Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives
Abstract
:1. Introduction
2. Fuel Cells and Available Fuels for Sustainable Shipping
2.1. Types of Fuel Cells
2.2. Potential Marine Fuels
2.2.1. Hydrogen
2.2.2. Ammonia
2.2.3. Synthetic Natural Gas
2.2.4. Renewable Methanol
2.3. Onboard Pre-Processing of Marine Fuels
2.3.1. Hydrogen Pre-Processing for Low Temperature Fuel Cells
2.3.2. Ammonia Pre-Processing for SOFC
2.3.3. NG Pre-Processing for High Temperature Fuel Cells
2.3.4. Methanol Pre-Processing
3. Fuel Cell Modules
3.1. PEMFC Modules
3.2. MCFC Modules
3.2.1. Overview
3.2.2. Standalone MCFC System
3.2.3. Indirect Hybrid MCFC System
Combined MCFC-ST System
Combined MCFC-GT System
3.2.4. Direct Hybrid MCFC System
3.3. SOFC Modules
3.3.1. Overview
3.3.2. Standalone SOFC System
3.3.3. Indirect Hybrid SOFC System
Combined SOFC-ST System
Combined SOFC-GT System
3.3.4. Direct Hybrid SOFC System
4. Marine Fuel Cell Power Systems
4.1. Fuel Storage
4.2. Fuel Cell Module
4.3. Battery Banks
4.4. Power Electronics and Loads
5. Marine Applications of Fuel Cell Power Systems
5.1. Fuel Cells for Maritime Demonstrations
5.2. Marine PEMFC Power Systems
5.2.1. FCS Alsterwasser
5.2.2. Nemo H2
5.2.3. SF-BREEZE
5.2.4. A Tourist Boat
5.2.5. Others
5.3. Marine MCFC Power Systems
5.4. Marine SOFC Power Systems
6. Challenges and Perspectives
6.1. Power Capacity
6.2. Safety
6.3. Reliability
6.4. Durability
6.5. Operability
6.6. Economic Costs
7. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AFC | Alkaline Fuel Cell |
C | Carbon |
CCB | Catalytic Combustion Burner |
CCS | Carbon Capture and Storage |
CH3OH | Methanol |
CH4 | Methane |
CnHm | Hydrocarbons |
CO | Carbon Monoxide |
CO2 | Carbon Dioxide |
DMFC | Direct Methanol Fuel Cell |
GHG | Greenhouse Gases |
GT | Gas Turbine |
H2 | Hydrogen |
H2O | Water |
Hex | Heat Exchanger |
HT-PEMFC | High Temperature Proton Exchange Membrane Fuel Cell |
HVAC | Heating, Ventilation and Air Conditioning |
IMO | International Maritime Organization |
LH2 | Liquefied Hydrogen |
APU | Auxiliary Power Unit |
LNG | Liquefied Natural Gas |
MCFC | Molten Carbonate Fuel Cell |
N2 | Nitrogen |
NG | Natural Gas |
NH3 | Ammonia |
NOx | Nitrogen Oxides |
O2 | Oxygen |
ORC | Organic Rankine Cycle |
PAFC | Phosphoric Acid Fuel Cell |
PEMFC | Proton Exchange Membrane Fuel Cell |
PM | Particulate Matters |
PV | Photovoltaic |
S | Sulphur |
SNG | Synthetic Natural Gas |
SOFC | Solid Oxide Fuel Cell |
SOx | Sulphur Oxides |
ST | Steam Turbine |
V | Volts |
WHR | Waste Heat Recovery |
References
- IMO. Third IMO GHG Study 2014; Technical Report; International Maritime Organization: London, UK, 2015. [Google Scholar]
- IMO. Amendments to the Annex of the Protocol of 1997 to Amend the International Convention for the Prevention of Pollution from Ships, 1973, as Modified by the Protocol of 1978 Relating Thereto; Resolution MEPC.203(62); IMO: London, UK, 15 July 2011. [Google Scholar]
- IMO. 2012 Guidelines on the Method of Calculation of the Attained Energy Efficiency Design Index (EEDI) for New Ships; Resolution MEPC.212(63); IMO: London, UK, 2 March 2012. [Google Scholar]
- IMO. 2012 Guidelines for the Development of a Ship Energy Efficiency Management Plan (SEEMP); Resolution MEPC.213(63); IMO: London, UK, 2 March 2012. [Google Scholar]
- IMO. Initial IMO Strategy on Reduction of GHG Emissions from Ships; Resolution MEPC.304(72); IMO: London, UK, 13 April 2018. [Google Scholar]
- Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—A review. Transport. Res. Part D Transport. Environ. 2017, 52, 408–421. [Google Scholar] [CrossRef]
- Xing, H.; Spence, S.; Chen, H. A comprehensive review on countermeasures for CO2 emissions from ships. Renew. Sustain. Energy Rev. 2020, 134, 110222. [Google Scholar] [CrossRef]
- CE Delft; UMAS. Study on Methods and Considerations for the Determination of Greenhouse Gas Emission Reduction for International Shipping; Final Report Prepared for the European Commission; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- McConnell, V.P. Now, voyager? The increasing marine use of fuel cells. Fuel Cells Bull. 2010, 2010, 12–17. [Google Scholar] [CrossRef]
- Sattler, G. Fuel cells going on-board. J. Power Sources 2000, 86, 61–67. [Google Scholar] [CrossRef]
- Tronstad, T.; Åstrand, H.H.; Haugom, G.P.; Langfeldt, L. Study on the Use of Fuel cells in Shipping; Report to European Maritime Safety Agency by DNV GL; DNV GL: Oslo, Norway, 2017. [Google Scholar]
- Leo, T.J.; Durango, J.A.; Navarro, E. Exergy analysis of PEM fuel cells for marine applications. Energy 2010, 35, 1164–1171. [Google Scholar] [CrossRef]
- Ghenai, C.; Bettayeb, M.; Brdjanin, B.; Hamid, A.K. Hybrid solar PV/PEM fuel cell/diesel generator power system for cruise ship: A case study in Stockholm, Sweden. Case Stud. Therm. Eng. 2019, 14, 100497. [Google Scholar] [CrossRef]
- Alkaner, S.; Zhou, P. A comparative study on life cycle analysis of molten carbon fuel cells and diesel engines for marine application. J. Power Sources 2006, 158, 188–199. [Google Scholar] [CrossRef] [Green Version]
- Roh, G.; Kim, H.; Jeon, H.; Yoon, K. Fuel Consumption and CO2 emission reductions of ships powered by a fuel-cell-based hybrid power source. J. Mar. Sci. Eng. 2019, 7, 230. [Google Scholar] [CrossRef] [Green Version]
- Evrin, R.A.; Dincer, I. Thermodynamic analysis and assessment of an integrated hydrogen fuel cell system for ships. Int. J. Hydrogen Energy 2019, 44, 6919–6928. [Google Scholar] [CrossRef]
- Baldi, F.; Moret, S.; Tammi, K.; Maréchal, F. The role of solid oxide fuel cells in future ship energy systems. Energy 2020, 194, 116811. [Google Scholar] [CrossRef]
- Bassam, A.M.; Phillips, A.B.; Turnock, S.R.; Wilson, P.A. Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship. Int. J. Hydrogen Energy 2017, 42, 623–635. [Google Scholar] [CrossRef] [Green Version]
- Sasank, B.V.; Rajalakshmi, N.; Dhathathreyan, K.S. Performance analysis of polymer electrolyte membrane (PEM) fuel cell stack operated under marine environmental conditions. J. Mar. Sci. Technol. 2016, 21, 471–478. [Google Scholar] [CrossRef]
- Klebanoff, L.E.; Pratt, J.W.; LaFleur, C.B. Comparison of the safety-related physical and combustion properties of liquid hydrogen and liquid natural gas in the context of the SF-BREEZE high-speed fuel-cell ferry. Int. J. Hydrogen Energy 2017, 42, 757–774. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Yuan, Y.; Yan, X.; Malekian, R.; Li, Z. A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship. Renew. Sustain. Energy Rev. 2018, 97, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Aarskog, F.G.; Hansen, O.R.; Strømgren, T.; Ulleberg, Ø. Concept risk assessment of a hydrogen driven high speed passenger ferry. Int. J. Hydrogen Energy 2020, 45, 1359–1372. [Google Scholar] [CrossRef]
- Ahn, J.; Noh, Y.; Joung, T.; Lim, Y.; Kim, J.; Seo, Y.; Chang, D. Safety integrity level (SIL) determination for a maritime fuel cell system as electric propulsion in accordance with IEC 61511. Int. J. Hydrogen Energy 2019, 44, 3185–3194. [Google Scholar] [CrossRef]
- Ahn, J.; Noh, Y.; Park, S.H.; Choi, B.I.; Chang, D. Fuzzy-based failure mode and effect analysis (FMEA) of a hybrid molten carbonate fuel cell (MCFC) and gas turbine system for marine propulsion. J. Power Sources 2017, 364, 226–233. [Google Scholar] [CrossRef]
- Jeon, H.; Park, K.; Kim, J. Comparison and verification of reliability assessment techniques for fuel cell-based hybrid power system for ships. J. Mar. Sci. Eng. 2020, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.H.; Yu, S.; Han, I.-S.; Kho, B.-K.; Kang, D.-G.; Lee, H.Y.; Seo, M.-S.; Kong, J.-W.; Kim, G.; Ahn, J.-W.; et al. Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat. Int. J. Hydrogen Energy 2016, 41, 3591–3599. [Google Scholar] [CrossRef]
- Jeong, J.; Seo, S.; You, H.; Chang, D. Comparative analysis of a hybrid propulsion using LNG-LH2 complying with regulations on emissions. Int. J. Hydrogen Energy 2018, 43, 3809–3821. [Google Scholar] [CrossRef]
- Bensaid, S.; Specchia, S.; Federici, F.; Saracco, G.; Specchia, V. MCFC-based marine APU: Comparison between conventional ATR and cracking coupled with SR investigated inside the stack pressurized vessel. Int. J. Hydrogen Energy 2009, 34, 2026–2042. [Google Scholar] [CrossRef]
- Ahn, J.; Park, S.H.; Lee, S.; Noh, Y.; Chang, D. Molten carbonate fuel cell (MCFC)-based hybrid propulsion systems for a liquefied hydrogen tanker. Int. J. Hydrogen Energy 2018, 43, 7525–7537. [Google Scholar] [CrossRef]
- Tse, L.K.C.; Wilkins, S.; McGlashan, N.; Urban, B.; Martinez-Botas, R. Solid oxide fuel cell/gas turbine trigeneration system for marine applications. J. Power Sources 2011, 196, 3149–3162. [Google Scholar] [CrossRef]
- Díaz-de-Baldasano, M.C.; Mateos, F.J.; Núñez-Rivas, L.R.; Leo, T.J. Conceptual design of offshore platform supply vessel based on hybrid diesel generator-fuel cell power plant. Appl. Energy 2014, 116, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Park, S.H.; Noh, Y.; Choi, B.I.; Ryu, J.; Chang, D.; Brendstrup, K.L.M. Performance and availability of a marine generator-solid oxide fuel cell-gas turbine hybrid system in a very large ethane carrier. J. Power Sources 2018, 399, 199–206. [Google Scholar] [CrossRef]
- De-Troya, J.J.; Alvarez, C.; Fernandez-Garrido, C.; Carral, L. Analysing the possibilities of using fuel cells in ships. Int. J. Hydrogen Energy 2016, 41, 2853–2866. [Google Scholar] [CrossRef]
- Van Biert, L.; Godjevac, M.; Visser, K.; Aravind, P.V. A review of fuel cell systems for maritime applications. J. Power Sources 2016, 327, 345–364. [Google Scholar] [CrossRef] [Green Version]
- Dai, W.; Wang, H.; Yuan, X.Z.; Martin, J.J.; Yang, D.; Qiao, J.; Ma, J. A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2009, 34, 9461–9478. [Google Scholar] [CrossRef]
- Rosli, R.E.; Sulong, A.B.; Daud, W.R.W.; Zulkifley, M.A.; Husaini, T.; Rosli, M.I.; Majlan, E.H.; Haque, M.A. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrogen Energy 2017, 42, 9293–9314. [Google Scholar] [CrossRef]
- Ahmed, M.; Dincer, I. A review on methanol crossover in direct methanol fuel cells: Challenges and achievements. Int. J. Energy Res. 2011, 35, 1213–1228. [Google Scholar] [CrossRef]
- McPhail, S.J.; Aarva, A.; Devianto, H.; Bove, R.; Moreno, A. SOFC and MCFC: Commonalities and opportunities for integrated research. Int. J. Hydrogen Energy 2011, 36, 10337–10345. [Google Scholar] [CrossRef]
- Kulkarni, A.; Giddey, S. Materials issues and recent developments in molten carbonate fuel cells. J. Solid State Electrochem. 2012, 16, 3123–3146. [Google Scholar] [CrossRef]
- Afif, A.; Radenahmad, N.; Cheok, Q.; Shams, S.; Kim, J.H.; Azad, A.K. Ammonia-fed fuel cells: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 60, 822–835. [Google Scholar] [CrossRef]
- Ni, M.; Leung, M.K.H.; Leung, D.Y.C. Ammonia-fed solid oxide fuel cells for power generation—A review. Int. J. Energy Res. 2009, 33, 943–959. [Google Scholar] [CrossRef]
- Schinas, O.; Stefanakos, C.N. Selecting technologies towards compliance with MARPOL Annex VI: The perspective of operators. Transport. Res. Part D Transport. Environ. 2014, 28, 28–40. [Google Scholar] [CrossRef]
- Inal, O.B.; Deniz, C. Assessment of fuel cell types for ships: Based on multi-criteria decision analysis. J. Clean. Prod. 2020, 265, 121734. [Google Scholar] [CrossRef]
- Office of Energy Efficiency & Renewable Energy. Fuel Cells. Available online: https://www.energy.gov/eere/fuelcells/fuel-cells (accessed on 24 June 2020).
- Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 2012, 16, 3024–3033. [Google Scholar] [CrossRef]
- Chaubey, R.; Sahu, S.; James, O.O.; Maity, S. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew. Sustain. Energy Rev. 2013, 23, 443–462. [Google Scholar] [CrossRef]
- Office of Energy Efficiency & Renewable Energy. Hydrogen Production: Electrolysis. Available online: https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis (accessed on 24 June 2020).
- Niermann, M.; Beckendorff, A.; Kaltschmitt, M.; Bonhoff, K. Liquid Organic Hydrogen Carrier (LOHC)-Assessment based on chemical and economic properties. Int. J. Hydrogen Energy 2019, 44, 6631–6654. [Google Scholar] [CrossRef]
- Klerke, A.; Christensen, C.H.; Nørskov, J.K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310. [Google Scholar] [CrossRef]
- Lan, R.; Irvine, J.T.S.; Tao, S. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrogen Energy 2012, 37, 1482–1494. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Lan, R.; Christophe, T.G.P.; Tao, S. Solid-state electrochemical synthesis of ammonia: A review. J. Solid State Electrochem. 2011, 15, 1845–1860. [Google Scholar]
- Cinti, G.; Discepoli, G.; Sisani, E.; Desideri, U. SOFC operating with ammonia: Stack test and system analysis. Int. J. Hydrogen Energy 2016, 41, 13583–13590. [Google Scholar] [CrossRef]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhao, J.; Xu, F.; Li, Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. 2014, 42, 35–53. [Google Scholar] [CrossRef]
- Götz, M.; Lefebvre, J.; Mörs, F.; Koch, A.M.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [Google Scholar] [CrossRef] [Green Version]
- Bailera, M.; Lisbona, P.; Romeo, L.M.; Espatolero, S. Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2. Renew. Sustain. Energy Rev. 2017, 69, 292–312. [Google Scholar] [CrossRef]
- Svanberg, M.; Ellis, J.; Lundgren, J.; Landälv, I. Renewable methanol as a fuel for the shipping industry. Renew. Sustain. Energy Rev. 2018, 94, 1217–1228. [Google Scholar] [CrossRef]
- Ganesh, I. Conversion of carbon dioxide into methanol—A potential liquid fuel: Fundamental challenges and opportunities (a review). Renew. Sustain. Energy Rev. 2014, 31, 221–257. [Google Scholar] [CrossRef]
- Fuel Cell Technologies Office of U.S. Department of Energy. Hydrogen Fuel Quality Specifications for Polymer Electrolyte Fuel Cells in Road Vehicles; Report to the Safety, Codes and Standards Program; U.S. Department of Energy: Washington, DC, USA, 2016.
- Peters, R.; Dahl, R.; Klüttgen, U.; Palm, C.; Stolten, D. Internal reforming of methane in solid oxide fuel cell systems. J. Power Sources 2002, 106, 238–244. [Google Scholar] [CrossRef]
- Li, Q.; Yang, H.; Han, Y.; Li, M.; Chen, W. A state machine strategy based on droop control for an energy management system of PEMFC-battery-supercapacitor hybrid tramway. Int. J. Hydrogen Energy 2016, 41, 16148–16159. [Google Scholar] [CrossRef]
- Frangopoulos, C.A.; Nakos, L.G. Development of a model for thermoeconomic design and operation optimization of a PEM fuel cell system. Energy 2006, 31, 1501–1519. [Google Scholar] [CrossRef]
- Arsalis, A. Modeling and simulation of a 100 kWe HT-PEMFC subsystem integrated with an absorption chiller subsystem. Int. J. Hydrogen Energy 2012, 37, 13484–13490. [Google Scholar] [CrossRef]
- Bischoff, M. Molten carbonate fuel cells: A high temperature fuel cell on the edge to commercialization. J. Power Sources 2006, 160, 842–845. [Google Scholar] [CrossRef]
- Wee, J.-H. Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources. Appl. Energy 2011, 88, 4252–4263. [Google Scholar] [CrossRef]
- Ovrum, E.; Dimopoulos, G. A validated dynamic model of the first marine molten carbonate fuel cell. Appl. Therm. Eng. 2012, 35, 15–28. [Google Scholar] [CrossRef]
- Dimopoulos, G.G.; Stefanatos, I.C.; Kakalis, N.M.P. Exergy analysis and optimisation of a marine molten carbonate fuel cell system in simple and combined cycle configuration. Energy Convers. Manag. 2016, 107, 10–21. [Google Scholar] [CrossRef]
- Lunghi, P.; Bove, R.; Desideri, U. Analysis and optimization of hybrid MCFC gas turbines plants. J. Power Sources 2003, 118, 108–117. [Google Scholar] [CrossRef]
- Oh, K.S.; Kim, T.S. Performance analysis on various system layouts for the combination of an ambient pressure molten carbonate fuel cell and a gas turbine. J. Power Sources 2006, 158, 455–463. [Google Scholar] [CrossRef]
- Grillo, O.; Magistri, L.; Massardo, A.F. Hybrid systems for distributed power generation based on pressurisation and heat recovering of an existing 100 kW molten carbonate fuel cell. J. Power Sources 2003, 115, 252–267. [Google Scholar] [CrossRef]
- Liu, A.; Weng, Y. Performance analysis of a pressurized molten carbonate fuel cell/micro-gas turbine hybrid system. J. Power Sources 2010, 195, 204–213. [Google Scholar] [CrossRef]
- Yoshiba, F. Kawagoe 300 kW class MCFC/TCG compact system: Thermal efficiency and endurance test results. J. Fuel Cell Sci. Technol. 2008, 5, 021010. [Google Scholar] [CrossRef]
- Sciacovelli, A.; Verda, V. Sensitivity analysis applied to the multi-objective optimization of a MCFC hybrid plant. Energy Convers. Manag. 2012, 60, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, A.; Chandra, H.; Arora, A. Application of solid oxide fuel cell technology for power generation—A review. Renew. Sustain. Energy Rev. 2013, 20, 430–442. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; d’Accadia, M.D.; Palombo, A.; Vicidomini, M. Hybrid solid oxide fuel cells-gas turbine systems for combined heat and power: A review. Appl. Energy 2015, 156, 32–85. [Google Scholar] [CrossRef]
- Zhang, X.; Chan, S.H.; Li, G.; Ho, H.K.; Li, J.; Feng, Z. A review of integration strategies for solid oxide fuel cells. J. Power Sources 2010, 195, 685–702. [Google Scholar] [CrossRef]
- Arsalis, A. Thermoeconomic modeling and parametric study of hybrid SOFC-gas turbine-steam turbine power plants ranging from 1.5 to 10 MWe. J. Power Sources 2008, 181, 313–326. [Google Scholar] [CrossRef]
- Lee, Y.D.; Ahn, K.Y.; Morosuk, T.; Tsatsaronis, G. Exergetic and exergoeconomic evaluation of a solid-oxide fuel-cell-based combined heat and power generation system. Energy Convers. Manag. 2014, 85, 154–164. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, Y.D.; Ahn, K.Y. Performance analysis of an SOFC/HCCI engine hybrid system: System simulation and thermo-economic comparison. Int. J. Hydrogen Energy 2014, 39, 1799–1810. [Google Scholar] [CrossRef]
- Masoud, R. Thermodynamic analysis of an integrated solid oxide fuel cell cycle with a Rankine cycle. Energy Convers. Manag. 2010, 51, 2724–2732. [Google Scholar]
- Pierobon, L.; Rokni, M.; Larsen, U.; Haglind, F. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle. Renew. Energy 2013, 60, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, H.; Dincer, I. Thermodynamic analysis of an integrated SOFC, solar ORC and absorption chiller for tri-generation applications. Fuel Cells 2013, 13, 781–793. [Google Scholar] [CrossRef]
- Tuo, H. Energy and exergy-based working fluid selection for organic Rankine cycle recovering waste heat from high temperature solid oxide fuel cell and gas turbine hybrid systems. Int. J. Energy Res. 2013, 37, 1831–1841. [Google Scholar] [CrossRef]
- Al-Sulaiman, F.A.; Dincer, I.; Hamdullahpur, F. Thermoeconomic optimization of three trigeneration systems using organic Rankine cycles: Part I—Formulations. Energy Convers. Manag. 2013, 69, 199–208. [Google Scholar] [CrossRef]
- Roberts, R.; Brouwer, J.; Jabbari, F.; Junker, T.; Ghezel-Ayagh, H. Control design of an atmospheric solid oxide fuel cell/gas turbine hybrid system: Variable versus fixed speed gas turbine operation. J. Power Sources 2006, 161, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Park, S.K.; Kim, T.S. Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell gas turbine systems. J. Power Sources 2006, 163, 490–499. [Google Scholar] [CrossRef]
- Obara, S. Dynamic-characteristics analysis of an independent microgrid consisting of a SOFC triple combined cycle power generation system and large-scale photovoltaics. Appl. Energy 2015, 141, 19–31. [Google Scholar] [CrossRef]
- Meratizaman, M.; Monadizadeh, S.; Amidpour, M. Techno-economic assessment of high efficient energy production (SOFC-GT) for residential application from natural gas. J. Nat. Gas Sci. Eng. 2014, 21, 118–133. [Google Scholar] [CrossRef]
- Haseli, Y.; Dincer, I.; Naterer, G.F. Thermodynamic analysis of a combined gas turbine power system with a solid oxide fuel cell through exergy. Thermochim. Acta 2008, 480, 1–9. [Google Scholar] [CrossRef]
- Durbin, D.J.; Malardier-Jugroot, C. Review of hydrogen storage techniques for on board vehicle applications. Int. J. Hydrogen Energy 2013, 38, 14595–14617. [Google Scholar] [CrossRef]
- Borgogna, G.; Speranza, E.; Lamberti, T.; Traverso, A.N.; Magistri, L.; Gadducci, E.; Massardo, A.F.; Olivieri, P. Design and development of a laboratory for the study of PEMFC system for marine applications. E3S Web Conf. 2019, 113, 02020. [Google Scholar] [CrossRef] [Green Version]
- Markowski, J.; Pielecha, I. The potential of fuel cells as a drive source of maritime transport. IOP Conf. Ser. Earth Environ. Sci. 2019, 214, 012019. [Google Scholar] [CrossRef]
- MTU Friedrichshafen GmbH. First yacht with certified fuel cell propulsion. Fuel Cells Bull. 2003, 2003, 4–5. [Google Scholar] [CrossRef]
- Green Car Congress. Hydrogen Hybrid Canal Boat. 24 September 2007. Available online: https://www.greencarcongress.com/2007/09/hydrogen-hybrid.html (accessed on 24 June 2020).
- Hydrogenics Corporation. Turkish fuel cell boat powered, refuelled by Hydrogenics tech. Fuel Cells Bull. 2012, 2012, 2–3. [Google Scholar]
- Yazici, M.S.; Hatipoglu, M. Hydrogen and fuel cell demonstration in Turkey. Energy Procedia 2012, 29, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Zemships. One Hundred Passengers and Zero Emissions: The First Ever Passenger Vessel to Sail Propelled by Fuel Cells. Available online: https://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.showFile&rep=file&fil=Zemships_Brochure_EN.pdf (accessed on 24 June 2020).
- Chakraborty, S.; Dzielendziak, A.S.; Köroğlu, T.; Yang, K. Evaluation of Smart Eco-Friendly Public Transport Options in Coastal Cities: Towards a Green Future for the City of Southampton; LRF Collegium 2013 Series; University of Southampton: Southampton, UK, 2013; Volume 2. [Google Scholar]
- Pratt, J.W.; Klebanoff, L.E. Feasibility of the SF-BREEZE: A Zero-Emission, Hydrogen Fuel Cell, High-Speed Passenger Ferry; SANDIA Report; SAND2016-9719; Sandia National Laboratories: Livermore, CA, USA, 2016.
- German e4ships project reports on fuel cell maritime demos. Fuel Cells Bull. 2016, 2016, 5, 11. [CrossRef]
- E4ships. Fuel Cells in Marine Applications (2009–2016). December 2016. Available online: https://www.e4ships.de/english/news/ (accessed on 24 June 2020).
- Ahn, J.; You, H.; Ryu, J.; Chang, D. Strategy for selecting an optimal propulsion system of a liquefied hydrogen tanker. Int. J. Hydrogen Energy 2017, 42, 5366–5380. [Google Scholar] [CrossRef]
- METHAPU prototypes methanol SOFC for ships. Fuel Cells Bull. 2008, 2008, 4–5.
- Green Car Congress. Project to Start Trials on Ship-Board Methanol SOFC APU. 18 March 2008. Available online: https://www.greencarcongress.com/2008/03/project-to-star.html (accessed on 24 June 2020).
- Strazza, C.; Borghi, A.D.; Costamagna, P.; Traverso, A.; Santin, M. Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships. Appl. Energy 2010, 87, 1670–1678. [Google Scholar] [CrossRef]
- Ellamla, H.R.; Staffell, I.; Bujlo, P.; Pollet, B.G.; Pasupathi, S. Current status of fuel cell based combined heat and power systems for residential sector. J. Power Sources 2015, 293, 312–328. [Google Scholar] [CrossRef]
- De Bruijn, F.A.; Dam, V.A.T.; Janssen, G.J.M. Review: Durability and degradation issues of PEM fuel cell components. Fuel Cells 2008, 1, 3–22. [Google Scholar] [CrossRef]
- Hawkes, A.D.; Brett, D.J.L.; Brandon, N.P. Fuel cell micro-CHP techno-economics: Part 2-Model application to consider the economic and environmental impact of stack degradation. Int. J. Hydrogen Energy 2009, 34, 9558–9569. [Google Scholar] [CrossRef]
- Shabani, B.; Hafttananian, M.; Khamani, S.; Ramiar, A.; Ranjbar, A.A. Poisoning of proton exchange membrane fuel cells by contaminants and impurities: Review of mechanisms, effects, and mitigation strategies. J. Power Sources 2019, 427, 21–48. [Google Scholar] [CrossRef]
- Khatib, F.N.; Wilberforce, T.; Ijaodola, O.; Ogungbemi, E.; El-Hassan, Z.; Durrant, A.; Thompson, J.; Olabi, A.G. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review. Renew. Sustain. Energy Rev. 2019, 111, 1–14. [Google Scholar] [CrossRef]
- Yokokawa, H.; Tu, H.; Iwanschitz, B.; Mai, A. Fundamental mechanisms limiting solid oxide fuel cell durability. J. Power Sources 2008, 182, 400–412. [Google Scholar] [CrossRef]
- Maru, H.; Singhal, S.C.; Stone, C.; Wheeler, D. 1–10 kW Stationary Combined Heat and Power Systems Status and Technical Potential; Independent Review Report for U.S. Department of Energy Hydrogen and Fuel Cells Program; The National Renewable Energy Laboratory: Washington, DC, USA, 2010.
- Schinas, O. Financing ships of innovative technology. In Finance and Risk Management for International Logistics and the Supply Chain; Gong, S., Cullinane, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 8; pp. 167–192. [Google Scholar] [CrossRef]
- Scataglini, R.; Mayyas, A.; Wei, M.; Chan, S.H.; Lipman, T.; Gosselin, D.; D’Alessio, A.; Breunig, H.; Colella, W.G.; James, B.D. A Total Cost of Ownership Model for Solid Oxide Fuel Cells in Combined Heat and Power and Power-Only Applications; A Report by Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2015.
- Thijssen, J. The impact of scale-up and production volume on SOFC stack cost. Presented at the 7th Annual SECA Workshop and Peer Review, Philadelphia, PA, USA, 12–14 September 2006. [Google Scholar]
- Staffell, I. Fuel Cells for Domestic Heat and Power: Are They Worth It? Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2009. [Google Scholar]
Types | Typical Materials of Electrodes | Electrolyte | Typical Fuels | Electrochemical Reactions | ||
---|---|---|---|---|---|---|
Anode | Cathode | Anode | Cathode | |||
AFC | nickel | silver | potassium hydroxide | H2 | 2H2 + 4OH− → 4H2O + 4e− | O2+ 2H2O + 4e− → 4OH− |
PEMFC | platinum | platinum | water-based polymer membrane | H2 | 2H2 → 4H+ + 4e− | O2 + 4H+ + 4e− → 2H2O |
HT-PEMFC | platinum | platinum | mineral acid-based polymer membrane | H2 | 2H2 → 4H+ + 4e− | O2 + 4H+ + 4e− → 2H2O |
PAFC | platinum-carbon | platinum-carbon | phosphoric acid | H2, LNG and methanol | 2H2 → 4H+ + 4e− | O2 + 4H+ + 4e− → 2H2O |
DMFC | platinum-ruthenium | platinum-ruthenium | water-based polymer membrane | methanol | 2CH3OH + 2H2O → 12H+ + 2CO2 + 12e− | 3O2 + 12H+ + 12e− → 6H2O |
MCFC | nickel alloy | nickel oxide-lithium | molten carbonate salt | H2, methanol and hydrocarbons | 2H2 + 2CO32− → 2H2O + 2CO2 + 4e− | O2 + 2CO2 + 4e− → 2CO32− |
SOFC | nickel alloy | lanthanum strontium manganite | porous ceramic material | H2, methanol and hydrocarbons | 2H2 + 2O2− → 2H2O + 4e− | O2 + 4e− → 2O2− |
Types | Operating Temperature, °C | Power Capacity | Efficiency | Drawbacks | Waste Heat Recovery | Relative Cost | Lifetime | Size | |
---|---|---|---|---|---|---|---|---|---|
Electric | Overall | ||||||||
AFC | 60–200 | ≤500 kW | 50–60% | - | CO2 poisoning | - | Low | Medium | Small |
PEMFC | 65–85 | ≤120 kW | 50–60% | - | CO + S poisoning | - | Low | Medium | Small |
HT-PEMFC | 160–220 | - | 50–60% | 80% | CO + S poisoning | HEx/ST | Medium | Medium | Small |
PAFC | 140–200 | 100–400 kW | 40–55% | 80% | CO + S poisoning | HEx/ST | Medium | Good | Large |
DMFC | 75–120 | ≤5 kW | 20–30% | - | methanol crossover | - | Medium | Medium | Small |
MCFC | 650–700 | 120 kW–10 MW | 50–55% | 85% | S poisoning, cycling effects, long start-up time | HEx/GT/ST | High | Good | Large |
SOFC | 500–1000 | ≤10 MW | 50–60% | 85% | S poisoning, cycling effects, mechanically fragile, long start-up time | HEx/GT/ST | High | Medium | Medium |
Types | Vessel/Project | Capacity | Fuel | Types | Vessel/Project | Capacity | Fuel |
---|---|---|---|---|---|---|---|
AFC | Hydra | 6.9 kW | Metal hydride | HT-PEMFC | Pa-X-ell MS Mariella | 2 × 30 kW | Methanol |
Hydrocell Oy | 30 kW | Metal hydride | RiverCell | 250 kW | Methanol | ||
PEMFC | Elding | 10 kW | H2 | MF Vågen | 12 kW | H2 | |
ZemShip Alsterwasser | 96 kW | H2 | RiverCell ELEKTRA | 3 × 100 kW | H2 | ||
Nemo H2 | 60 kW | H2 | MCFC | MC WAP | 150/500 kW | Diesel | |
Hornblower Hybrid | 32 kW | H2 | FellowSHIP Viking Lady | 320 kW | LNG | ||
Hydrogenesis | 12 kW | H2 | US SSFC | 625 kW | Diesel | ||
SF-BREEZE | 120 kW | H2 | SOFC | METHAPU Undine | 20 kW | Methanol | |
Cobalt 233 Zet | 50 kW | H2 | SchIBZMS Forester | 100 kW | Diesel | ||
US SSFC | 500 kW | Diesel | FELICITAS subproject 2 | 250 kW | LNG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, H.; Stuart, C.; Spence, S.; Chen, H. Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives. Sustainability 2021, 13, 1213. https://doi.org/10.3390/su13031213
Xing H, Stuart C, Spence S, Chen H. Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives. Sustainability. 2021; 13(3):1213. https://doi.org/10.3390/su13031213
Chicago/Turabian StyleXing, Hui, Charles Stuart, Stephen Spence, and Hua Chen. 2021. "Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives" Sustainability 13, no. 3: 1213. https://doi.org/10.3390/su13031213
APA StyleXing, H., Stuart, C., Spence, S., & Chen, H. (2021). Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives. Sustainability, 13(3), 1213. https://doi.org/10.3390/su13031213