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Abstract: Low cost and high reproducible is a key issue for sustainable location-based services.
Currently, Wi-Fi fingerprinting based indoor positioning technology has been widely used in various
applications due to the advantage of existing wireless network infrastructures and high position-
ing accuracy. However, the collection and construction of signal radio map (a basis for Wi-Fi
fingerprinting-based localization) is a labor-intensive and time-cost work, which limit their prac-
tical and sustainable use. In this study, an indoor signal mapping approach is proposed, which
extracts fingerprints from unknown signal mapping routes to construct the radio map. This approach
employs special indoor spatial structures (termed as structure landmarks) to estimate the location
of fingerprints extracted from mapping routes. A learning-based classification model is designed
to recognize the structure landmarks along a mapping route based on visual and inertial data. A
landmark-based map matching algorithm is also developed to attach the recognized landmarks
to a map and to recover the location of the mapping route without knowing its initial location.
Experiment results showed that the accuracy of landmark recognition model is higher than 90%. The
average matching accuracy and location error of signal mapping routes is 96% and 1.2 m, respectively.
By using the constructed signal radio map, the indoor localization error of two algorithms can reach
an accuracy of 1.6 m.

Keywords: indoor localization; fingerprinting; structure landmark

1. Introduction

Location information is a necessary component of the Future Sustainability Comput-
ing (FSC) framework which integrates diverse policies, procedures, programs and provides
amount of potential applications such as mobile computing, robots and pedestrian nav-
igation, augmented reality and other Location Based Service (LBS) [1]. For example, a
RSSI-based distance estimation framework [2] was constructed to accurately estimate the lo-
cation of users, in sustainable indoor computing environment. An infrared human posture
recognition method [3] was also developed for intelligent monitoring in sustainable smart
homes. Indoor localization and monitoring are important to sustainability technologies
and systems. By obtaining the location information, more services and application can be
developed to support FSC.
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While outdoor positioning problem can be well solved by using the Global Naviga-
tion Satellite System (GNSS), indoor positioning remains a challenge due to the lack of
reliable and low-cost indoor positioning technique. There are a number of solutions de-
veloped for indoor positioning such as Wi-Fi [4], magnetic [5], UltraWide Band (UWB) [6],
image [7], inertial sensor [8], etc. Compare with other indoor localization techniques,
Wi-Fi fingerprinting has been widely used in various indoor environments, since it can
be easily deployed using existing off-the-shelf mobile devices and wireless network (e.g.,
802.11 Wi-Fi infrastructures) without participating of other devices and infrastructures.

Based on routing algorithms [9,10], Wi-Fi signals can achieve relative high throughput,
low latency, and high reliability from source to destination in wireless networks. However,
the growing demand and diverse traffic pattern of smart devices increase the strain on
wireless networks. Some studies attempt to provide solutions to fulfill the requirements of
distributed communications. For example, Wang [11] presented a coexistent routing and
flooding network, which could conduct routing within the Wi-Fi network and flooding
among ZigBee node using a single stream of Wi-Fi packets. Kemal [12] proposed the
DeepWiFi protocol, which hardens the baseline Wi-Fi with deep learning and sustains high
throughput by mitigating out-of-network interference. It supports embedded platform
and provide major throughput gains especially when channels are likely to be jammed.
Gilani [13] proposed a Software Defined Networking (SDN) based routing architecture for
Wireless Mesh Networks (WMNs). Although these state-of-art Wi-Fi routing algorithms
can improve the capacity of communication of wireless network, they cannot directly
provide accurate location information of mobile devices for indoor and outdoor location-
based applications.

The principle of Wi-Fi fingerprinting is to calculate location by matching the current Wi-
Fi received signal strength (RSS) measurements with a set of RSS measurements with known
locations. It is generally based on two phases: offline training phase and online localization
phase. In offline phase, the geo-tagged RSS measurements are collected from multiple
Wi-Fi access points (AP) and treated as a fingerprint. A number of the collected fingerprints
which covers an indoor space is used to construct a radio map. Whereas, in online phase,
the location of user is computed by matching the current fingerprint measurement with a
constructed radio map. The localization accuracy of Wi-Fi fingerprinting is significantly
affected by the quality of radio map. The location accuracy and reliability can be improved
when the fingerprints are accurately geo-tagged with high spatial density. However, it also
requires more labor and time cost for fingerprint measurement and geo-tagging. For Wi-Fi
fingerprinting, the collecting and constructing of radio map is a key issue that limits its
large-scale application.

Recently, much effort has been devoted to reducing the intensive cost of manpower
and time for radio signal mapping (i.e., collecting and generating radio map). Some
researchers have tried to replace the site survey process by employing wireless radio
propagation models [14,15]. However, due to the unpredictability of signal propagation,
signal propagation models do not perform properly in complex indoor environments
and lack the potential of their applications. Some researchers [16–19] have focused on
development of zero-configuration indoor localization systems which do not require an
explicit site survey phase. Instead, they implement a training phase during the use of
the systems. For example, Sorour [16] exploits the inherent spatial correlation of RSS
measurements to reduce the required calibration of fingerprints and performs a direct
localization without a full radio map. Redpin [17] is an adaptive zero-configuration indoor
localization system which constructs a fingerprint database by encouraging users to upload
self-identified locations. However, Redpin needs a large amount of collaboration data
and cannot be applied in the initial stage. UnLoc [18] is a localization scheme which can
sense and identify indoor landmarks, e.g., elevators or corridor corners, and uses them
to recalibrate the locations, without the need for a site survey. Zee [19] is a localization
system that does not need an explicit site survey or calibration. It requires the users to
roam in the indoor area to collect information before being able to localize themselves.
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In general, although these systems can be directly applied without a full site surveying
process, they require a long training and recalibration process and cannot provide reli-
able localization results before the initialization and training phase are finished. As a
widely used artificial intelligence technique, deep learning has been employed by many
indoor localization approaches. For example, Hsieh [20] presented a deep learning-based
approach by utilizing transmission channel quality metrics. This approach partitioned
indoor area into two-dimensional blocks and train four deep neural networks to estimate
the location of RSS and CSI (channel state information). Koike [21] used spatial beam
signal-to-noise ratios (SNRs) as mid-grained intermediate-level channel measurement and
constructed fingerprinting database by using a deep learning approach. These works have
not considered the labor cost of constructing and updating fingerprint database. WiDeep
in [22] is a deep learning-based indoor localization system, which combines a stacked
denoising autoencoders and a probabilistic framework to handle the noise and instabil-
ity of Wi-Fi signals. Zahra [23] employed extreme learning machines and the high-level
features extracted from autoencoder to improve localization performance in both feature
extraction and classification. Wang [24] proposed a stacked denoising autoencoder based
feature extraction method to obtain time-independent Wi-Fi fingerprint. A multi-layer
perceptron method was used to build a regression model which associated the extracted
feature to the corresponding location. These methods can reduce the labor cost required
for fingerprinting but also require a relative long time for data training.

Crowdsourcing is an efficient way to reduce the labor and time cost that needed
for radio signal mapping. Many studies [25–28] have used crowdsourcing trajectories to
construct radio map. For example, WILL [25] investigates unexploited RF signal char-
acteristics and leverage user motions to construct radio map. LIFS [26] applies human
motions to connect previously independent radio fingerprints. Recently, AiFiMatch [27]
and RCILS [28] take advantage of activity detection and map matching techniques to
estimate crowdsourcing trajectory. Later, fingerprints can be calibrated from the trajectory
sequence. However, although the accuracy of activity detection method is high, it is dif-
ficult to apply these systems in practical use. This could be due to the fact as it assumes
that all the activities (e.g., a turn) performed at special locations (e.g., corners or elevators).
However, this assumption is vulnerable to the randomness of human activity. If a turning
activity happens at corridor open space or room, it will be wrong to match the current
location to the special locations recorded in an indoor map.

Landmark is always used as the spatial reference due to its with salient visual and
semantic characteristics. It can provide accurate location information and can be used
to reduce positioning error of indoor or outdoor positioning systems. During the recent
decades, a large amount of studies has focused on developing landmark recognition meth-
ods or systems. For example, Cao [29] proposed a landmark recognition algorithm with
sparse representation classification and extreme learning machine. The spatial pyramid
kernel-based bag-of-words histogram approach was used to extract image feature, and
the artificial neural network was trained with extreme learning machine combine with
sparse representation classifier for landmark image recognition. Cunha [30] has proposed
the Patch PlaNet which considered landmark recognition as a classification problem and
extended the PlaNet deep neural network model to perform the classification. Compared
with original network, the performance of Patch PlaNet improves the accuracy of land-
mark recognition by 5–11 percentages. These works can achieve a satisfactory landmark
recognition result. Federico [31] considered the computational time problem in large-scale
landmark recognition. The algorithm can drastically reduce the query time associate with
outperform accuracy, which can be applied to diverse embedding techniques. However,
this algorithm is not suitable for indoor environment with insufficient texture features.
Chua [32] proposed a landmark-based indoor navigation approach, which employed a
360-degree camera to recognize landmarks and provide a shortest navigation path using
Dijkstra algorithm. Except for image landmark, special sensor data or Wi-Fi signal can
also be used as landmark. Sun [33] used both RSS crests and troughs to define a landmark.
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A RSS waveforms smoothing method was implemented on the clustered crowdsourced
trajectories, which improved the location accuracy of Wi-Fi landmarks about 24.2%. The
change of indoor environment layout and moving pedestrian may decrease the accuracy of
Wi-Fi landmarks.

This study intends to utilize spatial structural features, such as intersections or corners,
to correct the cumulative error of crowdsourcing trajectories for radio signal mapping.
Compared with human activity, spatial structures are visually sensible features existing in
physical space. It makes spatial structures, termed as structure landmarks which are more
reliable and robust as compare to activity landmarks. Through detecting and recognizing
the structure landmarks (e.g., L-junction, T-junction) along a route, the location of the route
can be spatially estimated and calibrated. The sampling points from the route can be used
to generate fingerprints and construct radio map for indoor localization.

This study proposes a structure landmark-based radio signal mapping method which
is sustainable for indoor localization. For an indoor environment, structure landmarks
can be easily extracted from a floorplan and stored in a landmark dataset along with
their geo-tags. During a radio signal mapping process, multi-sensor data can be collected
through smartphone, including video frames, inertial readings and Wi-Fi signals. Based on
proposed structure landmark recognition method, video frames and inertial readings can be
integrated to recognize the type of structure landmark along a mapping route. The inertial
data can also be utilized to roughly calculate the relative location of the route. By matching
the recognized structure landmarks with the ones in landmark dataset, the location of the
recognized landmarks can be estimated. After that, the recognized landmarks can be used
to accurately estimate the location of the mapping route. Finally, a Wi-Fi radio map can
be constructed to extract further Wi-Fi fingerprints from a spatially estimated mapping
route. An indoor localization experiment is also conducted to evaluate the quality of the
constructed radio map.

This paper is organized as follows: Section 2 presents the methodology of struc-
ture landmark based indoor radio signal mapping method. Experimental results and
comparisons are described in Section 3. Conclusions are drawn in Section 4.

2. Methods

The overview of this approach is described in Figure 1. The inputs of this approach
are video frames, inertial data and Wi-Fi RSS values, which can be collected by smartphone
sensors. Landmark dataset, including type and location attributes of structure landmarks,
can be extracted from indoor floor plan. The output of this method is a generated Wi-Fi
radio map, which can be indirectly used for indoor localization.

This method firstly defined the type of typical structure landmarks in indoor space.
Then, a learning-based classification model was designed for distinguishing the type of
structure landmark based on collected inertial sensor data and video frames. Inertial sensor
data including accelerator, gyroscope and orientation readings were used to recover trajec-
tory geometry by using the PDR method. Furthermore, heading angle change calculated
from gyroscope data was used as a feature to recognize the type of structure landmark. As
initial location of trajectory was unknown, a Hidden Markov model (HMM) based map
matching method was also developed to match the recognized structure landmarks along
the trajectory to a landmark database. The location of identified structure landmarks can
be determined, which can be further used to estimate the spatial location of the trajectory.
Finally, the sampling points from the trajectory were used to generate a radio map for
indoor localization.
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Figure 1. Architecture of the indoor signal mapping system.

2.1. Types of Structure Landmark

Structure landmarks are defined as visually salient structures in indoor space that
anchors special locations, such as intersections, entrance, corners, etc. As shown in Figure 2,
8 different types of structure landmark have been defined, including FT (T-junction at front
angle), LT (T-junction at left angle), RT (T-junction at right angle), LL (L-junction at left
angle), RL (L-junction at right angle), EC (end of corridor), CW (corridor to wide area) and
WC (wide area to corridor). Each type of structure landmark has a special structural and
visual characteristic, which is a basis for landmark recognition. According to the definition,
structure landmark dataset can be easily extracted from a floorplan of an in-door space.
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Figure 2. Types of defined structure landmark.

This study intends to integrate both visual and inertial features to recognize the type
of a structure landmark. The reason for including visual features in landmark recognition
is that visual information has a more reliable relationship with the physical environment as
compare to inertial information. This method does not depend on the assumption that all
walking activities (e.g., a turning action) happen at special locations (e.g., an intersection).
Instead, it employs visual information to sense and detect whether a person is at a special
location (i.e., structure landmark). A Gaussian Mixture Model based Naïve Bayesian
Classifier (GMM-NBC) is proposed to recognize the type of landmark.
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2.2. Structure Landmark Recognition
2.2.1. Feature Calculation

One important visual feature for landmark recognition is vanishing segments, which
is the line segments toward the vanishing point of a video frame. Vanishing points and
vanishing segments are important visual features for various computer vision studies,
including scene understanding [34], 3D reconstruction [35], and so on. Indoor scene can
be abstracted as three cluster lines with orthogonal direction towards vanishing point. As
shown in Figure 3, the vanishing segments towards horizontal (red line), vertical (green
line) and infinity direction (blue line) can be extracted from a video frame by using the
proposed method in [36]. Using vanishing segments, a visual feature variable is defined
as follows:

vs(i) =
sum(Lh)

sum(Lh) + sum
(

L f

) (1)

where vs(i) is the defined feature value of frame i, Lh is the vanishing segments towards
the horizontal direction, L f is the vanishing segments towards the infinity direction, sum is
a function to calculate the total length of line segments. The value of vs(i) reflects the
structure characteristics of a scene.
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Another important visual feature is the floor plane of an indoor scene. Floor plane
detection is a basic issue for many study fields, such as mobile robotics, navigation and
3D modeling. This method calculates the wall-floor boundary and evaluate the likelihood
of horizontal intensity edge line segments by using the algorithm proposed in [37]. The
visual feature variable is defined as follows:

vg(i) =
Sg(i)
S(i)

(2)

where Sg(i) is the area of an extracted floor plane from frame i, S(i) is the size of frame i.
The variable vg shows the ratio of floor plane area in an image.

The third feature is heading angle change, which is calculated by using gyroscope
readings. When a person walks across a structure landmark, he or she may turn left,
turn right or turn around. Different type of structure landmark leads to different walking
direction. For example, LL and RL landmark refer to one walk direction, while FT landmark
provides two potential walking directions. At the location of EC landmark, a person may
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turn around. Therefore, this method calculates change in heading angle variable using
inertial reading. The feature of heading angle change can be calculated as follows:

ha(i) = ∑Tei
Tsi

∫
gyr·dt (3)

where ha(i) is the heading angle change of frame i, Tsi and Tei are the start and end moments
of frame i, gyr is the gyroscope readings from smartphone.

For each type of structure landmark, the calculated visual and inertial features are
used to construct a feature vector, which can be represent as:

Vs = {vs(1), vs(2)} . . . vs(j)}
Vg =

{
vg(1), vg(2)

}
. . . vg(j)

}
Ha = {ha(1), ha(2) . . . ha(j)}

(4)

where
{

vs(j), vg(j) . . . ha(j)
}

represent the three different feature value of frame j. Figure 3
shows an example of feature values for two different indoor scenes. Scene 1 is a RT
landmark and Scene 2 is a LL landmark. The value of vs and ha of two scenes are signifi-
cantly different.

2.2.2. GMM-NBC Construction

In this paper, a GMM-NBC model is designed to distinguish the type of structure
landmarks. The principle of GMM-NBC is to estimate the joint probability of continuous
feature vectors based on parametric probability density function. The highest value of joint
probability determines the type of a structure landmark.

Because the distribution of feature value is unknown, this method uses the GMM
model to approximate the distribution. GMM is a mixture model with a weighted sum
of K component Gaussian densities, which can be used to fit any type of distribution in
theory. The GMM can be formulated as:

p(x|λ) = ∑M
i=1 wi g(x|µi, ∑i) (5)

where x is a D-dimensional continuous-valued data vector, λ is a parameter set which can
be defined as: λ = {wi, µi, ∑ i} (i = 1, 2, . . . M), wi represents the mixture weight which
satisfy the constraint as:

∑M
i=1 wi = 1 (6)

g(x|µi, ∑ i) is the component Gaussian densities function with the mean vector µi and
the covariance matrix ∑ i, which can be formulated as follows:

g(x|µi, ∑ i) =
1

(2π)
D
2 |∑ i|

1
2

exp
{
−1

2
(x− µi)

′∑−1
i (x− µi)

}
(7)

In order to use the complete GMM to fit the feature distribution, the parameter set λ
should be learned on the training phase. There are several techniques available to estimate
the parameters of a GMM e.g., moment estimation, minimum x2 estimation, Bayesian
estimation and maximum likelihood estimation [38]. In this study, we use the maximum
likelihood estimation (MLE) to find the model parameters which maximizes the likelihood
of GMM given the training data. For sequence of training vectors X = {x1, x2, . . . xT}, the
likelihood function of λ can be represented as follows:

p(X|λ) = ∏T
t=1 p(xt|λ) (8)

Because Equation (8) is a non-linear function of parameters λ and direct maximization
is not possible. This method uses an expectation-maximization (EM) algorithm to solve
this problem. Given an initial model λ, the basic idea of EM algorithm is to estimate a new
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mode λ, such that p
(
X|λ

)
≥ p(X|λ). The new model can then be implemented as an initial

model for the next iteration. This process is repeated until some convergence threshold
is reached.

On each EM iteration, the estimate of parameters can be represented as follows:

wi =
1
T ∑T

t=1 p(i|xt, λ) (9)

µi =
∑T

t=1 p(i|xt, λ)xt

∑T
t=1 p(i|xt, λ)

(10)

∑ i = ∑T
t=1 p(i|xt, λ)(xt − µi)(xt − µi)

′

∑T
t=1 p(i|xt, λ)

(11)

After serval iterations, the posteriori probability of feature vector xt can be calculated
as follows:

p(i|xt, λ) =
wi g(xt|µi, ∑ i)

∑M
i=1 wi g(xt|µi, ∑ i)

(12)

To recognize the type of structure landmark, the normalized feature vector Vs and Vg
is used as an input of GMM. The number of Gaussian components is set to 3. The posteriori
probability of each type of structure landmark can be calculated by using Equation (12).
Figure 4 shows the GMM result of LL and LT landmark, in which the X-axis is the Vs value,
the Y-axis is the Vg value and the Z-axis represents the posteriori probability.
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2.2.3. Structure Landmark Recognition

Based on the GMM-NBC model, this study uses a decision tree to identify the type
of structure landmarks. When people walk in an indoor area, each encountered structure
landmark reflects a specific signal pattern of inertial and visual features. Considering the
randomness of pedestrian activity, this method uses inertial data to detect the activities
related with turning or stopping. Later, the visual data is used to find whether the location
of a walking activity happens at the location of a structure landmark. As shown in Figure 5,
a detected walking activity will trigger the module of structure landmark recognition.
Firstly, we separate the motion state by using turning detection and stationary detection. A
peak detection algorithm [39] is implemented using gyroscope data, which can identify the
orientation (left or right) and type (normal or U-turn) of a turning action. As recommend
in [40], the variance of acceleration is used to detect the stationary state of pedestrian, and
the threshold is set to 0.25. The sum of rotation angle calculated from gyroscope is used
to distinguish U-turn and normal turn, and the threshold is set to 135 degrees. Then, the
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variation of feature value ha is used to separate the type of structure landmark into two
categories. If the value of ha is first increased and then decreased, the type of a landmark
may fall in the scope of {FT; RT; RL; CW; WC}. If the value of ha is first decreased and then
increased, the type of a landmark may fall in the scope of {FT; LT; LL; CW; WC}.

Finally, the GMM-NBC model is used to further distinguish the type of structure
landmark. A special case is to distinguish EC landmark and non-structure. Due to the
randomness of turning activity, pedestrian may stop walking and make a turn at a non-
structure location. We use the stationary detection and U-turn detection as a judgment
condition. If the variance of acceleration is low and sum of rotation angle is higher
than a threshold, EC landmark and non-structure location can be identified by using the
GMM-NBC model. Another special case is that FT landmark is difficult to be accurately
recognized. The reason is that when people make a right (or left) turn at a FT landmark,
the visual information of scenes on the opposite side may not be collected by smartphone
camera. The visual and inertial signal feature of FT landmark may be similar with RL
or LL landmark. However, this potential incorrect recognition problem can be solved by
the proposed landmark map matching algorithm. By matching a sequence of landmark
(along a route) to the map, the influence of the incorrect landmark recognition results can
be significantly reduced.
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2.3. Structure Landmark Based Indoor Map Matching

The method proposed in Section 2.2 can be used to recognize the type of structure
landmark. However, for larger indoor environments, it is possible that many structure
landmarks may share the same landmark type. In order to solve this problem, a Hidden
Markov model based indoor map matching algorithm is designed to uniquely identify
each landmark along a signal mapping route.

The core idea of HMM is to construct the relation between the observation and the
hidden state by using the conditional stochastic probability. The main parameters of HMM
include: {S, V, A, B, π}, in which S = {S1, S2, S3} is the hidden state. V = {V1, V2, V3} is the
observation. A =

{
aij
}

is the state transition probability between state Si and Sj. B =
{

bij
}

is the emission probability which represent the probability when the observation Vj in the
state Si. π = {πi} is the initial state distribution of value {S, V, A, B}.
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In this study, we define structure landmark as the hidden state of HMM. The type
of landmark, e.g., FT landmark, is defined as the observation, which can be recognized
by using the method proposed in Section 2.2. The value of state transition probability aij
can be calculated based on the spatial adjacency relation among landmarks. The emission
probability bij of hidden state Si is defined according to the confusion matrix of landmark
recognition. To increase the practicability of the proposed method, the initial location
of each route is assumed to be unknown. The initial state of distribution is uniform
for all hidden state. The sum of transition probability and emission probability of each
hidden state equals 1. Figure 6 shows an example of calculating state transition probability
and emission probability. Because landmark S2 is directly adjacent to S1, S3 and S4, the
transition probability of a21, a23, a24 are defined as 1/3. For FT landmark (state S2), different
walking direction may lead to different identification result. Considering the existing of
incorrect recognition results in confusion matrix, the emission probability of S2 is defined as:

b2LT = b2RT = b2LL = b2RL = b2FT = 1/5 (13)

where b2LT , b2RT , b2LL, b2RL, b2FT represent the probability that S2 being recognized as LT,
RT, LL, RL and FT landmark.
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The aim of the map matching method is to find the absolute location of detected
landmarks along a signal mapping route. After constructing the parameters of HMM, a
Viterbi algorithm [41] is used to search for the most probable sequence of hidden state.
For most indoor environments, there are many structure landmarks that share the same
landmark type. The result of traditional Viterbi algorithm converges slowly and may
provide more than one candidate location. In this study, we use the spatial adjacency of
landmarks and the absolute heading angle information to improve the convergence speed
of Viterbi algorithm. The spatial adjacency relationship of two landmarks means they
can be straightly accessed by each other without turning action. Absolute heading angle
information can be obtained from smartphone sensor. The main steps of this map matching
algorithm are shown as below:

(1) Initialization: For the first detected and recognized landmark, all landmarks in the
map will be treated as its candidate locations if they are within the same landmark
type. We define δt(i) as the probability along a candidate path, at time t, which
accounts for the observation Vt in state Si.

(2) Induction: For subsequently recognized landmarks, calculating the probability δt(j)
and ϕt(j) according to the transition probability aij and emission probability bij.

δt(j) =
[

max
i=1,2,...N

(
δt−1(i)aij

)]
·bj(Vt) (14)

ϕt(j) = argmax
(
δt−1(i)aij

)
(15)



Sustainability 2021, 13, 1183 11 of 18

where ϕt(j) is the most probable location of observation Vt. If the value of ϕt(j) equals
0, the path will not be used as a candidate.

(3) Backtracking. When the last structure landmark has been detected, the algorithm
can estimate the state of the observation and backtrack the state array based on the
array of ϕt(j). The path with the highest value is selected as the result. If the number
of candidate path is higher than 1, the heading angle along the route can be used to
eliminate false matches.

2.4. Radio Map Construction

After landmark recognition and map matching, the location of a signal mapping route
can be estimated. Later, sampling point from the route can be used to construct radio
map for indoor localization. The location of each sampling point can be estimated by a
pedestrian dead reckoning (PDR) algorithm using inertial data. A Low-pass Butter-worth
filtering and peak detection algorithm [42] is used to detect the steps from a recovered
route. A frequency-based mode [43] is implemented to estimate step length. The result of
PDR can be described as follows:(

xk
yk

)
=

(
xk−1 + Dk· sin θk
yk−1 + Dk· cos θk

)
(16)

where (xk, yk) is the coordinate of sampling point Pk, Dk and θk are the step length and
heading direction, respectively.

Each sample point from a mapping route is associated with Wi-Fi receive strength
signal (RSS) data, which can be used to construct Wi-Fi fingerprints database (radio map).
The attribute of sampling points for radio map construction is shown in Table 1. For each
sample point, the coordinates are calculated through proposed map matching method
and PDR algorithm, the collected RSS data include the RSS value and its AP information.
To construct a radio map, an indoor space is divided into regular grids. If a trajectory
passes through a grid, the sampling points from the trajectory are extracted to generate the
corresponding Wi-Fi fingerprint. As shown in Figure 7, if m sampling points (maybe from
different trajectories) are within the spatial extent of a grid, the RSS value of AP i in the
grid can be calculated as:

rssi =
1
m ∑k∈G rssk

i (17)

where rssi is the value of AP i in the grid, G is the set of AP, rssk
i is the rssi of the k-th

sampling point. If one grid does not have any sampling point in its spatial extent, the value
of RSS should be calculated by using the RSS from its neighbor grids:

rssi =
∑j w

(
dj
)
·RSS{}

∑j w
(
dj
) (18)

where RSS{} is the neighborhood grids of the current grid, j is the index of a grid, w
(
dj
)

is
the weight function which inverse distance dj.

Table 1. The attributes of sampling points for radio map construction.

Point ID Trajectory ID Coordinates RSS

P_1 Tr_1 (X1, Y1) {(rss1, ap1), (rss2, ap2) . . . } }
P_2 Tr_2 (X2, Y2) {(rss1, ap1), (rss2, ap2) . . . }}
. . . . . . . . . . . .

P_n Tr_n (Xn, Yn) {(rss1, ap1), (rss2, ap2) . . . }}
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3. Experimental Results
3.1. Overview

The performance of the proposed indoor signal mapping method is evaluated by
several experiments conducted in an office building. The experimental area covers a
52.5 m × 52.5 m floor plan. As shown in Figure 8a, there are total 19 structure landmarks
(L1-L19) which cover 8 landmark types as defined in Section 2.1. Two Android version
smartphone (a Galaxy Note and a Nexus S) are used to collect sensor data, including video
frames (30FPS), inertial data (100 HZ) and Wi-Fi RSS data (150 HZ).
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walking trajectory of collecting data

To test the accuracy of landmark recognition method, twenty sets of sample data (for
each landmark type) were collected in different indoor spaces. The accuracy of landmark
recognition is calculated as:

Accuracy = M/N·100% (19)

where M is the number of correctly recognized structure landmarks, N is the total number
of landmarks. The confusion matrix of landmark recognition results are summarized in
Table 2. The accuracy of most of the landmark type is higher than 90%. Especially LL, RL
and EC, where the recognition accuracy is 100%. For FT landmark, the recognition accuracy
is around 50%. However, the negative influence of incorrectly recognized landmarks can
be reduced by the map matching method.
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Table 2. The recognition result of landmark type.

FT LT RT LL RL EC CW WC

FT 50% 0 0 25% 25% 0 0 0
LT 0 95% 0 5% 0 0 0 0
RT 0 0 95% 0 5% 0 0 0
LL 0 0 0 100% 0 0 0 0
RL 0 0 0 0 100% 0 0 0
EC 0 0 0 0 0 100% 0 0
CW 0 5% 5% 0 0 0 90% 0
WC 0 0 0 5% 5% 0 0 90%

3.2. Performance of Indoor Map Matching

To evaluate the performance of the structure landmark-based map matching method,
four participants were required to collect experiment data along four designed routes
(shown in Figure 8b). Each route was repeated 10 times. The initial location of each route
was assumed to be unknown. The proposed map matching method was used to estimate
the location of the four routes. The location of identified structure landmark is used as
metric for evaluating the accuracy of landmark map matching. To obtain the quantitative
assessment of the method, some markers with known coordinates were set along each
route to collect ground truth data. The location error can be calculated as follows:

Errori = |Pei − Pgi| (20)

where Errori is the location error of the i-th ground-truth point, Pei is the estimated location
of estimated point, Pgi is the ground-truth point.

The result of structure landmark-based map matching is shown in Table 3. The
matching accuracy of four routes is higher than 90% and the average location error is
less than 1.6 m. Generally, map matching accuracy is higher than structure identification
accuracy. For Route #1, although two times of incorrect landmark recognition happened
at L16, this method can provide a precise map matching result. Similarly, for Route #2,
although landmark L10 and L15 are incorrectly recognized as RL and LL respectively, the
landmark matching accuracy reaches 98%. In some cases, the error of map matching comes
from the incorrect recognition of landmark type. For Route #3, an incorrect recognition
happens at L8, which causes the incorrect map matching of the following several landmarks.
The relatively low recognition accuracy of Route #4 is due to the incorrect recognition of
a FT landmark. However, although the landmark recognition accuracy for all routes is
about 84%, the map mapping accuracy reaches 96%. It indicates that the proposed map
mapping method can significantly reduce the negative influence of incorrect landmark
recognition result.

Table 3. Map matching result of four routes.

Route Route
Length (m)

Detected
Landmark

Recognition
Accuracy

Matching
Accuracy

Average
Error (m)

#1 86.8 70 97% 97% 1.07
#2 87.1 70 88% 98% 1.25
#3 102.1 50 82% 90% 1.53
#4 102.4 50 60% 100% 0.98

Compare with activity-based map matching method [39,40], the offline localization er-
ror of structure landmark based matching is smaller. Figure 9 shows the offline localization
results of the four routes using activity based and structure-based map matching methods
respectively. The average error of activity-based map matching (2.2 m) is obviously higher
than structure based map matching (1.2 m). The results indicate that by integrating both
visual and inertial features, structure landmark can serve as a more robustness spatial
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anchor point for map matching than activity landmark. The visual details of the four
estimated routes are shown in Figure 10.
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3.3. Performance of Radio Map Construction

To test the performance of the proposed signal mapping method, we used the sampling
points from the four routes to construct a radio map for the study area, then conducted
an indoor localization experiment using the constructed radio map. First, the study area
was partitioned into a 1 m × 1 m mesh grid. The sampling points from the routes were
extracted to a radio map by using the method described in Section 2.4. Figure 11 shows
the RSS distribution of two APs in the constructed radio map. The RSS of APs in the radio
map ranges from −55 dBm to −88 dBm.
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To evaluate the quality of the constructed radio map, two online localization experi-
ments were implemented by using the weighted K-nearest neighbor (KNN) approach [44]
and Deep neural network (DNN) approach [45], respectively. The number of used mapping
routes (for constructing radio map) was taken as a variable for the two experiments.

Figure 12 shows the localization performance of two methods under three different
conditions (T1, T2 and T3). T1 represents that the radio map was constructed using only
one mapping route. T2 and T3 represent the radio map was constructed using five routes
and ten routes, respectively. The reason for using the three conditions is to evaluate the
influence of mapping route number on the quality of constructed radio map. The average
error of T1 by using KNN and DNN are 3.7 m and 4.0 m, respectively. The error of KNN
is smaller than DNN. It means that in the case of less route data, the performance of
deterministic method is better than learning based method. It has been observed that with
the increase in used mapping routes (from T1 to T2), there is significant improvement in the
quality of constructed radio map. The average location error of the two methods is 1.7 m
and 1.6 m, respectively. With further increase in used routes (from T2 to T3), the average
location error of both KNN and DNN reached to 1.6 m respectively. Compared with T2,
the error of T3 decreases. These results indicate that the increase in mapping routes can
help to increase the quality of constructed radio map. However, when there are enough
mapping route data, the further increase of mapping route will not continuously improve
the quality of radio map. The constructed radio map can provide a reliable localization
results in indoor spaces.
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3.4. Sustainability Evaluation of the Proposed Method

To evaluate the sustainability of this method, three different radio map construc-
tion methods, including a site survey method [4], an activity landmark-based mapping
method [39] and the proposed method, were implemented in a new study area (in a hospi-
tal). As shown in Figure 13a, this area covers a 62 m × 60 m floor plan. It totally contains
20 structure landmarks. Multisource data from smartphone is collected along three tra-
jectories and each trajectory repeated 5 times. To implement the site survey method, the
study area is divided into 2 m × 2 m grids. A smartphone is used to collect Wi-Fi data at
the center of each grid for about 50 s. Figure 13b shows the localization results by using
the three methods. The average localization error of the site survey method, the activity
landmark-based method and the proposed method is 2.3 m, 4.2 m and 3.6 m. The location
accuracy of the proposed structure landmark-based method is higher than the activity
landmark-based method. Moreover, the time cost of the proposed method (about 15 min)
is obviously lower than the site survey method (about 2 h). It shows that although the
localization error of the proposed method is higher than the traditional site survey method,
it can achieve a relatively high accuracy and greatly reduce the time cost and human labor
required for fingerprint collection.
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4. Conclusions

This paper proposes a structure landmark map matching based indoor radio map
construction approach. 8 structure landmark type is formally defined. A GMM-NBC model
is designed to recognize the type of structure landmarks in indoor space. A structure
landmark-based map matching and radio map construction modules are also developed
for constructing indoor radio map. The performance of the proposed approach has been
evaluated by conducting several experiments. The result showed that this method could
accurately estimate the spatial location of signal mapping route without knowing its initial
location. The sampling points from mapping route can be extracted to construct a radio
map for indoor localization. By using a constructed radio map, two localization algorithms
(KNN and DNN) can achieve a localization accuracy of 1.6 m, which demonstrates that
the constructed radio map has a reliable quality for indoor localization. Furthermore, the
proposed approach can reduce the workload and time cost for fingerprints collecting and
radio map construction, which is practical for the deployment of indoor fingerprinting-
based localization systems and applications.
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