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Abstract: Water is essential for the survival of all living beings and plays a significant role in the
growth of any country′s economy. At present, water depletion and pollution are a serious challenge
due to anthropogenic, geogenic and climate change activities worldwide, including in Chile. The
Antofagasta region is located in northern Chile and is the heart of its mining industry, playing a
significant role in the country′s economy. The Antofagasta region′s main challenge is water shortage
and contamination. Due to it, the region′s local population is facing major difficulties in obtaining
the necessary water for domestic, industrial, irrigation, and other uses. Therefore, a water resources
management plan is essential for the region to maintain a sustainable environment. Considering the
above points, significant parameters, such as slope, aspect, elevation, hillshade, drainage, drainage
density and river basin—maps of the Antofagasta region prepared using the digital elevation model
(DEM) data in geographic information system (GIS) environment. Besides, a pollution risk level
assessment of the study area′s cities/villages done using GIS application. The important created
maps and the identification of pollution risk of cities/villages of the present study could provide
significant information to policymakers and help them make a suitable water management plan for
the area.

Keywords: hydrology; thematic maps; DEM; mines; pollution risk; GIS

1. Introduction

Chile is an important country in South America for a total covered area approximately
equal to 2,919,299 square miles (7,560,950 square km). Located in the southwest of South
America, Chile is a narrow strip of land between the Andes to the east and the Pacific Ocean,
to the west. Chile has a boundary with Peru in the north, Bolivia in the northeast, Argentina
in east, and the Pacific Ocean in the west. Chile is divided into 16 regions and has a diverse
climate, such as northern region belongs to world′s driest desert with a semi-arid climate,
the center region of the country belongs to a Mediterranean climate, Easter Island has
humid subtropical climate and east and south regions including alpine tundra and glaciers
are belong to oceanic climate [1]. Chile has four significant seasons, summer from January
to March, autumn during the April to June, winter during the July to September, and
spring during the October to December. Mining, products manufacturing, and agriculture
sectors are the main contributor to the Chilean economy. In the Chilean economy, the
mining sector is a major contributor, with around a 10% of de GDP [2], and most of the
mining areas are in the northern region of the country. In another aspect, the mining and
related activities threatens the quality of environmental matrix, including water scarcity
in the northern region of Chile [3]. Use of huge volumes of water during the mining and
its related processes cause threatens to the supply for water resources for other important
uses in life [4]. Consumption of water in the mining industry is estimated to rise in all
territory due to an increase in mining developments and a decline in ore concentration,
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causing greater processing needs [5]. In 2014, estimated water consumption was 14.8 m3/s
in the copper mining industry, while forecasts showing that it will be increased to around
24.6 m3/s by 2025 [5]. In addition, the natural and anthropogenic (rapid urbanization,
mining, extensive agriculture, domestic disposal etc.) factors are responsible for water
scarcity [3,6]. In Chile, the sparsely populated southern region has an abundance of water
as compared to the densely populated central and northern regions [7].

A combined approach of remote sensing (RS) data and geographic information system
(GIS) can play an essential role in hazard monitoring, natural resources exploration, heritage
management, sustainable management of resources etc. [8–12]. Furthermore, integrated
RS and GIS application play a significant role in managing water resources, such as
groundwater recharge zones identification, water quality monitoring, flood-prone area
mapping, and watershed management, among others [9–18]. Therefore, in the recent
era, the RS and GIS approach is essentially required to because it can provide essential
information to policymakers for taking quick decisions for water resources management of
any area.

In the Antofagasta region, water shortage and contamination are a significant problem.
Due to them, the region′s local habitat faces serious challenges in obtaining water for
drinking, industrial, irrigation, and other uses [3,19,20]. A desalination practice has been
recognized as a secure source of water to fulfil the water necessity of different uses (DGA
in Spanish, Direccion General de Aguas). However, water shortage and contamination are
still key concerns, and to achieve this goal, many primary and secondary data information
is required. Therefore, the present study′s objective encompasses (i) to provide important
information on essential hydrogeological parameters derived from a DEM using GIS and
(ii) identification of pollution level risk of cities/villages of the Antofagasta region, Chile.
The present study could play a significant role in sustainable water resources protection
and management in the area.

2. Material and Methods
2.1. Study Area

In Chile, the Antofagasta region is one of the most important administrative division
in the sixteen administrative regions and second-largest region of the country with having
more than 126,000 km2 geographical area (Figure 1). The region has three provinces,
Antofagasta, El Loa and Tocopilla. It has a border with the Tarapacá region in the north
and with the Atacama region in the south and borders Bolivia and Argentina to the
east. The region has a population of 402,669 as per the 2015 census. Antofagasta has an
average annual temperature of 16.8 ◦C and July is the coldest month, with an average
low temperature of 11.8 ◦C, and an average high temperature of 16.5 ◦C [1]. In Chile, the
Antofagasta region is called the mining industry′s heart, generating 53% of the mining
output, led by copper and followed by potassium nitrate, gold, iodine, and lithium in
the area.

2.2. Significant Maps Creations

The digital elevation model (DEM) was developed by Shuttle Radar Topography
Mission (SRTM), an international research effort, SRTM model was downloaded from the
United States Geological Survey (USGC) to create the significant hydrological maps in a
geographic information system (GIS) platform. Use of the DEM data in a GIS environment
is faster to create many significant features. Therefore, in the present research, DEM data
used in a GIS environment to create some important features, such as aspect, elevation,
hillshade, slope, basin and stream network and drainage density of the Antofagasta region,
Chile (Figure 2). Moreover, Chile′s geological map has been collected from the National
Geology and Mining Service, Santiago, Chile, and the Antofagasta region′s geological map
was acquired using GIS.
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2.2.1. Elevation

The elevation defined as height elevated above a reference point, which usually means
sea level. The elevation is an important parameter that provides an essential role in
managing water resources [21–24]. For example, in groundwater recharge, the regions with
lower elevation are considered a good recharge zone and the areas with higher elevation
considered a less potential recharge zone [25]. In the study area, elevation classified in
five classes, such as <500 masl (metres above sea level), 701–1500 masl, 1501–3000 masl,
3001–4500 masl and >4500 masl based on the values (Figure 3). Around two-third area
(75.5%) of the Antofagasta region has a high to a very high elevation, while 2.4% coast
area has elevation less than 500 masl and 22.1% of the area has an elevation between
501–1500 masl, respectively (Table 1, Figure 3).
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Table 1. Area and percentage distribution of elevation, slope, aspect, basin and drainage density of
the Antofagasta region, Chile.

Parameter Area (km2) Percentage (%)

Elevation (masl)
<500 2973 2.4

501–1500 27,948 22.1

1501–3000 50,888 40.3

3001–4500 36,346 28.8

>4500 8099 6.4

Slope (degree)
<5 63,007 50.0

5.1–10 32,294 25.6

10.1–15 14,028 11.1

15.1–20 7566 6.0

>20 9358 7.4

Aspect (degree)

Flat 15,085 12

North 7383 5.8

Northeast 11,652 9.2

East 10,233 8.1

Southeast 10,657 8.4

South 13,350 10.6

Southwest 16,970 13.4

West 17,831 14.1

Northwest 16,278 13

North 6814 5.4

River Basin
Loa River 27,148 21.5

Frontier Michincha Salt Field-Loa River 2676 2.1

Coastal Loa River-Caracoles Ravine 8367 6.6

Atacama Salt Field 15,572 12.4

Caracoles Ravine 18,293 14.5

Frontier Atacama and Socompa Salt Fields 4052 3.2

Endorreic between Frontier y Atacama Salt Field 5311 4.2

Endorreic Atacama Salt Field-Pacifico Stream 14,439 11.5

La Negra Ravine 11,342 9.0

Coastal between La Negra and Pan de Azucar Ravines 16,853 13.4

Coastal Pan de Azucar Ravine and Salado River 1949 1.5

Drainage Density (Km/Km2)
0–0.14 40,773 32.3

0.15–0.26 40,115 31.8

0.27–0.41 27,637 21.9

0.42–0.61 12,849 10.2

0.62–1.1 4879 3.9

2.2.2. Slope

The slope is an important parameter in hydrology, and it has its own significance in
affecting the run-off, movement of surface water and potential infiltration [26]. In the case
of groundwater resources management, slope plays a significant role in the movement of
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water and permitting the infiltration of water into the aquifer system [27,28]. The slope can
be calculated in percent (0–100%) or in degree from horizontal (0–90◦), and the velocity of
water directly associated with the angle of slope and depth. Information about the slope
category is essential in the study of groundwater recharge mapping. An area with flat
slopes has a very good capability for recharging groundwater and followed by moderate
slopes. In contrast, the area with steeper slopes has poor recharging capacity. In the
Antofagasta region, half (50%) of the area has a slope of less than 5 degrees and 25.6% of
the area between slope 5 to 10 degrees (Table 1; Figure 4). However, the rest of the area of
the Antofagasta region has slope above 15 degrees (Table 1)
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2.2.3. Hillshade

A hillshade is a 3D image (grayscale) of the surface, by the sun′s relative position
considered for shading the image. This event uses the properties of altitude and azimuth
to indicate the position of the sun, in this case, the standard value (Azimuth 315◦ and
Altitude 45◦) [29]. The sun altitude is 45◦, and the sun azimuths are 0◦, 45◦, 90◦, 135◦,
180◦, 225◦, 270◦, and 315◦ in the hillside map [30]. It provided important information to
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researchers to consider for the management of environmental matrices, such as landslide,
groundwater potential mapping and others [29–32]. Figure 5 shows that the hillshade
image of the Antofagasta region of Chile.
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2.2.4. Aspect

Aspect is the horizontal direction of the highest slope (i.e., the facing direction). It
can convey as the actual number of the direction or can expressed as one of the nine key
compass directions, such as flat, north (N), north-east (NE), east (E), south-east (SE), south
(S), south-west (SW), west (W), and north-west (NW) [33]. Aspect is measured clockwise
in degrees to 360 from the north. For environmental management, aspect can play an
important role. Singh et al., [34] have considered aspect as a significant parameter to
identify the potential groundwater recharge zones in New Zealand. Singh et al., [34] have
described that the flat terrain receives less solar radiation than elevations with a northerly
aspect and more than elevations with a southerly aspect. Due to this reason, flat terrain
oblations a similar volume of solar radiation to elevations by a westerly and easterly aspect.
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Thereby, a southern aspect contributes most to percolation in the recharging of groundwater
as compared to the northern aspect. Because northern slopes are considered to contribute
minimum to recharge due to higher evapotranspiration that reduces the amount of water
for percolation [34]. The Antofagasta region has 14.1% of the area in the west direction,
8.1% of the area in the east direction and 12% of the area is flat, while 33.4% of the area has
north, northeast and northwest direction and has 32.4% of the area with south, southeast
and southwest direction, respectively (Table 1, Figure 6).
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2.2.5. River Basin

A region of land drained by a river and its tributaries is called a river basin and
it has some typical characteristics, such as a watershed, confluence, starting source of
the river among others. To make a proper decision for water resources use, planning,
and management within the river basin, information on the river′s hydrological system
is essential [35]. Furthermore, the river basin study plays an important role to make a
strong scientific decision for environmental management in the different research fields.
The Antofagasta region has 11 important major and minor river basin system in the area



Sustainability 2021, 13, 1297 9 of 21

(Figure 7). Around 21.5% of the area has covered by the Loa river basin of the region and
followed by the Caracoles basin (14.5%), La Negra and Pan de Azucar Ravine (13.4%), and
the Endorreic Atacama Salt Field-Pacifico Stream basin (11.5%). Moreover, other basins in
the region have covered the rest of the area, respectively (Table 1).
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2.2.6. Drainage Systems

Drainage systems are an essential part of the geomorphology and formed by the rivers,
streams and lakes in a specific drainage basin. Drainage systems also well-known as river
systems and controlled by the topography and gradient of the land. Drainage systems can
fall into one of the numerous types recognized as drainage patterns. Drainage patterns
are categorized based on their form and texture. Their pattern builds in response to the
subsurface geology and local topography of the basin. Zernitz et al., [36] has described
details about drainage patterns and their significance importance. Drainage can play a
significant role in any area′s water resources management [21,37,38]. Chowdhury et al., [39]
suggested that drainage density can indirectly reveal the suitability for groundwater
recharge of any area due to its association by surface runoff and permeability. Hence,
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drainage density can be considered one of the important factors for identifying artificial
groundwater recharge zones. Lower drainage density is considered a good recharge
category compared to the high drainage density. The region of Antofagasta mostly has a
dendritic drainage pattern (Figure 8). Furthermore, the region′s drainage density varied
from 0.0 to 1.1 Km/Km2 and more than half (64.1%) of the area between 0.0—0.26 Km/Km2

and the rest of the region has a value above the 0.26 Km/Km2 (Table 1).
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2.2.7. Geology

Special attention is needed to protect recharge areas in dense urban, agricultural and
heavy industrial areas [40]. Furthermore, [40] has suggested that the protection can depend
on the aquifer types and its geological cover. The geological formations are having a
significant relationship with the recharging of aquifers. In the present study, the Antofa-
gasta region has complex geology with several geological environments (Supplementary
Figure S1). Therefore, complex geology of the study area has divided into four eras and
nine periods (Figure 9). The three geological environments, such as the clastic sedimen-
tary sequences of piedmont, alluvial, colluvial or fluvial (MP1c), the alluvial deposits,
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subordinately colluvial or lacustrine (Qa) and the sedimentary sequences of an alluvial,
pediment or fluvial fans (M1c) are coved more than 40% of the area of the Antofagasta
region (Supplementary Figure S1).
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2.3. Pollution Level Risk Identification

Starting from the previous data and adding the pollution factors (mines) and the
elements at risk (cities and villages), it will be possible to identify which areas need a
priority study in the case of water resource management. With the proposed methodology,
which derives from the use of different techniques of watercourses and aquifer vulnerability
analysis as DRASTIC [41], SINTACS [42], GOD [43], it is possible to investigate the different
river stretches and how they may contaminate both underground water and be a potential
risk factor for population and crops. At the end of the procedure, it will be possible to
understand which cities have the most critical conditions indicated by colors ranging
from green to red, as well as which stretches of river have the greatest probability of
polluting the underlying aquifer. The infiltration recharge is an important parameter that
plays a significant role in assessing aquifer vulnerability because it helps transport the
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pollutant to the aquifer [42]. Therefore, a part of the SINTACS method (infiltration recharge
calculation) was applied in a GIS environment to achieve the present research′s second
objective (Figure 10). Detail about the role and important of SINTACS parameters in aquifer
vulnerability assessment are described elsewhere [42]. In the present study, the potential
infiltration index was assigned based on the area′s bibliography and geological reports.
The potential infiltration index was used in the SINTACS method to estimate net recharge
of the area, through the inverse water budget [44–47]. The potential infiltration coefficient
XR (that can assume values between 0 and 1) was estimated on the surface lithology of
the hydrogeological complex, and other parameters that depend on different lithology
characteristics [48]. Each lithological formation represented by era and period in Figure
11 has been divided by type of complex and a potential infiltration coefficient has been
assigned to each one. Therefore, the final potential infiltration index for each lithology was
assigned based on the type of complex, the average value of the complex derived by the
bibliography [49], and the area′s geological era.
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3. Results and Discussions

Much of the drinking water in the Antofagasta region comes from treatment plants.
As a result, much of the water from the mines have to be treated to be made drinkable.
However, irrigation systems pump water directly from the aquifer that is fed by rivers.
Therefore, it is necessary to analyze the main watercourses in relation to the cities served by
the number of upstream mines and the geological era/period of the study area (Figure 11).
Moreover, detail about the upstream mines and the lithology in which they have their beds
is shown in Supplementary Figure S2. This expeditious methodology made it possible to
identify which areas could be a source of aquifer recharge and which cities/villages were
more at risk if they had to use the water from the rivers/stream for different purposes.

Starting from the identification of the rivers previously carried out by ArcHydro,
it has been gone to extrapolate all the rivers that are downstream of a mine and all the
cities/villages that are at a maximum distance of 2 km from the river itself. Each section of
the river was then subdivided according to the geological era/period (Figure 11) and lithol-
ogy crossed (Supplementary Figure S2). Moreover, by carrying out an in-depth study of the
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geolithological map and by using a parameter of SINTACS method (recharge parameter
“I”) was possible to define an infiltration coefficient for each lithology (Figures 12 and 13).
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Using the recharge part of the SINTACS method, it is possible to quickly identify
which sections are most vulnerable to the pollutants because the river flows through a
more permeable lithology. On the other hand, by observing the cities/villages, it is easier
to identify those that may have a greater possibility of using contaminated water, if it
is extracted from the aquifer due to their location. At the same time, using again the
ArcHydro tool and specifically the flow accumulation a binary weight raster was added
where 1 equals a mine and 0 the remaining territory.
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The result is a new representation, colored on the map from green to red (Figures 14 and 15)
which represents starting from mountain (green section) the number of mines that the river
meets along its path or the tributaries that in turn are fed by water from mines until they reach
the sea or the regional border (Figure 15). The number of upstream mines was represented not
only in a punctual form to see which town was most at risk of possible pollution but also along
the river′s course. It is possible that along some sections, there are crops and that therefore the
use of polluted water could impact the crops and secondarily on the people who eat the food
produced in those plots. This classification is a method derived from Strahler [50] to identify
and classify types of streams based on their numbers of tributaries.
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By integrating these two data and using the cities/villages as an observation point,
it has been possible to identify a pollution risk index (Figure 16). This assessment based
on the simplification that cities/villages derive their water from rivers. The aquifer from
which the water collected is recharge by the infiltration of the river/stream. Using this
methodology, it is easier to identify the areas that most need to be safeguarded, and by
further integrating the information with chemical sample data, it would be possible to
further discretize the different areas.
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4. Conclusions

To achieve the present study′s first objective, DEM data used in a GIS environment
to create some important maps of the Antofagasta Region, Chile. A total of six significant
maps (elevation, slope, hillshade, aspect, river basin and drainage network and density) of
the study area created using DEM data in a GIS environment. Furthermore, a geological
map of the Antofagasta region also developed using the GIS platform. These seven
parameters are very important in the field of hydrology. On the other hand, to succeed the
second objective of the study, a part of the SINTACS method applied in GIS to identify
the level of pollution risk of the cities/villages in the Antofagasta region of Chile. The
result suggested the cities/villages in the region had a lower to a high pollution risk. Some
of the cities/villages were at a high and medium risk pollution level in the Loa river
basin, while in the Caracoles Ravine basin, most of the cities/villages were at a medium
pollution risk level and one city/village at a very high and high pollution risk. However,
the cities/villages from the southern region of the study area were under very low to low
pollution risk levels. The outcome of the present research is providing baseline information
that could help researchers, local and national government, mining authorities etc. to



Sustainability 2021, 13, 1297 19 of 21

develop a plan for the sustainable management of water resources in the region at the
current and future scenario.

Supplementary Materials: The following are available online at https://www.mdpi.com/2071-105
0/13/3/1297/s1, Figure S1: Geological map of the Antofagasta region, Figure S2: Map of mines and
river divided by geological unit.
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