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Abstract: The grouser height and soil conditions have a considerable influence on the tractive
performance of single-track shoe. A soil bin-based research was conducted to assess the influence
of grouser height on the tractive performance of single-track shoe at different moisture contents of
clay loam soil. Eight moisture contents (7.5, 12, 16.7, 21.5, 26.2, 30.7, 35.8, and 38%) and three grouser
heights (45, 55, and 60 mm) were comprised during this study. The tractive performance parameters
of (thrust, running resistance, and traction) were determined by penetration test. A sensor-based soil
bin was designed for penetration tests, which was included penetration system (AC motor, loadcell,
and displacement sensor). The test results revealed that soil cohesion was decreased, and adhesion
was increased after 16.7% moisture content. Soil thrust at lateral sides and bottom of grouser were
increased before 16.7%, and then decreased for all the three heights but the major decrease was
observed at 45 mm height. The motion resistance was linearly decreased, the more reduction was
on 45 mm at 38% moisture content. The traction of the single-track shoe was decreased with a rise
in moisture content, the maximum decrease was on 45 mm grouser height at 38% moisture content.
It could be concluded that an off-road tracked vehicle (crawler combine harvester) with 45 mm
grouser height of single-track shoe could be operated towards a moderate moisture content range
(16.7–21.5%) under paddy soil for better traction.

Keywords: traction; soil; sinkage; single-track shoe; penetration; cohesion; adhesion

1. Introduction

Tracked vehicles have been popularized because of more contact area with the ground,
which leads to better float and traction than wheeled vehicles, making them suitable for
rough and relatively saturated terrain. Tracked vehicles are used in various fields, such as
mining, forestry, agriculture, planetary exploration, army, and construction [1]. Tractive
performance of tracked vehicles including propulsion and resistance is very important for
terrain trafficability and is influenced by vehicle and soil factors [2]. Grousers are devices
intended to increase the traction of the continuously tracked vehicle on soil or snow;
this is done by increasing contact with the ground with teeth equipped on crawler tracks,
similar to conventional tire treads; usually, grousers are made up of hardened forged steel.
The soil-track interaction tool includes two aspects: forces arising at the interface between
the soil and the tool, such as thrust, lateral force, and vertical force and displacement of soil
particles also known as soil disturbance [3,4]. The proper design and selection of soil-track
interaction tools depends largely on the mechanical behavior of the soils [5].
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Soil conditions greatly affect the traction performance of off-road or tracked/wheeled
vehicles. Soil properties are important to generate traction for the soil track system [2].
The key to off-road vehicle performance prediction lies in the proper evaluation of the
mechanical properties of the field [6]. Traction performance of the vehicle significantly
influenced by the mechanical properties of the soil and it has been reported that the
variation of soil water contents (MC) also affects the traction ability of a tracked vehicle [7,8].

The tractive performance of off-road vehicle prediction depends upon the appropriate
assessment of mechanical properties (soil cohesion, soil adhesion, and angle of internal and
external friction, etc.) of the soil. Mobility states a relationship between soil and the vehicle.
To assess the mobility and traction of vehicles, it is important to determine the mechanical
properties of soil, which are believed to be related to the mobility of vehicles. Terrain topol-
ogy and soil parameters also influence vehicle performance, besides to the intrinsic vehicle
characteristics. To correctly determine the mechanical properties in terms of mobility of
off-road vehicles, it is necessary to carry out measurements under load conditions similar to
those imposed by vehicles. The vertical load applied by the off-road vehicle to a soil causes
sinkage, while the horizontal load created by the track/wheels on the soil surface causes the
development of shear strength and the associated slip [2,9,10]. Determining the mobility
and traction of off-road vehicles requires a thorough understanding of soil mechanics since
it is necessary to use a track/wheel to determine power transfer between the vehicle and
the soil. Traction as a force derived from the interaction between track and soil. It could be
affected by two types of factors: soil conditions and shoe dimensions [11]. The effects of
the soil on tractive performance were obtained on soft conditions over 50% [12].

The methods developed for the study of the traction of a track–soil interaction is
empirical, semi-empirical, and computer methods [13]. The empirical model was originally
developed by the U.S. Army Waterway Experimental Station (WES) to meet military needs
in predicting the performance of land-based off-road vehicles, including concepts of “go/no
go”, mobility index, etc. Robert G applied a pilot model of traction performance for rubber
tracks on agricultural soils [14]. A semi-empirical approach named bevameter technique
for the prediction of traction of a tracked vehicle was developed by Bekker [2]. The tractive
performance of the single-track shoe (grouser) could be predicted by knowing the normal
stress distribution and shear at the front of the soil path and 3D geometry of the contact
surface. Hiroshi made a computer approach by using “The Discrete Element Method
(DEM)” for the specific ability to assess total traction potential based on interaction studies
of computing reactions and soil behaviors, regardless of the type of method chosen for
predicting traction, as soil parameters should be known at first [15].

The sinkage of soil occurs when a known load is applied on the surface of the soil,
the area under the load sinks in the soil at a certain depth until the resistance of the
soil is balanced with the applied force. Soil pressure resistance uses two parameters for
characterization: soil cohesion, internal friction angle [16]. In the past several decades,
a set of studies has been conducted to estimate traction performance for a variety of
tracked components [17–20] but still, the interaction study among grouse height, moisture
contents, and soil mechanical properties on the traction performance of the single-track
shoe is needed.

The present research was based on the semi-empirical method developed by Bekker
to assess the impacts of grouser height on the traction performance of a grouser of the
single-track shoe in certain soil conditions under sensor-based soil bin.

2. Materials and Methods
2.1. Expeerimental Setup

The experimental setup was consisted of penetration test and direct shear test (Figure 1).
The tractive performance parameters were determined by deriving the Equations (1)–(16),

the amounts of sinkage were less than the height of the grouser when the vertical load
on the single grouser shoe was applied, and the entire track shoe in the field had been
shown to have more sinkage. Between the grouse and the plate, the vertical load is shared.
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The proposed model and schematic depiction of forces acting on a single-track shoe are
shown in Figure 2.
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The vertical load was measured by the following Equation:

W = q1λLB + q2(1− λ)LB (1)
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where W is vertical load, L is track shoe pitch, B is the width of single track shoe, and λ
is the ratio of grouser plate thickness to the length of single track shoe. Whereas q1 is
the contact pressure of the top surface of the grouser and q2 is the pressure at the bottom
surface of single track shoe, was expressed as follows:

q1 = K(h + Z0)
n (2)

q2 = KZ0
n (3)

where K is the modulus of soil deformation, n is soil deformation index or sinkage exponent,
h is grouser height and Z is soil sinkage. Furthermore, K was determined by Equation (4) as:

K =
kc

B
+ k∅ (4)

where kc is soil cohesion within the deformation modulus, kφ friction modulus of soil,
and B is the width of the single-track shoe. So, the load Equation could make the follow-
ing relationship:

W =

(
kc

B
+ k∅

)
LB{(h + Z0)

nλ + Zn
0 (1− λ)} (5)

The pressure and soil sinkage were computed according to Bekker’s pressure-sinkage
relationship as:

p = (
kc

B
+ kθ)zn (6)

Soil sinkage is accountable for the increase in running resistance. The running resis-
tance of a single-track shoe was found by Equation (7):

R =
kc + Bk∅

n + 1
{(h + Z0)

(n+1)λ + Z(n+1)
0 (1− λ)} (7)

Soil thrust is the utmost vital parameter of traction of the single-track shoe. the thrust
is the resultant of the shearing force on the tip surface of grouser (F1), the shearing force of
the grouser shoe’s lateral sides (F2), and the shearing force on the bottom surface of soil
beneath the spacing surface (F3). The F1 was measured by Equation (8):

F1 = λLB(Ca + q1tanδ) (8)

where Ca is soil adhesion, δ is the external friction angle of the soil. Furthermore, the shear-
ing force of grouser’s lateral sides is divided into 3 parts as Fsg1, Fsg2, and Fss. Moreover,
they could be shown by the following relationships:

F2 = 2(Fsg1 + Fsg2 + Fss) (9)

Fsg1 = λhL[Ca + q1tanδtanϕ
(

45− ϕ

2

){γt(2Z0 + h)
2

tan
(

45− ϕ

2

)
− 2C

}
] (10)

where Fsg1 is the shearing force at grouser’s lateral side, ϕ is the internal friction angle of
soil, γt is the soil density and C is the soil cohesion. Whereas the shearing force of spacing’s
lateral side (Fsg2) was measured by Equation (11).

If Z < t then:

Fsg2 = Z0L[Ca + q1tanδtanϕ
(

45− ϕ

2

){γtZ0

2
tan

(
45− ϕ

2

)
− 2C

}
] (11)

If Z > t then:

Fsg2 = tL[Ca + q1tanδtanϕ
(

45− ϕ

2

){γt(2Z0 − t)
2

tan
(

45− ϕ

2

)
− 2C

}
] (12)
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where t is the thickness of shoe spacing. Finally, the shearing force of the lateral side of the
soil below the spacing surface (Fss) was measured by the following Equation (13):

Fss = (1− λ)hL[C + {q2 +
γt(h + 2Z0)

2
} tan2

(
45− ϕ

2

)
tanϕ− 2Ctan

(
45− ϕ

2

)
tanϕ] (13)

Furthermore, the shearing force on the bottom surface of soil beneath the spacing
surface (F3) was calculated as:

F3 = (1− λ)LB(C + q3tanϕ) (14)

The total soil thrust is the addition of all thrusts including F1, F2 and F3 as following:

F = F1 + F2 + F3 (15)

The subtraction of total soil thrust from running resistance is the traction (T), it can be
expressed as Equation (16):

T = F− R (16)

2.2. Experimental Work

The experiment was performed at the key laboratory of modern agricultural equip-
ment and technology, school of agricultural equipment engineering, Jiangsu University,
Zhenjiang, P.R China. A 500 mm wide, 1500 mm long, and 500 mm deep soil bin was
used for the mechanical properties of soil. A factorial design experiment was conducted
considering soil moisture content as first factor with eight number of levels (7.5, 12, 16.7,
21.5, 26.2, 30.7, 35.8, and 38%) and grouse height with three number of levels (60, 55,
45 mm). Figure 2 shown the flow diagram of the experimental work.

2.3. Dimensions of Single-Track Shoe

The details of the dimension of the single track-shoe model used for the research-based
study are shown in Table 1.

Table 1. Dimension details of single-track shoe model.

Parameters Dimensions (mm)

Length, L 100
Width, B 150

Height of grouser, h 60, 55, 45
Grouser thickness ratio, λL 6

The thickness of the shoe plate, t 40

2.4. Soil Preparation

The soil was taken from the experimental site of the school of agricultural equipment
engineering and sun-dried. The dried soil was crushed, and a sieve analysis test was
performed [1]. The soil was filled in the soil bin layer by layer, and at the 100 mm height,
a little wooden roller was utilized to move it to and fro twice. The way toward putting the
soil was rehashed until the elevation of the soil bin arrived at 400 mm. To get uniformity
and higher moisture content, the calculated amount of water was added, mixed thoroughly,
and left for 24 h [16]. To minimize moisture loss by evaporation, the soil bin was lined
with a plastic sheet (polyethylene). Soil samples have been taken from the soil bin at three
different random places. Averaging the moisture content of the three samples reported
for each test. Besides which, an oven-dried method was used to measure soil moisture
content [21]. The experimental work was divided into two parts, soil physical properties
(soil texture and dry bulk density), direct shear test, and penetration test.
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2.5. Direct Shear Test

The strength characteristics of soil were tested with a strain-controlled direct shear
test equipment (ZJ Nanjing Soil Instrument Factory Co., Ltd. Nanjing, China Figure 3).
The most important part of this device is the lower and upper blocks. The sample of soil is
always put into the upper box; the lower box includes a circular soil or steel plate to check
cohesion/adhesion and friction angle. A horizontal shear force is applied to the shear,
and the shear stress during the failure of the soil sample was obtained under pressure.
Furthermore, the shear strength (τ), internal friction angle (φ), and cohesion (C) of the soil
were determined by Coulomb’s law (Equation (17)).

τ = C + σtanφ (17)
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2.6. Penetration Test

The penetration test of soil was determined by the newly designed device
(Figures 4 and 5). The penetration test device consisted of a steel frame, wheels, soil bin
(500 × 500 × 1500 mm), and penetration system. An AC gear motor with spur rack and
speed control system (ASLONG-5F4, 120 W) was used to push the penetration plates into the
soil. Penetration plates used for the experiment were 10 × 30 × 40 and 10 × 25 × 40 mm.
The penetration test was repeated thrice for each moisture content. The design concept
was in line with Tiwari et al. [22] in which a testing facility was designed and developed to
determine the traction of the tire.

2.7. Data Acquisition and Analysis

The data acquisition system comprised the load cell (ATO-LCS-DYLY-106), linear
displacement transducer (ATO-LDSR, 400 mm), DAQ device (Ni-6009), and LabVIEW
software. The penetration force and sinkage were measured by a load cell and linear
displacement transducer, respectively. Data acquisition was made by the DAQ device with
help of LabVIEW. The Origin (version 2018) software was used for data analysis and the
gauss-newton method was used for non-linear curve fitting.
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3. Results and Discussion
3.1. Soil Reaction Force and Soil Sinkage

The assumption for the soil reaction force/pressure sinkage test was similar to tra-
ditional bevameter. The test results of soil reaction force and sinkage were obtained by
penetration test with two different sized plates for eight levels of moisture contents (7.5, 12,
16.7, 21.5, 26.2, 30.7, 35.8, and 38%, respectively) (Figures 6–9). Obtained results showed
the comparative trend over both penetration plates at all the moisture contents. The av-
erage maximum sinkage for plates 1 and 2 was 202.405 and 204.178 mm at 38% and the
minimum was 44.942 and 53.103 mm at 7.5% soil moisture content, respectively. Similarly,
the greater force soil reaction force was 195.126 and 195.465 N at 38% and smaller was
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128.7 and 117.782 N at 7.5% moisture content for plates 1 and 2, respectively. Consequently,
the soil sinkage increased with an increase in soil moisture content, the reason being that
the soil becomes softer with the addition of water, thus allowing the plate to penetrate more
quickly in soil and resulting more sinkage. The increase trend was observed over moisture
contents for both plates. The overall results of sinkage and soil reaction force/pressure
were found significant (p < 0.05). The main effect of soil sinkage on moisture content was
observed by 38%. The same findings have been recorded previously that plate sinkage
with high moisture content is increased [23]. At 35% moisture content the plate sinkage
was high [24]. The maximum sinkage varied linearly with the pressure applied in moist
soil [25]. When the soil reaction force increases the soil sinkage increases [6,26–30].
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Figure 7. Soil sinkage and reaction force for plate 1 and 2 at 16.7% (A) and 21.5% (B).
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Figure 8. Soil sinkage and reaction force for plate 1 and 2 at 26.2% (A) and 30.7% (B).
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3.2. Soil Cohesion Modulus (Kc), Friction Modulus (Kφ), and Sinkage Exponent (n) at
Moisture Contents

The Bekker’s pressure sinkage model parameters, including soil cohesion modulus
(Kc), soil friction modulus (Kφ), and sinkage exponent (n) were derived after penetration
test for eight moisture content. The relationship between soil cohesion and friction modulus
is shown in Figure 10. The values of both parameters were initially increased with an
increase in moisture content to 30.7% and then began decreasing until the final moisture
content 38%. The findings of the tests suggest that the effect of the water content on the soil
cohesive modulus is not apparent. Forces between soil particles may influence the cohesive
properties of soil; furthermore, the interaction between soil moisture content and various
forces may differ. For the friction modulus of soil, initially, a rapid increase followed by a
gradual increase with the increase in moisture content was observed.

The maximum soil cohesion and friction modulus were 0.096 mN/mn+1 and 0.242 mN/mn+2

recorded at 30.7% soil moisture content. Similarly, the minimum Kc was 0.042 mN/mn+1

at 38% and Kφ were 0.110 mN/mn+2 observed at 7.5% moisture content. The sinkage
exponent (Figure 11) of soil was increased when the moisture content increased to 12%,
then gradually decreased with an increase in moisture content to 38%. The effect of
pore pressure build-up may be the internal cause of this phenomenon. The rise of the
sinkage exponent indicates the increase in sinkage of the vehicle under the same pressure.
The adjusted R square of sinkage exponent was 0.94309 found by non-linear curve fitting
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using the Gauss model. The present results are in close agreement with previously reported
that the soil cohesive and friction modulus increased with the increase in the moisture content
to a certain level, and after that, it decreased with the increase in the moisture [24,31–34].
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Figure 10. Soil cohesive (Kc) and friction modulus (Kφ) at moisture contents (7.5–38%).
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Figure 11. Soil sinkage exponent (n) at moisture contents (7.5–38%).
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3.3. The Cohesion of Soil (C) at Different Moisture Contents

The experimental results of soil cohesion were obtained by direct shear test for eight
moisture contents (Figure 12). The plot showed the rapid rise in cohesion with moisture
content until 12%, then it was gradually dropped with further increase in soil moisture
content. The mean maximum cohesion was 0.84 kPa at 12% while a minimum 0.112 kPa
at 35.8% moisture content. The non-linear curve fitting was performed by Gauss model.
the adj. R-square of soil cohesion was 0.98504. The present results are in line with Jun
et.al, who found the increase in cohesion with moisture content until certain values then
begin decrease in cohesion [35–37]. Other studies reported the significant effect of soil
mechanical properties on moisture content [38,39].
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Figure 12. Soil cohesion at moisture contents (7.5–38%).

3.4. Soil Adhesion (Ca) at Different Moisture Contents

The relationship between soil adhesion and soil moisture content is shown in Figure
13. The plot discloses the parabolic curve of results. It has been found that soil adhesion
is higher when the soil is wet. Initially, adhesion increased with increasing moisture
content, it was higher at 26.2% moisture content, and as the moisture content further
increased, soil adhesion decreased. The average greater adhesion was 0.976 kPa at 26.2%,
similarly, the smaller was 0.108 kPa at 7.5% moisture content. Statistically, the results were
significant (p < 0.05). The Gauss model was used to fit the data and to get best fitting line,
the adjusted R2 value was 0.94648. The previous results reported that the soil moisture
content significantly affected soil cohesion and adhesion [7,37,40,41]. Present results are in
line with those reported results.

3.5. Internal and External Friction Angle

The experimental results of soil internal and external friction angles were obtained by
the direct shear test and shown in Figure 14. The comparative trend between both angles
was observed in results, initially, both angles slowly decreased with an increase in moisture
content to 21.5%, but when moisture content further increased the internal friction angle
initiated to increase and the external friction angle remains decreased. The maximum
internal and external friction was 25.07 and 20.82 observed at 26.2 and 30.7% moisture
content, respectively. Moreover, the minimum 21.02, and 19.43 were recorded at 16.7
and 38%. The gauss model was used to perform non-linear curve fitting. The adjusted
coefficient of determinations was 0.84497 and 0.8655 calculated for internal and external
friction angle, respectively. Previous research reported that a decrease in external friction
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angle was observed with increasing soil moisture content [42,43]. Additionally, another
previous report indicated that soil moisture increases with a decrease in the angle of internal
and external friction [44,45].
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Figure 13. Soil Adhesion at moisture contents (7.5–38%).
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3.6. Soil Bulk Density

Bulk density offers the most basic details on the solid, water and air proportions and
seems to be important to any study. The results of soil bulk density at eight moisture
contents (7.2, 12, 16.7, 21.5, 26.2, 30.7, 35.8, and 38%) were shown in Figure 15. As one can
see from the figure that the soil bulk density linearly increased with an increase in soil
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moisture content. The major increase in soil bulk density was found at 38%, while the lower
was at 7.5% moisture content. The reason for the change in soil bulk density is when water
is applied to the soil to reach optimum moisture levels, the soil form varies from semisolid
to liquid because of capillary force. The influence of soil bulk density on moisture content
was significant (p < 0.05), the R2 was 0.9609 calculated by linear regression. The present
results are in line with the previously reported studies found the maximum change in soil
dry bulk density at 30% moisture content [37,46,47].
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3.7. Tractive Performance Parameters of Single-Track Shoe
3.7.1. The Thrust Generated at Lateral Sides and Bottom of the Grouser

The total soil thrust is the addition of thrust generated at the tip surface of grouser (F1),
lateral sides of grouser and spacing, the surface of spacing (F2), and the bottom surface of
grouser (F3). Figure 16 shows the results of thrust at the tip of grouser (FF1) with different
heights, results reveal that all grouser heights had the same trend over moisture content,
but the high value (2.732 KN) was recorded 21.5% with 45 mm grouser height and it was
steadily decreased with the rise in moisture content until the end of the experiment. F2
results were shown in Figure 17, the results indicated that the thrust was increased with a
rise in moisture content until 16.7%, and then slowly decreased with further increase in
moisture content, the maximum thrust of F2 was (8.867 KN) observed for 60 mm height at
16.7%. Similarly, the F3 has also the same pattern (Figure 18), the more value of thrust was
(6.821 KN) recorded with 45 mm height at 16.7% moisture content. The gauss model was
used for non-linear curve fitting to obtain best fit line and coefficient of determination.

The total thrust generated at the single-track shoe was presented in Figure 19, the thrust
with 45, 55, 60 mm height grew before 16.7% moisture content, while moisture content was
increased all results were decreased until the end of 38%. The maximum thrust 18.293 KN
was calculated as 45 mm grouser height at 16.7%, while a minimum 9.38 KN was observed
with 60 mm height at 16.5% moisture content. The coefficient of determination for total
thrust was 0.92673, 0.86866 and 0.79471 observed for 45, 55 and 60 mm grouser height,
respectively. The results evaluated that the major increase in thrust was observed for 45 mm
grouser height as compared to other heights; it was seen that grouser with small height
had the best performance. Ge et al. reported that soil thrust decreased with an increase
in moisture content [34]. Other studies reported that an increase in soil moisture content
causes a decrease in the peak values of the thrust [48,49].
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Figure 16. Soil thrust at grouser tip surface with three grouser heights at moisture contents (7.5–38%).
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Figure 17. Soil thrust at grouser and spacing lateral sides and spacing surface with three grouser
heights at moisture contents (7.5–38%).
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Figure 18. Soil thrust at the bottom surface of grouser with three grouser heights at moisture contents
(7.5–38%).
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Figure 19. Total soil thrust generated at single track shoe with three grouser heights at moisture
contents (7.5–38%).

3.7.2. Motion (Running) Resistance of the Single-Track Shoe

The Running resistance of single-track shoe with three grouser heights at eight mois-
ture contents is shown in Figure 20. The result running resistance showed the variation
from 1.07 to 4.03, 0.89 to 3.78, and 0.87 to 3.42 KN for 45, 55 and 60-mm grouser height,
respectively. The linear increasing trend was found in results because moisture content
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directly proportionated the running resistance. The major rise in running resistance was
recorded with 45 mm height at 38% moisture content as compared to 55 and 60 mm height.
It is clear from the results that, when the contact area was increased the running resistance
decreases because of less sinkage, it also leads to increased net traction. The linear fitting
was performed to get best fit, the coefficient of determination for running resistance was
0.99612, 0.98938 and 0.99232 calculated for 45, 55 and 60 mm grouser height, respectively
Present results are in agreement with the reported results that increase in running resistance
was determined with the increase in moisture content [37,50,51]. Another study reported
that the softer, wetter, and more slippery the soil, the smaller the traction and greater the
running resistance [52]. Actually, the dynamic transformation of the soil flow produced by
the grouser can be found, as the grouser height is adequately high [19].
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Figure 20. Grouser running resistance of single-track shoe with three grouser heights at moisture
contents (7.5–38%).

3.7.3. Tractive Effort (Traction) of Single-Track Shoe

Figure 21 shows the results of the tractive effort of a single-track shoe with three
grouser heights for eight moisture contents. The variation in the result was found for each
height at all moisture content, initially, the traction of single-track shoe increased with
an increased in moisture content until 16.7%, then it decreased steadily until the end of
the experiment 38%. The mean maximum traction 16.189, 15.452, and 14.66 KN, similarly
minimum was 7.78, 6.43, and 5.97 KN was determined for 45, 55 and 60 mm grouser height
at 16.7% and 38% moisture content, respectively. Results indicated the more traction with
smaller grouser height (45 mm) as compared to larger heights, and when soil is wetter the
tractive effort was less. The gauss model was used to perform non-linear curve fitting and
coefficient of determination, adjusted R square was 0.92468, 0.91853 and 0.97225 for 45,
55 and 60 mm height, respectively. Previous studies reported that soft soil can drastically
reduce the traction performance [53,54], traction efficiency of two-wheel agricultural tractor
reduced in soft soil [37,55], the moisture content between 15% and 20% is ideal for the net
traction, greater the moisture content lower the traction [56]. Presented results are in close
agreement with these results. Spacing between the grouse also influences on the sinkage,
and gross traction [20].
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Figure 21. Traction of the single-track shoe with three grouser heights at moisture contents (7.5–38%).

4. Conclusions

The effect of grouser height on the tractive performance of single grouser shoe at
eight moisture content was studied in this research. The semi-empirical method for trac-
tive performance of grouser was used, which is based on Bekker’s bevameter method.
Soil cohesive and friction modulus were increased with moisture content while the sinkage
exponent was decreased. Soil sinkage increased with an increase in moisture content,
soil cohesion decreased, and adhesion was initially increased to 21.5%, then decreased
until the end level 38%. Soil dry bulk density varied from 1394 to 2621 Kg/m3. Maximum
soil thrust was observed at 4.5 cm grouser height at 16.5% moisture content. The running
resistance was decreased with a rise in moisture content, the major decrease was in 4.5 cm
grouser height at 38% moisture content. Traction is the difference of soil thrust to running
resistance, the grouser height 4.5 cm height showed the best results, followed by 5.5 and 6
cm grouser height at moisture contents (7.5–38%). It could be concluded that an off-road
tracked vehicle (crawler combine harvester) with 4.5 cm grouser height of single-track shoe
could be operated towards moderate moisture content (16.7–21.5%) under paddy soil for
achieving better traction.
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