Empirical Study on Weather Resistance of White Artificial Stones in Subtropical Island Climate
Abstract
:1. Introduction
2. Materials
2.1. Composition of Artificial Stone Materials
2.2. Types and Sources of Stones Used in This Study
3. Experimental Design
3.1. Weather Resistance Test in Laboratory
3.2. Case One—Mu Jiao Xi Hotel in Yilan; Experiment Period: 2 Years
3.3. Case Two—Culture, Leisure, and Social Education Center in Taipei
4. Experimental Results
4.1. Rainfall and pH Value during the Experiment Period
4.2. Experimental Results of White and Black Spanish Artificial Stones from the Original Manufacturer
5. Conclusions and Future Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamoush, S.; Abu-Lebdeh, T.; Picornell, M.; Amer, S. Development of sustainable engineered stone cladding for toughness, durability, and energy conservation. Constr. Build. Mater. 2011, 25, 4006–4016. [Google Scholar] [CrossRef]
- Stefanidou, M.; Pachta, V.; Papayianni, I. Design and testing of artificial stone for the restoration of stone elements in monuments and historic buildings. Constr. Build. Mater. 2015, 93, 957–965. [Google Scholar] [CrossRef]
- Emídio, F.; De Brito, J.; Gaspar, P.L.; Silva, A. Application of the factor method to the estimation of the service life of natural stone cladding. Constr. Build. Mater. 2014, 66, 484–493. [Google Scholar] [CrossRef]
- Dos Santos, J.L.; Rosa, L.G.; Amaral, P.M. Temperature effects on mechanical behaviour of engineered stones. Constr. Build. Mater. 2011, 25, 171–174. [Google Scholar] [CrossRef]
- Becherini, F.; Pastorelli, G.; Valotto, G.; Gambirasi, A.; Bianchin, S.; Favaro, M. Effects of protective treatments on particle deposition and colour variation in stone surfaces exposed to an urban environment. Prog. Org. Coat. 2017, 112, 75–85. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Chen, P.-H.; Liao, W.-C. Impact of subtropical island climate on the appearance and aesthetics of white marble buildings. J. Build. Eng. 2020, 31, 101334. [Google Scholar] [CrossRef]
- Duran Suarez, J.A.; Garcia Casco, A. Artificial porous stone from of ornamental rock waste adaptable for civil construction and heritage restoration. Bol. Geol. y Min. 2017, 128, 437–450. [Google Scholar] [CrossRef]
- Taiwanlook.net. Climate Overview in Taiwan. Available online: https://www.taiwanlook.net/about/about_climate.html (accessed on 25 July 2020). (In Chinese).
- Geography of Taiwan. The Climate of Taiwan. Available online: http://twgeog.ntnugeog.org/en/climatology/ (accessed on 25 July 2020).
- Cosentino Research and Development S.L. DEKTON Weathering IT-DK-20140514; Cosentino Research and Development SL: Cantoria, Spain, 20 May 2014. [Google Scholar]
- SGS Taiwan Ltd. Testing Report No. HV-14-03206; SGS Taiwan Ltd.: New Taipei City, Taiwan, 3 February 2015. (In Chinese) [Google Scholar]
- SGS Taiwan Ltd. Testing Report No. HV-14-03206X; SGS Taiwan Ltd.: New Taipei City, Taiwan, 3 February 2015. (In Chinese) [Google Scholar]
- SGS Taiwan Ltd. Testing Report No. HV-17-00269; SGS Taiwan Ltd.: New Taipei City, Taiwan, 14 April 2017. (In Chinese) [Google Scholar]
- Cutajar, A.; Mallia, B.; Abela, S.; Camilleri, J. Replacement of radiopacifier in mineral trioxide aggregate; characterization and determination of physical properties. Dent. Mater. 2011, 27, 879–891. [Google Scholar] [CrossRef]
- Cui, H.; Li, Q.; Gao, S.; Shang, J.K. Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J. Ind. Eng. Chem. 2012, 18, 1418–1427. [Google Scholar] [CrossRef]
- Scarano, A.; Piattelli, M.; Caputi, S.; Favero, G.A.; Piattelli, A. Bacterial Adhesion on Commercially Pure Titanium and Zirconium Oxide Disks: An In Vivo Human Study. J. Periodontol. 2004, 75, 292–296. [Google Scholar] [CrossRef]
- Manoudis, P.N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Kolinkeová, B.; Panayiotou, C. Superhydrophobic films for the protection of outdoor cultural heritage assets. Appl. Phys. A 2009, 97, 351–360. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Von Der Kammer, F.; Hofmann, T.; Baalousha, M.; Ottofuelling, S.; Baun, A. Algal testing of titanium dioxide nanoparticles—Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 2010, 269, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Illescas, J.F.; Mosquera, M.J. Surfactant-Synthesized PDMS/Silica Nanomaterials Improve Robustness and Stain Resistance of Carbonate Stone. J. Phys. Chem. C 2011, 115, 14624–14634. [Google Scholar] [CrossRef]
- Quagliarini, E.; Bondioli, F.; Goffredo, G.B.; Cordoni, C.; Munafò, P. Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Constr. Build. Mater. 2012, 37, 51–57. [Google Scholar] [CrossRef]
- Quercia, G.G.; Spiesz, P.P.; Hüsken, G.G.; Brouwers, H.J.H. SCC modification by use of amorphous nano-silica. Cem. Concr. Compos. 2014, 45, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Ltifi, M.; Guefrech, A.; Mounanga, P.; Khelidj, A. Experimental study of the effect of addition of nano-silica on the behaviour of cement mortars Mounir. Procedia Eng. 2011, 10, 900–905. [Google Scholar] [CrossRef] [Green Version]
- Meng, T.; Yu, Y.; Qian, X.; Zhan, S.; Qian, K. Effect of nano-TiO2 on the mechanical properties of cement mortar. Constr. Build. Mater. 2012, 29, 241–245. [Google Scholar] [CrossRef]
- Peng, H.; Li, M.; Li, Z.; Li, X. Surface quality and shape accuracy of multi-point warm press forming Corian sheets. Int. J. Adv. Manuf. Technol. 2019, 104, 4727–4733. [Google Scholar] [CrossRef]
- Sassoni, E.; Franzoni, E. Influence of porosity on artificial deterioration of marble and limestone by heating. Appl. Phys. A 2013, 115, 809–816. [Google Scholar] [CrossRef]
- Sassoni, E.; Naidu, S.; Scherer, G.W. The use of hydroxyapatite as a new inorganic consolidant for damaged carbonate stones. J. Cult. Herit. 2011, 12, 346–355. [Google Scholar] [CrossRef]
- Franzoni, E.; Sassoni, E.; Scherer, G.W.; Naidu, S. Artificial weathering of stone by heating. J. Cult. Herit. 2013, 14, e85–e93. [Google Scholar] [CrossRef]
- Franzoni, E.; Sassoni, E. Comparison between different methodologies for artificial deterioration of stone aimed at consolidants testing. In Proceedings of the 12th International Congress on the Deterioration and Conservation of Stone, Columbia University, New York, NY, USA, 22–26 October 2012. [Google Scholar]
- Cosentino. DEKTON Products. Available online: http://www.coallmax.com (accessed on 1 September 2020). (In Taiwan).
- Cosentino. DEKTON Manual; Cosentino: Taipei City, Taiwan, 6 June 2020. (In Taiwan) [Google Scholar]
- Cantoria. Available online: https://en.wikipedia.org/wiki/Cantoria (accessed on 1 July 2020).
- ASTM International. ASTM G154-16 Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Miwa, T.; Takeshita, Y.; Ishii, A.; Sawada, T. Simulation of water absorption and desorption behavior for anti-corrosion coatings in existing and new accelerated corrosion tests. Prog. Org. Coat. 2018, 120, 71–78. [Google Scholar] [CrossRef]
- CNS 11367. Method of Test for Decorative Laminated Sheet Based on Thermosetting Resins. 1985. Available online: https://www.antpedia.com/standard/1004404.html (accessed on 1 July 2020).
- ASTM International. ASTM C170/C170M-09 Standard Test Method for Compressive Strength of Dimension Stone; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM International. ASTM D792-08 Standard Test Methods For Density And Specific Gravity (Relative Density) of Plastics by Displacement; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- ASTM International. ASTM D570-98(2010)e1 Standard Test Method For Water Absorption Of Plastics; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- CNS 4447. Method of Test for Resistance of Plastics to Chemicals. 1992. Available online: https://www.antpedia.com/standard/1011639.html (accessed on 1 July 2020).
- Eyssautier-Chuine, S.; Calandra, I.; Vaillant-Gaveau, N.; Fronteau, G.; Thomachot-Schneider, C.; Hubert, J.; Pleck, J.; Gommeaux, M. A new preventive coating for building stones mixing a water repellent and an eco-friendly biocide. Prog. Org. Coat. 2018, 120, 132–142. [Google Scholar] [CrossRef]
- Saad, A.; Guédon, S.; Martineau, F. Microstructural weathering of sedimentary rocks by freeze–thaw cycles: Experimental study of state and transfer parameters. Comptes Rendus Geosci. 2010, 342, 197–203. [Google Scholar] [CrossRef]
- Camuffo, D. Physical weathering of stones. Sci. Total Environ. 1995, 167, 1–14. [Google Scholar] [CrossRef]
- Rainwater pH Observation in Taiwan. Available online: https://www.taiwanstat.com/realtime/rain-ph/ (accessed on 30 September 2020).
Element | Calcium (Ca) | Magnesium (Mg) | Aluminum (Al) | Boron (B) | Barium (Ba) | Iron (Fe) |
Accounted proportion in Dekton | 3.21000% | 2.34000% | 0.00090% | 0.04400% | 0.09450% | 0.00340% |
Potassium (K) | Sodium (Na) | Phosphorus (P) | Silicon (Si) | Strontium (Sr) | Zinc (Zn) | Zirconium (Zr) |
0.00032% | 0.00990% | 0.01550% | 0.00234% | 0.00050% | 0.00040% | 10.07000% |
Test Item | Test Method/Test Content | Test Results |
---|---|---|
Weather resistance of outward appearance | ASTM G154-16(Cycle) [32] | No expansion or cracking phenomenon on outward appearance by visual inspection |
Conditions of weather resistance | ||
Lamp tube | UVA340 | |
Illumination energy | 0.89 W/m2 at 340 nm | |
Conditions of each cycle | ||
8-h light-illumination | Blackboard temperature: 60 ± 3 °C | |
4-h condensation | Blackboard temperature: 50 ± 4 °C | |
Testing time | 3000 h |
Test Item | Test Method | Test Results |
---|---|---|
Boiling water resistance | Referring to CNS 11367 (1985) [34] | No expansion and foaming phenomenon on outward appearance |
a. Thickness expansion rate (%) | 0.05 | |
b. Mass change rate (%) | 0 | |
Impact resistance (28.4 g, 900 mm) | No rupture or dent and other defects | |
Stain resistance | ||
a. Tea | No impact by visual inspection | |
b. Coffee | No impact by visual inspection | |
c. Milk | No impact by visual inspection | |
d. Vinegar | No impact by visual inspection | |
e. 10% Citrus acid | No impact by visual inspection | |
f. 95% Ethanol | No impact by visual inspection | |
g. Acetone | No impact by visual inspection | |
Smoke resistance (direct burning of cigarettes) | No burn marks that cannot be cleaned, color fading, cracks, or other defects on the surface | |
Compressive strength (kgf/cm2) | Referring to ASTM C170/C170M-09 [35] | 4563 |
Density (23 °C) (g/cm3) | Referring to ASTM D792-08 Method A [36] | 2.49 |
Water absorption (%) | Referring to ASTM D570-98 (2010) el [37] | 0.03 |
Chemical resistance (23 °C, 30 days) | Referring to CNS 4447 (1992) [38] | |
a.5%KOH solution | No abnormal state | |
a.5%HCL | No abnormal state | |
a.5%H2SO4 | No abnormal state |
Color | Exposition Time, h | △E * |
---|---|---|
Black | >5.000 | <1 |
White | >5.000 | <1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, Y.-C.; Chen, P.-H.; Liao, W.-C. Empirical Study on Weather Resistance of White Artificial Stones in Subtropical Island Climate. Sustainability 2021, 13, 1509. https://doi.org/10.3390/su13031509
Chiu Y-C, Chen P-H, Liao W-C. Empirical Study on Weather Resistance of White Artificial Stones in Subtropical Island Climate. Sustainability. 2021; 13(3):1509. https://doi.org/10.3390/su13031509
Chicago/Turabian StyleChiu, Ying-Chiao, Po-Han Chen, and Wen-Cheng Liao. 2021. "Empirical Study on Weather Resistance of White Artificial Stones in Subtropical Island Climate" Sustainability 13, no. 3: 1509. https://doi.org/10.3390/su13031509
APA StyleChiu, Y. -C., Chen, P. -H., & Liao, W. -C. (2021). Empirical Study on Weather Resistance of White Artificial Stones in Subtropical Island Climate. Sustainability, 13(3), 1509. https://doi.org/10.3390/su13031509