemical fertilizer use and efficiency change of main grain crops in China. Plant Nutr. Fert. Sci. 2010, 16, 1136–1143. (in Chinese). [Google Scholar]
- Lin, Y.; Ma, J. Measurement on the economic level of fertilizer use of farmers’ grain production: Taking wheat farmers of North China Plain. J. Agrotechnol. Econ. 2013, 32, 25–31. (in Chinese). [Google Scholar]
- Chen, Y.T.; Peng, J.; Wang, J.; Fu, P.H.; Hou, Y.; Zhang, C.D.; Fahad, S.; Peng, S.B.; Cui, K.H.; Nie, L.X.; et al. Crop management based on multi-split top dressing enhances grain yield and nitrogen use efficiency in irrigated rice in China. Field Crop. Res. 2015, 184, 50–57. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Zhang, X.H.; Tian, X.; Geng, X.H.; Zhang, P.; Yan, B.J. Technical and environmental efficiency of hog production in China: A stochastic frontier production function analysis. J. Integr. Agric. 2015, 14, 1069–1080. [Google Scholar] [CrossRef]
- Si, C.L.; Zang, Y.; Guo, Y.; Zhu, J.F. The impact of land fragmentation on farmer’s chemical fertilizer use efficiency. J. Nat. Resour. 2019, 34, 2687–2700. (in Chinese). [Google Scholar]
- Wei, H.; Li, J. Efficiency performance of fertilizer use in arable agricultural production in China. China Agric. Econ. Rev. 2019, 11, 52–69. [Google Scholar]
- Battese, G.E.; Coelli, T.J. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. J. Prod. Anal. 1992, 3, 153–169. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T. A model for technical in efficiency effects in a stochastic frontier production functions for panel data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Reinhard, S.; Lovell, C.A.K.; Thijssen, G. Econometric estimation of technical and environmental efficiency: An application to Dutch dairy farms. Am. J. Agric. Econ. 1999, 81, 44–60. [Google Scholar] [CrossRef]
- Reinhard, S.; Lovell, C.A.K.; Thijssen, G. Analysis of environmental efficiency variation. Am. J. Agric. Econ. 2002, 84, 1054–1065. [Google Scholar] [CrossRef]
- Si, C.L.; Zhu, J.F.; Luan, J. Fertilizer input efficiency of wheat and its determinates: Empirical analysis based on 15 wheat producing provinces. J. Agrotechnol. Econ. 2015, 34, 69–78. (in Chinese). [Google Scholar]
- Li, J.; Li, J.Y. Fertilizer using efficiency of China’s grain production and its determining factors. Res. Agric. Mod. 2011, 32, 565–568. (in Chinese). [Google Scholar]
- Yang, Z.X.; Han, H.Y. Technical efficiency of fertilizer and its influencing factors: Based on wheat and corn empirical study. J. China Agric. U. 2011, 16, 140–147. (in Chinese). [Google Scholar]
- Wang, P.P.; Zhang, W.D.; Li, M.H.; Han, Y.J. Does fertilizer education program increase the technical efficiency of chemical fertilizer use: Evidence from wheat production in China. Sustainability 2019, 11, 543. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.L.; Liu, Y.S.; Wang, Y.S.; Hu, X.D. Assessment and analysis of agricultural non-point source pollution loads in China: 1978–2017. J. Environ. Manag. 2020, 263, 110400. [Google Scholar] [CrossRef]
- National Rice Industry Technology System. Research on the Sustainable Development Tragedy of Chinese Modern Agriculture Industry (Rice); China Agriculture Press: Beijing, China, 2017. [Google Scholar]
- Monchuk, D.; Chen, Z.; Bonaparte, Y. Explaining production in efficiency in China’s agriculture using data envelopment analysis and semi-parametric boots trapping. China Econ. Rev. 2010, 21, 346–354. [Google Scholar] [CrossRef]
- Huang, W.; Bruemmer, B.; Huntsinger, L. Incorporating measures of grass land productivity into efficiency estimates for livestock grazing on the Qinghai-Tibetan Plateau in China. Ecol. Econ. 2016, 122, 1–11. [Google Scholar] [CrossRef]
- National Development and Reform Commission of China. China Agricultural Product Cost-Benefit Compilation, 1998–2019; China Statistics Press: Beijing, China, 1998–2019. [Google Scholar]
- Xu, Y.B.; Li, J.Y.; Wan, J.M. Agriculture and crop science in China: Innovation and sustainability. Crop. J. 2017, 5, 95–199. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The Impact of Natural Hazards and Disasters on Agriculture and Food Security and Nutrition: A Call for Action to Build Resilient Livelihood. 2015. Available online: http://www.fao.org/3/a-i4434e.pdf (accessed on 20 June 2020).
- Du, X.D.; Jin, X.B.; Yang, X.L.; Yang, X.H.; Xiang, X.M.; Zhou, Y.K. Spatial-temporal pattern changes of main agriculture natural disasters in China during 1990–2011. J. Geogr. Sci. 2015, 25, 387–398. [Google Scholar] [CrossRef]
- Ding, W.C.; Xu, X.P.; He, P.; Ullah, S.; Zhang, J.J.; Cui, Z.L.; Zhou, W. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: Ameta-analysis. Field Crop. Res. 2018, 227, 11–18. [Google Scholar] [CrossRef]
- Li, C.X.; Ma, S.C.; Shao, Y.; Ma, S.T.; Zhang, L.L. Effects of long-termorganic fertilization on soil microbiologic characteristics, yield and sustainable production of winter wheat. J. Integr. Agric. 2018, 17, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Battese, G.E.; Tessema, G.A. Estimation of stochastic frontier production functions with time-varying parameters and technical efficiencies using panel data from Indian villages. Agric. Econ. 1993, 9, 313–333. [Google Scholar]
- Coelli, T.J.; Rao, D.S.P.; O’Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis; Springer: New York, NY, USA, 2005. [Google Scholar]
- Kodde, D.A.; Palm, F.C. Wald criteria for jointly testing equality and inequality restrictions. Econometrica 1986, 54, 1243–1248. [Google Scholar] [CrossRef]
- Ministry of Finance of China. The Central Fiscal Support on the Soil Testing and Formulated Fertilization Has Achieved Remarkable Results. 2014. Available online: http://www.gov.cn/xinwen/2014-04/16/content_2660833.htm (accessed on 22 April 2020).
- Ministry of Agriculture and Rural Affairs of China. The Transformation and Upgrading of Agricultural Machinery Has Been Accelerated in China. 2020. Available online: http://www.njhs.moa.gov.cn/gzdt/202001/t20200110_6334759.htm (accessed on 25 December 2020).
- Li, T.; Feng, Y.; Zhu, A.; Huang, J.; Wang, H.; Li, S.; Liu, K.; Peng, R.; Zhang, H.; Liu, L. Effects of main water-saving irrigation methods on morphological and physiological traits. Chin. J. Rice Sci. 2019, 33, 293–302. [Google Scholar]
- Wang, H.; Zhang, Y.; Zhang, Y.; McDaniel, M.D.; Sun, L.; Su, W.; Fan, X.; Liu, S.; Xiao, X. Water-saving irrigation is a ‘win-win’ management strategy in rice paddies—With both reduced greenhouse gas emissions and enhanced water use efficiency. Agric. Water Manag. 2020, 228, 105889. [Google Scholar] [CrossRef]
- Stock, J.H.; Watson, M.W. Introduction to Econometrics; Prentice Hall: New York, NY, USA, 2003. [Google Scholar]
- Greene, W. Fixed and random effects in stochastic frontier models. J. Prod. Anal. 2005, 23, 7–32. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. Voluntary Guidelines for Sustainable Soil Management. 2017. Available online: http://www.fao.org/3/a-bl813e.pdf (accessed on 28 December 2020).
- Food and Agriculture Organization of the United Nations. Soil testing methods: Global Soil Doctors Programme—Afarmer-to-farmer training programme. 2020. Available online: http://www.fao.org/3/ca2796en/CA2796EN.pdf (accessed on 28 December 2020).
- Toma, P.; Miglietta, P.P.; Zurlini, G.; Valente, D.; Petrosillo, I. Anon-parametric bootstrap-data envelopment analysis approach for environmental policy planning and management of agricultural efficiency in EU countries. Ecol. Indic. 2017, 83, 132–143. [Google Scholar] [CrossRef]
- Balezentis, T.; Ribasauskiene, E.; Morkunas, M.; Volkov, A.; Streimikiene, D.; Toma, P. Young farmers’ support under the Common Agricultural Policy and sustainability of rural regions: Evidence from Lithuania. Land Use Policy 2020, 94, 104542. [Google Scholar] [CrossRef]
- Avadì, A. Screening LCA of French organic amendments and fertilisers. Int. J. Life Cycle Assess. 2020, 25, 698–718. [Google Scholar] [CrossRef]
- Pandey, A.; Dou, F.; Morgan, C.L.S.; Guo, J.; Deng, J.; Schwab, P. Modeling organically fertilized flooded rice systems and its long-term effects on grain yield and methane missions. Sci. Total Environ. 2021, 755, 142578. [Google Scholar] [CrossRef]
Kind of Rice | Selected Rice Production Provinces |
---|---|
Early indica rice | Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, and Hainan |
Intermediary indica rice | Jiangsu, Anhui, Fujian, Henan, Hubei, Chongqing, Sichuan, Guizhou, and Shanxi |
Late indica rice | Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, and Hainan |
Japonica rice | Hebei, Jilin, Heilongjiang, Jiangsu, Zhejiang, Anhui, Shandong, Henan, Hubei, Yunnan, and Ningxia |
Kind of Rice | Output Variable | Intput Variables | |||||
---|---|---|---|---|---|---|---|
Y | Fer | Z1 | Z2 | Z3 | Z4 | ||
Yied (kg/ha) | Total Usage Per Hectare of Nitrogen Fertilizer (Urea, Ammonium Phosphate, and Other Nitrogen Fertilizer), Phosphorus Fertilizer, Potash Fertilizer, and Compound Fertilizer (kg/ha) | Seed Usage Per Hectare (kg/ha) | Pesticide Expenditure Per Hectare (CNY/ha) | Number of Labor Force Including Both Farmers and Employees Per Hectare, A Standard Working Day Equals to 8 h (d/ha) | Other Expenditure Per Hectare, Including Animal Power, Machinery, Fuel, Agricultural Film, and Canopy Frame Materials (CNY/ha) | ||
Early indica rice | Mean | 5930.39 | 324.16 | 65.87 | 441.56 | 142.04 | 1898.35 |
S.D. | 520.25 | 77.64 | 40.35 | 264.32 | 56.94 | 1020.60 | |
Min | 4297.35 | 183.15 | 15.90 | 71.85 | 52.50 | 493.20 | |
Max | 7371.00 | 720.00 | 193.50 | 1066.50 | 343.50 | 4367.70 | |
Intermediary indica rice | Mean | 7734.76 | 287.02 | 17.79 | 343.80 | 189.45 | 1844.90 |
S.D. | 4978.00 | 61.75 | 6.95 | 261.35 | 90.89 | 841.07 | |
Min | 5163.00 | 114.60 | 9.45 | 49.05 | 56.70 | 372.00 | |
Max | 9543.90 | 468.90 | 44.55 | 1002.60 | 420.00 | 3504.15 | |
Late indica rice | Mean | 6057.33 | 317.38 | 25.46 | 606.15 | 141.51 | 1992.85 |
S.D. | 989.01 | 73.01 | 9.15 | 339.86 | 55.01 | 1107.41 | |
Min | 3301.50 | 158.40 | 10.50 | 18.00 | 56.10 | 408.45 | |
Max | 8150.10 | 1087.35 | 70.73 | 1429.35 | 313.50 | 4527.00 | |
Japonica rice | Mean | 7770.29 | 420.74 | 96.19 | 607.92 | 165.42 | 2486.32 |
S.D. | 1048.24 | 186.54 | 73.20 | 421.23 | 86.93 | 1202.10 | |
Min | 4966.50 | 160.35 | 28.35 | 154.35 | 44.25 | 724.20 | |
Max | 10,756.65 | 1564.20 | 373.35 | 1875.00 | 537.45 | 6715.80 |
Influencing Factors | Introduction and Unit | Expected Impact Direction on TEFU |
---|---|---|
Government’s fiscal support for agriculture (FA) | Ratio between government’s fiscal support for agriculture and rural population (CNY/person) | + |
Agricultural labor productivity (LP) | Ratio between added-value of agriculture and employed population in agricultural industry (CNY/person) | + |
Agricultural mechanization (AM) | Ratio between total power of agricultural machinery and total land area of crops (W/ha) | + |
Effective irrigation (EI) | Ratio between effective irrigated area and total land area of crops (%) | + |
Natural disaster (ND) | Ratio between total land area of crops affected by natural disaster and total land area of crops (%) | − |
Fertilizer price (FP) | Ratio between chemical fertilizer expenditure and usage per hectare in rice production (CNY/kg) | ? |
STFFP (D) | The STFFP has been implemented since 2005, D = 1 when 2005–2019, and D = 0 when 1998–2004 | + |
Kinds of Rice | LLF Value (H0) | LLF Value (H1) | LR Test Statistics | |
---|---|---|---|---|
Early indica rice | 270.77 | 288.53 | 35.51 | 30.58 |
Intermediary indica rice | 99.22 | 106.58 | 14.72 | 30.58 |
Late indica rice | 120.19 | 167.46 | 94.53 | 30.58 |
Japonica rice | 292.05 | 304.41 | 24.72 | 30.58 |
Variables | Early Indica Rice | Intermediary Indica Rice | Late Indica Rice | Japonica Rice |
---|---|---|---|---|
β0 | −13.088 (−1.351) | 8.193 *** (21.096) | −17.584 *** (−3.289) | 6.074 *** (4.145) |
lnFer | −0.233 ** (−2.605) | 0.172 * (2.009) | 0.851 ** (2.522) | 0.101 *** (6.161) |
lnZ1 | 0.407 * (1.952) | 0.018 ** (2.643) | 0.161 (0.900) | 0.016 * (1.936) |
lnZ2 | 0.179 * (2.029) | 0.019 * (1.988) | 0.518 *** (2.696) | 0.020 * (2.013) |
lnZ3 | −0.105 ** (−2.733) | −0.021 ** (−2.604) | −0.128 *** (−3.548) | −0.091 *** (−6.817) |
lnZ4 | 0.353 * (2.061) | 0.102 *** (3.908) | 0.196 * (1.863) | 0.222 * (1.927) |
lnFer × lnFer | 0.047 (0.414) | 0.513 * (1.915) | ||
lnZ1 × lnZ1 | 0.045 * (2.133) | 0.331 ** (2.506) | ||
lnZ2 × lnZ2 | −0.131 * (−1.910) | 0.363 ** (2.274) | ||
lnZ3 × lnZ3 | 0.177 (1.299) | −0.261 (−0.665) | ||
lnZ4 × lnZ4 | −0.031 * (−1.802) | 0.112 (0.384) | ||
lnFer × lnZ1 | 0.164 * (1.930) | 0.335 (0.838) | ||
lnFer × lnZ2 | −0.029 * (−1.976) | −0.145 *** (−3.272) | ||
lnFer × lnZ3 | −0.106 *** (−4.215) | 0.292 *** (3.547) | ||
lnFer × lnZ4 | 0.002 (0.987) | −0.040 (−0.558) | ||
lnZ1 × lnZ2 | 0.219 ** (2.839) | 0.715 *** (3.387) | ||
lnZ1 × lnZ3 | −0.045 (−0.644) | −0.874 *** (−2.661) | ||
lnZ1 × lnZ4 | 0.182 * (1.815) | −0.102 *** (−3.462) | ||
lnZ2 × lnZ3 | 0.258 * (1.966) | 0.852 * (2.099) | ||
lnZ2 × lnZ4 | 0.138 (0.839) | 0.576 * (1.993) | ||
lnZ3 × lnZ4 | −0.042 (−1.602) | 0.264 (0.447) | ||
Sigma-squared (σ2) | 0.063 *** (5.735) | 0.048 *** (3.908) | 0.060 *** (8.774) | 0.013 *** (6.920) |
Gamma (γ) | 0.847 *** (11.403) | 0.886 *** (5.735) | 0.895 *** (6.225) | 0.804 *** (12.208) |
LLF value | 288.528 | 99.224 | 167.458 | 292.050 |
LR test of the one-sided error | 12.030 | 103.699 | 36.569 | 12.491 |
Kinds of Rice | Low TEFU (0–0.4) | Medium TEFU (0.4–0.6) | High TEFU (0.6–0.8) | Very High TEFU (0.8–1.0) | |
---|---|---|---|---|---|
Early indica rice | Low Fer (0–225 kg/ha) | ||||
Medium Fer (225–300 kg/ha) | Hunan | Fujian, Hubei | |||
High Fer (300–375 kg/ha) | Anhui, Guangdong | Zhejiang, Jiangxi, Hainan | |||
Very high Fer (>375 kg/ha) | Guangxi | ||||
Intermediary indica rice | Low Fer (0–225 kg/ha) | Chongqing | |||
Medium Fer (225–300 kg/ha) | Henan, Sichuan | ||||
High Fer (300–375 kg/ha) | Fujian | Hubei | Anhui, Guizhou, Shanxi | ||
Very high Fer (>375 kg/ha) | Jiangsu | ||||
Late indicarice | Low Fer (0–225 kg/ha) | ||||
Medium Fer (225–300 kg/ha) | Hunan | ||||
High Fer (300–375 kg/ha) | Guangdong, Hainan | Zhejiang, Fujian, Jiangxi, Hubei, Guangxi | |||
Very high Fer (>375 kg/ha) | Anhui | ||||
Japonica rice | Low Fer (0–225 kg/ha) | ||||
Medium Fer (225–300 kg/ha) | Heilongjian | ||||
High Fer (300–375 kg/ha) | Jilin, Zhejiang, Hubei, Anhui | ||||
Very high Fer (>375 kg/ha) | Hebei, Liaoning, Jiangsu, Henan, Yunnan, Ninxia | Shandong |
Variables | Early Indica Rice | Intermediary Indica Rice | Late Indica Rice | Japonica Rice |
---|---|---|---|---|
Constant | −0.496 (−1.402) | −0.417 (−0.826) | −0.660 *** (−3.191) | −0.274 (−1.189) |
lnFA | 0.023 * (1.801) | 0.002 ** (2.075) | 0.017 ** (2.281) | 0.029 * (1.755) |
lnLP | 0.079 * (1.796) | 0.085 * (1.755) | 0.018 * (1.759) | 0.007 * (1.806) |
lnAM | 0.032 ** (2.063) | 0.057 * (1.791) | 0.020 * (1.773) | 0.062 * (1.917) |
lnEI | 0.054 * (1.961) | 0.043 * (1.826) | 0.022 * (1.756) | 0.041 * (1.792) |
lnND | −0.009 ** (−2.242) | −0.019 * (−1.811) | −0.006 * (−1.849) | −0.001 * (−1.904) |
lnFP | −0.180 ** (−2.480) | −0.096 ** (−2.212) | −0.072 *** (−4.326) | −0.048 ** (−2.272) |
D | 0.076 * (1.743) | 0.005 * (1.809) | 0.017 * (1.733) | 0.035 ** (1.989) |
Log likelihood | 109.784 | 114.524 | 389.394 | 152.347 |
Left censored observations | 0 | 0 | 0 | 0 |
Right censored observations | 0 | 0 | 0 | 0 |
Uncensored observations | 198 | 198 | 198 | 264 |
Total observations | 198 | 198 | 198 | 264 |
Variables | Early Indica Rice | Intermediary Indica Rice | Late Indica Rice | Japonica Rice |
---|---|---|---|---|
Constant | −1.319 *** (−3.256) | −0.871 (−1.447) | −0.342 *** (−3.634) | −0.576 (−1.053) |
lnFA | 0.078 *** (2.601) | 0.030 * (1.923) | 0.012 * (1.726) | 0.034 ** (2.033) |
lnLP | 0.104 * (1.721) | 0.029 * (1.901) | 0.031 ** (1.997) | 0.041 * (1.859) |
lnAM | 0.063 * (1.876) | 0.035 ** (2.013) | 0.010 * (1.874) | 0.012 *** (2.742) |
lnEI | 0.073 ** (2.004) | 0.022 *** (3.469) | 0.023 ** (1.979) | 0.077 ** (2.412) |
lnND | −0.030 *** (−2.798) | −0.048 *** (−3.636) | −0.007 *** (−3.061) | −0.002 * (−1.722) |
lnFP | −0.020 ** (−2.215) | −0.027 * (−1.820) | −0.024 ** (−2.293) | −0.037 *** (−4.952) |
D | 0.076 ** (2.391) | 0.011 * (1.909) | 0.002 * (1.871) | 0.003 * (1.841) |
R-squared | 0.609 | 0.556 | 0.573 | 0.612 |
F | 24.267 *** | 13.157 *** | 14.416 *** | 19.300 *** |
DW | 1.827 | 1.980 | 1.812 | 1.879 |
Chi-Squared (Hausman test) | 18.551 *** | 24.512 *** | 31.557 *** | 22.553 *** |
Total observations | 198 | 198 | 198 | 264 |
Controls | ||||
Province-fixed effect | Yes | Yes | Yes | Yes |
Year-fixed effect | Yes | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Li, X. Technical Efficiency of Chemical Fertilizer Use and Its Influencing Factors in China’s Rice Production. Sustainability 2021, 13, 1155. https://doi.org/10.3390/su13031155
Sun Z, Li X. Technical Efficiency of Chemical Fertilizer Use and Its Influencing Factors in China’s Rice Production. Sustainability. 2021; 13(3):1155. https://doi.org/10.3390/su13031155
Chicago/Turabian StyleSun, Zhilu, and Xiande Li. 2021. "Technical Efficiency of Chemical Fertilizer Use and Its Influencing Factors in China’s Rice Production" Sustainability 13, no. 3: 1155. https://doi.org/10.3390/su13031155
APA StyleSun, Z., & Li, X. (2021). Technical Efficiency of Chemical Fertilizer Use and Its Influencing Factors in China’s Rice Production. Sustainability, 13(3), 1155. https://doi.org/10.3390/su13031155