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Abstract: In the present study, a simple and eco-friendly route for the synthesis of copper oxide
nanoparticles (CuO NPs) using leaf extract of Phyllanthus emblica as fuel has been demonstrated,
as P. emblica is a locally available abundant plant. The formation of the as-prepared CuO NPs
was confirmed by using various techniques, such as UV–Vis absorption spectroscopy, cold field
scanning electron microscopy (CF–SEM), energy dispersive X-ray analysis (EDX), dynamic light
scattering (DLS), and X-ray photoelectron (XPS). The hydrodynamic size of the CuO NPs was found
to be 80 nm, while the zeta potential of −28.6 mV was obtained. The elemental composition was
confirmed by EDX analysis accompanied with elemental mapping, while the crystalline nature
was substantiated by the XRD diffractogram. The as-synthesized CuO NPs were studied for their
use as an adsorbent material for the removal of As(V) from water. It was confirmed that the CuO
NPs effectively removed As(V) via adsorption, and the adsorption efficiency was found to be best
at a higher pH. The maximum adsorption capacity of CuO for As(V) was found to be 1.17 mg/g
calculated using the Langmuir equation.

Keywords: CuO; nanoparticles; green synthesis; arsenic; adsorption

1. Introduction

Arsenic, a frightful element in ground water, is an element that occurs naturally in trace
amounts commonly found in the earth’s crust. Typically, it seeps into the groundwater due
to various anthropogenic activities, such as coal ash disposal, mining, wood preservation,
pesticide application, along with the natural weathering processes. In the aqueous solutions,
it commonly exists in two oxidation states, such as As(III) and As(V) [1]; commonly,
the toxicity of these elements is highly prevalent in developing countries, which are
struggling to overcome this menace. Indeed, arsenic toxicity has turned into a principal
concern, as it is significantly accelerating the contamination of important sources of human
life, including water, air, and soil. Moreover, the concern levels are upended due to its
capability to readily convert its oxidation state, thus displaying diverse chemical behavior;
this leads to the formation of a large number of organic and inorganic compounds in the
environment.

Among various sources, the main pathway of arsenic exposure around the globe has
been reported to be drinking water [2]. Moreover, higher arsenic levels in groundwater
pose a serious threat to the public health and other lives on earth, as reported in many
countries around the world. [3] It is responsible for the development of various ailments,
such as different types of cancers and many other diseases caused due to the contamination
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to which humans are regularly exposed by food, water, air, and soil or by long-term intake
of small doses of inorganic arsenic compounds, which seriously affects the biological
functions of various cells and tissues [4,5].

The most frequently used methods for the elimination of metal ions from industrial
effluents include solvent extraction, membrane filtration, reverse osmosis, ion exchange,
and adsorption; however, in order to get rid of the arsenic contamination, in addition to the
methods commonly employed, nanofiltration, foam flotation, and biological sequestration
are also employed [6–10]. However, adsorption using various nanomaterials is one of
the advantageous methods among all the above mentioned techniques for the exclusion
of heavy metals from water due to its operational simplicity, substantial efficiency, and
low cost [11].

Nanomaterials such as metal nanoparticles, metal nanowires, carbon nanotube, etc.,
display unique electronic, magnetic, catalytic, optical, and medicinal properties as com-
pared with the traditional and bulk materials due to their quantum size effect, large surface
to volume ratio, large surface energy, and spatial confinement [12,13]. Particularly, metal
oxide nanoparticles (NMOs), including manganese oxides, ferric oxides, aluminum oxides,
magnesium oxides, titanium oxides, and cerium oxides, have gained immense popularity
and were successfully used for the removal of heavy metals from aqueous systems [14,15].
Among the various metal oxides, copper oxide (CuO) and CuO-based nanomaterials, im-
portant materials that are largely employed in energy, medical applications, have gained
significant attention for the removal of heavy metals from polluted water for environmental
remediation due to their high efficiency and low cost. Besides, the large surface area and
abundance of active sites on the surface of CuO makes it a reliable adsorbent material
for heavy metals, particularly As(V). This is clearly reflected in various earlier studies.
For instance, Pillewan reported that more than 95% of As(III) and As(V) was successfully
removed by copper oxide fused mesoporous alumina-based material [16]. In another study,
Zhang et al. applied Fe-Cu binary oxide, a low-cost material prepared using a facile method
as an effective adsorbent for the exclusion of both As(V) and As(III) from water and has
displayed excellent performance [17]. Moreover, CuO-based materials are also regard
as proficient adsorbents for water purification due to their low toxicity and negligible
solubility in the water. For example, in a recent study, Hassan et al. used CuO NPs as an
adsorbent to separate Cd (II) and Ni (II) ions from its aqueous solutions.

So far, different physical and chemical approaches have been reported to fabricate
copper oxides nanoparticles with different size, shape, and morphology. These include
precipitation pyrolysis, sol-gel technique, electrochemical, sonochemical, solid-state reac-
tion, hydrothermal process, thermal synthesis, microemulsion system, quick-precipitation,
thermal decomposition of precursors, microwave irradiations, etc.

However, the CuO NPs prepared from chemical methods usually possess enhanced
toxicity due to the adsorption of hazardous chemicals on the surface of NPs during the
synthesis. Due to this, the biocompatibility of the resulting material is seriously affected,
which ultimately limits the medical applications of CuO-based materials. Therefore, re-
searchers are constantly making enormous attempts to synthesize nanoparticles by green
approach. Particularly, nanoparticle synthesis using green methods has gained significant
attention in the recent years.

Green synthesis of metallic and metal oxide NPs using environmentally friendly mate-
rials such as plant extracts has gathered much more attention due to the mounting necessity
to develop such a technology [18]. Recently, eco-friendly preparation of various metal
oxide nanoparticles using plant-based materials has also attracted significant attention.
These approaches are environmentally benign and can be easily performed using simple
reaction system under mild reaction conditions. Particularly, the use of nontoxic reagents
and solvents, such as water, easy scale up, and cost effectiveness has significantly enhanced
the biocompatibility of these approaches in biomedical and pharmaceutical applications.
Moreover, nanoparticles prepared by the use of plant extract enhanced biocompatibility
and stability, in comparison with those produced by chemical methods [19]. Therefore,
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plant extracts have been established as excellent materials for the easy, large-scale, and eco-
friendly synthesis of well-dispersed metal and metal oxide nanoparticles of controlled
shapes and sizes [20].

In this regard, many plants have been explored for the synthesis of copper oxide
nanoparticles. For instance, tea leaf and coffee powder extracts were applied under mi-
crowave irradiations for the synthesis of CuO NPs [21,22]. Moreover, the plant-based
synthesized CuO nanoparticles have been used efficiently in various biological and non-
biological activities including cytotoxicity [23], antibacterial [24,25], catalytic activity [26,27],
photocatalytic treatment of dye [28], degradation of dyes [29], etc. However, as the toxicity
of CuO NPs is of concern, we studied the toxicity of the CuO NPs fabricated by utilizing
Pterospermum acerifolium leaf extract. It was found that P. acerifolium-mediated copper
oxide NPs were more stable than the engineered CuO NPs and showed less toxicity as
compared to engineered CuO NPs when tested on Daphnia. The toxic values EC50 (effec-
tive concentration 50) were observed for engineered CuO NPs, i.e., 0.102 ± 0.019 mg/L,
while 0.69 ± 0.226 mg/L for P. acerifolium-synthesized CuO NPs [20]. Hence, it was con-
cluded that the green-synthesized CuO NPs are less toxic than the chemically synthesized
CuO NPs.

Phyllanthus emblica has been utilized for many purposes, and all its parts including
fruits, leaf, and bark have been utilized for medicinal applications. It is widely cultivated in
different regions of Asia and native to Pakistan, while it is the least researched plants [30,31].
Hence, in continuation of our research being carried out by our group [32–36], in the present
study, we have demonstrated the synthesis of CuO NPs using a solution combustion
method using the leaf extract of P. emblica as fuel, which is a green alternative to synthetic-
organic-compounds-based fuel such as glycine, urea, carboxymethylcellulose, DL-malic
acid [37,38]. The synthesized nanoparticles were characterized by different techniques.
Furthermore, we also investigated the adsorption capacity of freshly prepared CuO NPs
for the removal of arsenic (V).

2. Materials and Methods

P. emblica leaves were sourced from botanical Jinnah Garden Lahore Pakistan, Copper ni-
trate trihydrate Cu(NO3)2·3H2O, sodium arsenate dibasic heptahydrate (Na2HAsO4·7H2O),
69% nitric acid (HNO3) analytical grade solvents were purchased from Sigma-Aldrich.
Arsenic standard solution (1000 µg/mL arsenic in 2% HNO3) was purchased from High
Purity Standards, USA. Milli-Q water was used in all experiments.

2.1. Green Synthesis of CuO NPs

CuO nanoparticles were prepared by ecofriendly green combustion route using P. em-
blica leaves extract as a fuel as described in previous study [20].

Aqueous leaf extract was prepared by extracting 20g powder in 100 ml D.I water
and was carefully filtered. An amount of 3.8 g copper Cu(NO3)2·3H2O was added in
10 mL of extract and then mixed thoroughly by a magnetic stirrer at 45–50 ◦C. Dark green
solution of salt and extract was placed in a preheated furnace at 400 ◦C for 5 min. Black-
obtained product was stored in an air tight container for further characterization and
applicability studies.

2.2. Characterization of CuO NPs

UV-visible absorption spectroscopy was performed by the UV-visible spectrophotome-
ter (UV-1800; Shimadzu, Tokyo, Japan). Cold field emission scanning electron microscopy
(equipped with EDX) was employed for determination of morphology, size, and chemical
composition of CuO NPs (CFE-SEM, SU8230, Hitachi, Tokyo, Japan). For the determina-
tion of zeta potential and hydrodynamic size, a dynamic light scattering (DLS) Nano-ZS
instrument (Malvern Instruments Ltd., Malvern, UK) was used. Surface elemental compo-
sition was investigated by the X-ray Photoelectron Spectrometer (XPS) System, (Thermo
Scientific™ K-Alpha+™X-ray Waltham, MA, USA). Crystalline nature of the synthesized
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product was analyzed through X-ray powder diffraction (XRD) (Bruker D8 Advance, Karl-
sruhe, Germany) patterns using a Cu Kα radiation (λ = 1.54 Å) source in the range of 2θ
from 20–80◦.

2.3. Adsorption Experiments

Solutions of As(V) of different concentrations were prepared by diluting the stock
solution of sodium arsenate with water. Various factors such as initial As(V) concentration,
dose of CuO-NPs, pH, time duration of treatment were studied. ICP-OES was used for
determination of arsenic concentration in samples.

% removal efficiency was calculated by following formula.

% Removal e f f iciency =
C0 − Ci

C0
× 100 (1)

Adsorption kinetics and isotherms were investigated in batch adsorption experiments.
For adsorption isotherm, CuO nanoparticles adsorbent was used in batch experiments

at different initial concentrations of As(V) (0.5–15 mg/L) with a constant weight of adsor-
bents (1 g/L). Contact time of 50 min and pH 8 ± 0.3 was used. Equilibrium adsorption
capacity (qe) was calculated from the above given formula.

The amount of metal ions adsorbed at equilibrium (qe) per unit mass of the adsorbent
was calculated by the expression:

qe =
C0 − Ce

m
× V (2)

qe represents adsorption capacity (mg/g).
C0 and Ce are the initial concentration and final concentrations of arsenic mg/L,

respectively.
V is volume of arsenic solution (L).
m is the mass of adsorbent (g).
For CuO adsorbent, the experiments were carried out by placing 1 g/L of adsorbent

in different conical flasks containing 200 mL As(V) solution with different initial concentra-
tions of arsenic 1–5 mg/L (pH = 8.0 ± 0.1, at 24 ◦C). The amount of sorption at time t, qt
(mg/g), was calculated using the following formula:

qt =
C0 − Ct

m
× V (3)

Here, qt is adsorption capacity (mg/g) at time “t”. Ct (mg/L) is the concentration of
arsenic at any time, C0 (mg/L) is the initial concentration of arsenic in solution. V is the
volume of the solution (L), and m is the mass of adsorbent (g).

3. Results and Discussion
3.1. Characterization of CuO NPs
3.1.1. UV-Vis Spectral Analysis

In order to confirm the formation of CuO nanoparticles, the prepared sample was
subjected to UV-vis analysis, and the spectra obtained are given in Figure 1; it reveals that
the absorption peak of P. emblica leaves extract appears in the region of 300–350 nm, while
for its corresponding CuO nanoparticles, the absorption peak was observed at ~400 nm,
which confirms the formation of the desired CuO nanoparticles. Typically, the characteristic
absorption peak of CuO is observed in the range of 200 to 500 nm depending upon the
particle size. The absorption peak of bulk CuO appear at the higher wavelength (red-
shifted); however, the peaks’ position is blue-shifted (towards a lower wavelength) as the
size of the particles decreases [39]. In an earlier study, in which the CuO NPs was prepared
from the extract of heart-wood of P. marsupium, the UV absorption peak was observed at
slightly higher wavelength ~442 nm, and the size of the nanoparticles was found to be in
the range of 20 to 50 nm [40]. However, in this study, the absorption peak of CuO appears
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at much lower wavelength (blue-shifted) at ~400 nm, from which it can be anticipated that
smaller size of CuO NPs are formed.
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Figure 1. UV-vis spectra of P. emblica employed CuO NPs.

3.1.2. SEM and EDX Analysis

The EDX analysis clearly confirms the presence of both copper and oxygen in the
sample. While, the SEM analysis was used to identify the surface morphology of as-
obtained CuO NPs. From the SEM image, it was observed that the surface of the CuO
NPs formed was rugged and was covered with oval shape particles with an average
diameter of 80 nm as can be seen in Figure 2. The elemental composition of synthesized
CuO nanoparticles was confirmed by EDX analysis and elemental mapping. It confirms
the presence of all constituent elements, i.e., copper (Cu) and oxygen (O), confirming the
formation of CuO nanoparticles as the prepared product. The other small peaks observed
in the EDX spectrum represent the elements Si, K, and Ca can be from the plant extract,
which were present in the substrate. The EDX spectra are shown in Figure 3. Hence, we can
deduce that the green fuel, i.e., P. emblica, may play a profound role in synthesis of pure
CuO nanoparticles.
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3.1.3. XPS Analysis

In order to confirm the formation of the desired CuO nanoparticles, the as-prepared
samples were subjected to various spectral analysis. The XPS survey scan revealed the
presence of the Cu and O elements. (Figure 4) The peak binding energy at 934.6 eV and
952.4 eV corresponds to Cu 2p3/2 and Cu 2p1/2, respectively. Moreover, binding energy at
531.6 eV corresponds to O 1s of CuO nanoparticles.
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3.1.4. XRD Analysis

The crystalline nature of the as-obtained CuO NPs was identified using the XRD
analysis (Figure 5), and the XRD pattern obtained corresponds to the monoclic phase CuO
(JCPDS 34-0394), however some several unidentified pattern is also obtained, which can be
attributed to the presence of plant extract on the surface of the NPs.
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3.1.5. Size/Size Distribution and Zeta Potential Analysis

Hydrodynamic sized for P. emblica-synthesized CuO nanoparticles were found to
be 92.3 nm, and maximum distribution was at 88.92 nm (Figure 6). This value is much
higher than the anticipated average size from the UV-vis analysis, which can be attributed
to the agglomeration of the CuO NPs formed, indicating the lower stability of the NPs
formed in the absence of capping agent. Zeta potential, which gives critical information on
the dispersion of NPs, in terms of magnitude of the charge, which indicates the mutual
repulsion between the particles [41]; moreover, the zeta potential values within ± 30 range
are reported to be more stable in solution [42]. Earlier, it is reported that the average zeta
potential of the CuO nanoparticles occurs in the range of −20 to +45 mV depending upon
the pH between 2 to 12 [43]. However, in this case, the higher negative value of zeta
potential −28.6 mV can be attributed to the presence of phytomolecules on the surface of
CuO NPs (Figure 7).
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3.2. Arsenic Adsorption Results
3.2.1. Effect of Nanoparticles Dosage and Initial As(V) Concentration

Initially, the effect of adsorbent dosages was determined for the removal of arsenic
(V) from water. In this study, a varying amount of P. emblica-synthesized CuO NPs, i.e.,
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0.1–2.5 g/L, were dispersed in solutions of initial arsenic concentration of 1–15 mg/L, at pH
7 ± 0.4, and the percentage reduction in the As(V) concentration was recoded, and the
results obtained are illustrated in Figure 8. It was revealed that the adsorption of arsenic
increased from 46 to 85%, with an increase in adsorbent dose, i.e., CuO NPs, from 0.1 to
2.5 g/L, when the solution contained 1 mg/L of As(V). Whereas, in the solution with As(V)
concentration of 15 mg/L, the adsorption of arsenic increased from 44 to 71% with an
increasing dosage of CuO adsorbent, i.e., from 0.1 to 2.5 g/L. From this study, it can be
confirmed that the maximum adsorption of As(V) is obtained when 2.5 g/L of the CuO
NPs are employed and the concentration of As(V) is 1 mg/L.
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Figure 8. Effect of P. emblica-synthesized CuO nanoparticles doses on removal of arsenic at different
concentrations of As(V).

3.2.2. Effect of pH on As(V) Removal

It is well reported that the adsorption capacity of an adsorbent varies by changes in the
pH. Hence, a study was carried out to ascertain the effect of pH on the removal of As(V) by
the CuO NPs, by changing pH from 2–12, and the results obtained are illustrated in Figure 9.
From the results obtained, it was found that arsenate adsorption of CuO nanoparticles was
98.9% at pH 12, while the adsorption was lower with lower pH such as 81% at pH 10 and
~66% at pH 8, when the initial As(V) concentration was 1 mg/L (Figure 9). Results showed
that the arsenic adsorption capacity of the CuO NPs is influenced by varying the pH,
and the best adsorption capacity of CuO NPs is obtained at pH 12, and the least adsorption
of ~20% As(V) is obtained at pH 3. The high adsorption at pH 12 can be attributed to
the zeta potential, which shifts towards the negative values in the range −12.6 ± 0.4 and
−15.7 ± 1.6 mV, indicating the surge in generation of negative charge on the surface of
CuO nanoparticles, which more efficiently attract the positive arsenic ions [44]. Another
study reported by Goswami et al. reported that by increasing pH, 100% removal of arsenic
can be achieved [45]. Hence, it can be concluded that the adsorption efficiency of the
CuO NPs is very much dependent on pH, and the best adsorption is obtained under
basic conditions.
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Figure 9. As(V) removal efficiency at different pH levels by P. emblica-synthesized CuO NPs.

3.2.3. Effect of Contact Time on As(V) Removal

Contact time plays an important role in the adsorption studies, and hence, the adsorp-
tion capacity of As(V) on the surface of CuO nanoparticles with respect to time was also
investigated. Different solutions were allowed to react with CuO nanoparticles for a long
period of time ranging between 1–14 h with varying initial As(V) concentrations under
basic conditions. When the As(V) concentration is 1.0 mg·L−1, it was found that in the first
hour of contact, As(V) concentration reduced by 15%, which was followed by a steep rise
in the reduction in concentration of As(V), i.e., 75.2%, up to 400 min; however, after this
time, the removal of As(V) is very insipid until 800 min of contact time, indicating that the
maximum adsorption capacity of the CuO NPs has been achieved in 400 min of contact
time. Moreover, when the concentration of As(V) is increased to 2.5, 5, and 10 mg·L−1

the reduction in concentration of As(V) was found to be 68, 56.2, and 46%, respectively,
after 400 min of contact time. However, it was observed that after 400 min of adsorption,
a similar trend of As(V) concentration reduction as seen in 1 mg·L−1, wherein no further
decrease in As(V), was observed, indicating that the no further adsorption of As(V) takes
place on the surface of the CuO NPs. Figure 10 displays the kinetics of adsorption of As(V)
by the CuO NPs.
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Figure 10. As(V) removal efficiency at different time intervals by P. emblica-synthesized CuO NPs.

3.2.4. Adsorption Isotherms

The adsorption capacity of CuO nanoparticles towards As(V) were evaluated using
adsorption isotherm with adsorbent dose 1 g/L (Figure 11). Calculated parameters for
As(V) adsorption are presented in Table 1. Maximum adsorption capacities were calculated
from the Langmuir equation to be 1.17 mg/g for As(V). However, the adsorption data
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of As(V) removal by CuO were best fit with Freundlich isotherm (R2 > 0.99). The value
of K, the value of 1/n < 1, and the value of n < 10 indicate favorable for Freundlich
adsorption isotherm. Moreover, the steep slope (1/n), which is very close to 1, indicates
high adsorption capacity at higher equilibrium concentration.
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Figure 11. (A) Langmuir and (B) Freundlich model for P. emblica-synthesized CuO NPs.

Table 1. Langmuir and Freundlich isotherms parameters for As(V) adsorption on CuO nanoparticles.

Adsorbents
Langmuir Model Freundlich Model

qm (mg/g) KL (L/mg) R2 n Kf (mg/g) R2

CuO NPs 1.17 0.19 0.876 1.58 0.18 0.999
Initial arsenic concentration 0.5–15 mg/L. contact 60 min. qm (mg/g) is the maximum adsorption capacity from
the Langmuir isotherm. KL (L/mg) is a Langmuir constant. Kf (mg/g) related to adsorption capacity. n is a
dimensionless Freundlich constant.

Interestingly, when the obtained adsorption capacities are compared with various
other CuO structures prepared by various other approaches, it has been found to possess
varying adsorption capacities based on the synthetic methodologies applied for their
synthesis. Cao et al. reported the synthesis of copper oxide (CuO) structures using copper
acetate as precursor, and the doughnut-like CuO particles were employed for the removal
of As(III), and the adsorption capacities were found to be 5.7 mg/g for As(III) [46]. Another
example of CuO nanoparticles for the removal of As ions were reported by Martinson et al.,
which yielded maximum adsorption capacity, was reportedly found to be 26.9 mg/g for
As(III) and 22.6 mg/g for As(V) [44]. In another study, spherical CuO nanoparticles of
30 ± 2 nm size were prepared by hydrothermal technique, and a 97.8% percent removal
of As(III) was observed, and adsorption capacity Kf 0.6035 mg/g was calculated by the
Freundlich isotherm model [47]. As(III) removal was attempted by green-synthesized CuO
NPs employing Tamarindus indica pulp extract, the adsorption capacity was found to be
1152.5 µg/g, which is very close to the maximum adsorption capacity value, i.e., 1.17 mg/g,
obtained from the CuO NPs prepared by the P. emblica leaf extract [48]. Hence, it can be
concluded that the CuO NPs obtained in the present work are not as efficient as the CuO
NPs prepared by the chemical synthesis, indicating that the solution combustion synthesis
is the sustainable facile method to produce pure CuO NPs, however the As ions adsorption
capacity of the CuO NPs obtained is moderate. Future studies can be designed to carry out
surface modification of CuO NPs to enhance its adsorptive capacity.

3.2.5. Adsorption Kinetics

Kinetic pseudo-first-order and pseudo-second-order models were studied for CuO
nanoparticles adsorbent. The kinetic models are shown in Figure 12 and used for calculation
of As(V) adsorption in relation to time “t”.
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The experimental data best fitted with the pseudo-second-order kinetic model and the
adsorption process might be chemisorption, which is suitable for sorption at low initial
concentrations. Results indicate that rate constants such as K1 and K2 of CuO NPs are faster
at a lower As(V) concentration (Table 2).

Table 2. Calculated parameters from the pseudo-first model and pseudo-second-order model of adsorption kinetics for
CuO nanoparticles.

Adsorbents
Initial As (V)

(mg/L)

Pseudo-First-Order Model Pseudo-Second-Order Model

K1
(min−1)

qe
(mg·g−1) R2 K2

(mg·min·g−1)
qe

(mg·g−1) R2

CuO NPs
1 0.19 0.16 0.96 1.33 0.30 0.99

2.5 0.16 0.75 0.87 1.02 0.47 0.99

5 0.11 1.25 0.91 0.81 1.1 0.99

4. Conclusions

In conclusion, the present study reports the green synthesis of CuO NPs using P.
emblica leaves extract via solution combustion method was attempted. The formation of
green-synthesized CuO NPs was characterized by UV-vis, XRD, and XPS. The microscopic
analysis was carried out by SEM, and the images revealed that the CuO NPs formed
possessed granular morphology, while the mean diameter of the granules of the CuO NPs
formed was found to be 92.3 nm. Moreover, the as-synthesized CuO nanoparticles were
employed for the adsorption of As(V), and it was found that the green-synthesized CuO
NPs displayed efficient adsorption capacity, which improved up to ~98% at higher pH.
The adsorption takes place via a pseudo-second-order mechanism, and the adsorption
rate is high when the As(V) are low in concentration. In conclusion, the rapid, simple
single-step “green” biosynthesis of CuO NPs is attractive, as it is an ecofriendly protocol,
and this protocol can be further employed for the environmental remediation.
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