Drivers of Timberline Dynamics in Rodna Montains, Northern Carpathians, Romania, over the Last 131 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
2.2.1. Cartographic and Morphometric Analysis
2.2.2. Meteorological Data
2.2.3. Anthropic Data Sources
2.3. Timberline Dynamics over the Last 131 Years Reconstructed from Old Maps and Aerial Photographs
3. Results
3.1. Natural Drivers of Timberline Dynamics over the Last 131 Years
3.1.1. Air Temperature
3.1.2. Land Morphometry
3.2. Anthropogenic Factors (Grazing, Fire, Clearance)
3.2.1. Pastoral Activities
3.2.2. Fire Activity
3.2.3. Clearance
4. Discussion
4.1. Timberline Dynamics in Rodna Mountains between 1850 and 2018
4.2. Timberline Dynamics in Relation to Natural Factors
4.3. Timberline Dynamics in Relation to Anthropogenic Factors
4.3.1. The Impact of Pastoral Activities
4.3.2. Fire Activity at Timberline and Potential Impacts on Tree Growth
4.3.3. Forest Clearance—Direct and Indirect Impacts
4.4. Future Perspectives in Timberline Dynamics and the Potential Ecological Consequences
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Summary for Policymakers. Global Warming of 1.5 °C; W.M.O.: Geneva, Switzerland, 2018; p. 32. [Google Scholar]
- Pauli, H.; Gottfried, M.; Dullinger, S.; Abdaladze, O.; Akhalkatsi, M.; Alonso, J.L.B.; Coldea, G.; Dick, J.; Erschbamer, B.; Calzado, R.F.; et al. Recent plant diversity changes on Europe’s mountain summits. Science 2012, 336, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Steinbauer, M.J.; Grytnes, J.A.; Jurasinski, G.; Kulonen, A.; Lenoir, J.; Pauli, H.; Rixen, C.; Winkler, M.; Bardy-Durchhalter, M.; Barni, E.; et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 2018, 556, 231–234. [Google Scholar] [CrossRef]
- UN Environment Programme—Environment for Development. Available online: https://www.unep.org/resources/report/carpathian-environment-outlook (accessed on 20 December 2019).
- Alberton, M.; Andresen, M.; Citadino, F.; Egerer, H.; Fritsch, U.; Götsch, H.; Hoffmann, C.; Klemm, J.; Mitrofanenko, A.; Musco, E.; et al. Outlook on Climate Change Adaptation in the Carpathian Mountains; United Nations Environment Programme: Nairobi, Kenya; GRID-Arendal: Arendal, Norway; Eurac Research: Bolzano, Italy, 2017; p. 54. [Google Scholar]
- Beniston, M.; Diaz, H.F.; Bradley, R.S. Climatic change at high elevation sites: An overview. Clim. Chang. 1997, 36, 233–251. [Google Scholar] [CrossRef]
- Harsch, M.A.; Hulme, P.E.; McGlone, M.S.; Duncan, R.P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 2009, 12, 1040–1049. [Google Scholar]
- Holtmeier, F.K. Mountain Timberlines. In Advances in Global Change Research; Springer: Dordrecht, The Netherlands, 2009; Volume 36. [Google Scholar]
- Theurillat, J.P.; Guisan, A. Potential Impact of Climate Change on Vegetation in the European Alps: A Review. Clim. Chang. 2001, 50, 77–109. [Google Scholar] [CrossRef]
- Feurdean, A.; Geantă, A.; Tanțău, I.; Auer, A.; Hutchinson, S.M. Determining the sensitivity of the high mountain region in Northern Romania to climate and land use changes through multi-proxy analysis. In Proceedings of the EGU General Assembly, Vienna, Austria, 7–12 April 2013; Geophysical Research Abstracts. Volume 15, p. 12378. [Google Scholar]
- Feurdean, A.; Florescu, G.; Vannière, B.; Tanţău, I.; O’Hara, R.B.; Pfeiffer, M.; Hutchinson, S.M.; Gałka, M.; Moskal-del Hoyo, M.; Hicklera, T. Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene. For. Ecol. Manag. 2017, 389, 15–26. [Google Scholar] [CrossRef]
- Geantă, A.; Gałka, M.; Tanţău, I.; Hutchinson, S.M.; Mîndrescu, M.; Feurdean, A. High mountain region of the Northern Romanian Carpathians responded sensitively to Holocene climate and land use changes: A multi-proxy analysis. Holocene 2014, 24, 944–956. [Google Scholar] [CrossRef]
- Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits, 2012th ed.; Springer: Basel, Switzerland, 2012; p. 220. [Google Scholar]
- Gehrig-Fasel, J.; Guisan, A.; Zimmermann, N.E. Tree line shifts in the Swiss Alps: Climate change or land abandonment? J. Veg. Sci. 2007, 18, 571–582. [Google Scholar] [CrossRef]
- Holtmeier, F.-K.; Broll, G. Treeline advance—Driving processes and adverse factors. Landsc. Online 2007, 1, 1–33. [Google Scholar] [CrossRef]
- Weisberg, P.J.; Shandra, O.; Becker, M.E. Landscape Influences on Recent Timberline Shifts in the Carpathian Mountains: Abiotic Influences Modulate Effects of Land-Use Change. Arct. Antarct. Alp. Res. 2013, 45, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Spyt, B.; Kaczka, R.J.; Lempa, M.; Rączkowska, Z. Application of timberline morphometric analysis for detecting snow avalanche paths: A case study of the Tatra Mountains. Geogr. Pol. 2016, 89, 91–111. [Google Scholar] [CrossRef] [Green Version]
- Grigor’ev, A.A.; Devi, N.M.; Kukarskikh, V.V.; V’yukhin, S.O.; Galimova, A.A.; Moiseev, P.A.; Fomin, V.V. Structure and Dynamics of Tree Stands at the Upper Timberline in the Western Part of the Putorana Plateau. Russ. J. Ecol. 2019, 50, 311–322. [Google Scholar] [CrossRef]
- Suarez, F.; Binkley, D.; Kaye, M.W.; Stottlemyer, R. Expansion of forest stands into tundra in the Noatak National Preserve, northwest Alaska. Ecoscience 1999, 6, 465–470. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. Blackwell Science, Ltd Global controls of forest line elevation in the northern and southern hemispheres. Glob. Ecol. Biogeogr. 2000, 9, 253–268. [Google Scholar] [CrossRef] [Green Version]
- Gamache, I.; Payette, S. Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. J. Biogeogr. 2005, 32, 849–862. [Google Scholar] [CrossRef]
- Miehe, G.; Miehe, S.; Vogel, J.; Co, S.; La, D. Highest Treeline in the Northern Hemisphere Found in Southern Tibet. Mt. Res. Dev. 2007, 27, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Bachelet, D.; Neilson, R.P. Biome Redistribution Under Climate Change. In The Impact of Climate Change on America’s Forests: A Technical Document Supporting the 2000 USDA Forest Service RPA Assessment; General Technical Report RMRS-GTR 59; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2000; pp. 18–44. [Google Scholar]
- Rupp, T.S.; Starfield, A.M.; Chapin, F.S., III. Response of Subarctic vegetation to transient climatic change on the Seward Peninsula in north-west Alaska. Glob. Chang. Biol. 2001, 6, 541–555. [Google Scholar] [CrossRef]
- Grace, J.; Berninger, F.; Nagy, L. Impacts of Climate Change on the Tree Line. Ann. Bot. 2002, 90, 537–544. [Google Scholar]
- Holtmeier, F.-K.; Broll, G. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob. Ecol. Biogeogr. 2005, 14, 395–410. [Google Scholar] [CrossRef]
- Armbruster, S.W.; Rae, D.A.; Edwards, M.E. Topographic complexity and terrestrial biotic response to high-latitude climate change: Variance is as important as the mean. In Arctic Alpine Ecosystems and People in a Changing Environment; Springer: Berlin, Germany, 2007; Volume 7, pp. 105–121. [Google Scholar]
- Cullen, L.E.; Palmer, J.; Duncan, R.P.; Stewart, G.H. Climate change and tree-ring relationships of Nothofagus menziesii tree-line forests. Can. J. For. Res. 2001, 31, 1981–1991. [Google Scholar] [CrossRef]
- Cullen, L.E.; Stewart, G.H.; Duncan, R.P.; Palmer, J.G. Disturbance and climate warming influences on New Zealand Nothofagus tree-line population dynamics. J. Ecol. 2001, 89, 1061–1071. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Q.; Ma, K. Treeline dynamics in relation to climatic variability in the central Tianshan Mountains, northwestern China. Glob. Ecol. Biogeogr. 2006, 15, 406–415. [Google Scholar] [CrossRef]
- Stankoviansky, M.; Barka, I. Geomorphic response to environmental changes in the Slovak Carpathians. Studia Geomorphologica Carpatho-Balcanica 2007, 41, 5–28. [Google Scholar]
- Sitko, I.; Troll, M. Timberline changes in relation to summer farming in the western Chornohora (Ukrainian Carpathians). Mt. Res. Dev. 2008, 28, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Vitali, A.; Garbarino, M.; Camarero, J.J.; Malandra, F.; Toromani, E.; Spalevic, V.; Čurović, M.; Urbinati, C. Pine recolonization dynamics in Mediterranean human-disturbed treeline ecotones. For. Ecol. Manag. 2019, 435, 28–37. [Google Scholar] [CrossRef]
- Vitali, A.; Camarero, J.J.; Garbarino, M.; Piermattei, A.; Urbinati, C. Deconstructing human-shaped treelines: Microsite topography and distance to seed source control Pinus nigra colonization of treeless areas in the Italian Apennines. For. Ecol. Manag. 2017, 406, 37–45. [Google Scholar] [CrossRef]
- Beniston, M. The effect of global warming on mountain regions: A summary of the 1995 report of the Intergovernmental Panel on Climate Change. Global change and protected areas. Adv. Clim. Chang. Res. 2001, 9, 155–185. [Google Scholar]
- Kullman, L.; Oberg, L. Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: A landscape ecological perspective. J. Ecol. 2009, 97, 415–429. [Google Scholar] [CrossRef]
- Holtmeier, F.-K. Geoökologische Beobachtungen und Studien an der subarktischen und alpinen Waldgrenze in vergleichender Sicht (nördliches Fennoskandien/Zentralalpen). In Erdwissenschaftliche Forschung; Steiner Verlag: Wiesbaden, Germany, 1974; Volume 8. [Google Scholar]
- Holtmeier, F.-K. Introduction to the Upper Engadine and its forest. In Proceedings of The International Workshop on Subalpine Stone Pines and Their Environment: The Status of Our Knowledge, St. Moritz, Switzerland, 5–11 September 1992; General Technical Report, INT-GTR-309; Schmidt, W.C., Holtmeier, F.-K., Eds.; USDA Forest Service, Intermountain Research Station: Ogden, UT, USA, 1994; pp. 9–17. [Google Scholar]
- Holtmeier, F.-K. Ecological aspects of climatically-caused timberline fluctuations. In Mountain Environments in Changing Climates; Beniston, M., Ed.; Routledge: London, UK, 1994; pp. 220–233. [Google Scholar]
- Holtmeier, F.-K. Mountain Timberlines—Ecology, Patchiness, and Dynamics, Advances in Global Change Research; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; Volume 14, p. 384. [Google Scholar]
- Oksanen, L.; Moen, J.; Helle, T. Timberline patterns in northernmost Fennoscandia. Relative importance of climate and grazing. Acta Bot. Fenn. 1995, 153, 93–105. [Google Scholar]
- Aas, B.; Faarlund, T. The present and the Holocene birch belt in Norway. In Paleoclimate Research; Frenzel, B., Alm, V., Eds.; Fischer: Innsbruck, Austria, 1996; pp. 19–42. [Google Scholar]
- French, D.D.; Miller, G.R.; Cummins, R.R. Recent development of high altitude Pinus sylvestris scrub in the northern Cairngorm Mountains, Scotland. Biol. Conserv. 1997, 79, 133–144. [Google Scholar] [CrossRef]
- Stützer, A. Die Wald—Und Baumgrenze der Saualpe: Ein Vergleich alter und neuer Bilder. Forstwiss Centralbl 2000, 119, 20–31. [Google Scholar] [CrossRef]
- Stützer, A. Zwischen subalpinem Wald und alpiner Tundra. Eine Studie zur Struktur und Dynamik des Fichten-Waldes auf der Saualpe (Kärnten). Wulfenia 2002, 9, 89–104. [Google Scholar]
- Bryn, A.; Daugstad, K. Summer Farming in the subalpine Birch Forest, Nordic Mountain Birch Ecosystem. UNESCO Man Biosph. Ser. 2001, 27, 307–315. [Google Scholar]
- Müterthies, A. Struktur und Dynamik der oberen Grenze des Lärchen-Arvenwaldes im Bereich aufgelassener Alpweiden im. Oberengadin. Bachelor’ Thesis, Institut für Landschaftsökologie, Westfälische Wilhelms-Universität,, Münster, Germany, 2002. [Google Scholar]
- Müterthies, A. The potential timberline: Determination with dendrochronological methods. TRACE—Tree rings in archaeology, climatology and ecology 1. In Proceedings of the Dendro-Symposium 2003, Bonn, Germany, 11–13 April 2003; pp. 94–100. [Google Scholar]
- Ameztegui, A.; Coll, L.; Brotons, L.; Ninot, J.M. Land-use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees. Glob. Ecol. Biogeogr. 2016, 25, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Piermattei, A.; Lingua, E.; Urbinati, C.; Garbarino, M. Pinus nigra anthropogenic treelines in the central Apennines show common pattern of tree recruitment. Eur. J. For. Res. 2016, 135, 1119–1130. [Google Scholar] [CrossRef]
- Kozak, J. Forest cover change in the western Carpathians in the past 180 years: A case study in the Orawa region in Poland. Mt. Res. Dev. 2003, 23, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Wężyk, P.; Guzik, M. The Use of Photogrammetry-GIS (P-GIS) for the Analysis of Changes in the Tatra Mountains’ Natural Environment; Widacki, W., Bytnerowicz, A., Riebau, A. , Eds.; A message from the Tatra. Geographical Information Systems and Remote Sensing in Mountain Environmental Research; Jagiellonian University Press—USDA Forest Service: Kraków, Poland; Riverside, CA, USA, 2014; pp. 31–46.
- Dezső, Z.; Pongracz, R.; Bartholy, J.; Barcza, Z. Analysis of land-use/land-cover change in the Carpathian Region based on remote sensing techniques. Phys. Chem. Earth 2005, 30, 109–115. [Google Scholar] [CrossRef]
- Paterek, A.; Olędzki, J.R. Changes of the limits associations of vegetation in the Tatra Mountains during 1977–1999 [in Polish with English abstract]. Teledetekcja Środowiska 2005, 36, 106–118. [Google Scholar]
- Mihai, B.; Savulescu, I.; Sandric, I. Change detection analysis (1986–2002) of vegetation cover in Romania: A study of alpine, subalpine, and forest landscapes in the Iezer Mountains, Southern Carpathians. Mt. Res. Dev. 2007, 27, 250–258. [Google Scholar] [CrossRef]
- Kricsfalusy, V.; Mróz, W.; Popov, S. Historical changes of the upper tree line in the Carpathian Mountains (Ukraine). Mt. Forum Bull. 2008, 8, 15–17. Available online: http://lib.icimod.org/record/12763/files/1087.pdf (accessed on 3 August 2019).
- Popa, I.; Kern, Z. Long-term summer temperature reconstruction inferred from tree ring records from the Eastern Carpathians. Clim. Dyn. 2008, 32, 1107–1117. [Google Scholar] [CrossRef]
- Shandra, O.; Weisberg, P.; Martazinova, V. Influences of Climate and Land Use History on Forest and Timberline Dynamics in the Carpathian Mountains During the Twentieth Century. In The Carpathians: Integrating Nature and Society Towards Sustainability, Environmental Science and Engineering; Kozak, J., Katarzyna, O., Bytnerowicz, A., Wyżga, B., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2013; pp. 209–293. [Google Scholar]
- Martazinova, V.; Ivanova, O.; Shandra, O. Climate and treeline dynamics in the Ukrainian Carpathians Mts. Folia Oecologica 2011, 38, 65–71. [Google Scholar]
- Kolischuk, V. Suchasna Verhnya Meja Lisu v Ukrainskyh Karpatah; Сучасна верхня межа лісу в Українських Карпатах—Today is the upper boundary of the forest in the Ukrainian Carpathians—In English; Vydavnytstvo Akademii Nauk URSR: Kyiv, Ukraine, 1958; p. 47. [Google Scholar]
- Kozak, J. Land Use Change in the Northern Carpathians, Alpine space—Man & environment. In Global Change and Sustainable Development in Mountain Regions; Jandl, R., Borsdorf, A., Van Miegroet, H., Lackner, R., Psenner, R., Eds.; Innsbruck University Press: Innsbruck, Austria, 2009; Volume 7, pp. 94–96. [Google Scholar]
- UNEP. Carpathians Environment Outlook (KEO). 2007. Available online: https://www.unep.org/resources/report/carpathians-environment-outlook-2007 (accessed on 23 November 2019).
- Kucsicsa, G.; Balteanu, D. The influence of man-induced land-use change on the upper forest limit in the Romanian Carpathians. Eur. J. For. Res. 2020, 139, 893–914. [Google Scholar] [CrossRef]
- Management Plan of Rodna Mountains National Park. 2017. Available online: http://mmediu.ro/app/webroot /uploads/files /Anexa_1_Planul_de_management_al_PNMR.pdf, (accessed on 6 December 2019).
- Ielenicz, M.; Pătru, I. Geografia Fizică a Romaniei (Physical Geography of Romania); University Publishing House: Bucharest, Romania, 2005; p. 256. (In Romanian) [Google Scholar]
- Corine Land Cover data of 2018. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 3 December 2019).
- Kucsicsa, G. Considerations on the timberline in the Rodna Mountains National Park. Rev. Roum. Géogr. Rom. Journ. Geogr. 2011, 55, 57–61. [Google Scholar]
- Feurdean, A.; Gałka, M.; Tanţău, I.; Geantă, A.; Hutchinson, S.M.; Hickler, T. Tree and timberline shifts in the northern Romanian Carpathians during the Holocene and the responses to environmental changes. Quat. Sci. Rev. 2016, 134, 100–113. [Google Scholar] [CrossRef]
- National Institute of Statistics, TEMPO ONLINE Database. Available online: http://statistici.insse.ro:8077/tempo-online/#/pages/tables/insse-table (accessed on 6 October 2019).
- Van der Maarel, E. Ecologische Aspecten van de Grondwaterhuishouding in Oost-Gelderland, Rep; Commissie Bestudering Waterhuishouding Gelderland: Arnhem, Germany, 1975; p. 30. [Google Scholar]
- Tinner, W.; Theurillat, J.P. Uppermost limit, extent, and fluctuations of the timberline and treeline ecocline in the Swiss Central Alps during the past 11500 Years. Arct. Antarct. Alp. Res. 2003, 35, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Set 1 of Maps from 1887. Übersichtsblatt der Spezialkarte der Österreichisch-Ungarischen Monarchie 1:75.000. Available online: https://mapire.eu/en/map/thirdsurvey75000/?layers=here-aerial%2C43&bbox=2743367.7110242564%2C6034629.643873994%2C2794924.486602608%2C6049917.049531029 (accessed on 6 October 2019).
- Set 2 of Maps from 1921. Planurile Directoare de Tragere (Romanian Military Maps) 1:20.000. Available online: http://www.geo-spatial.org/download /planurile-directoare-de-tragere (accessed on 17 March 2016).
- Set 3 of Maps from 1945. Middle Danube 1: 100.000 Army Map Service Wasington DC1944. Available online: http://maps.mapywig. org/m/ALLIED_maps/series/AMS_M641A_GSGS4416_Central _Europe_ 100K/ AMS_M671S_GSGS_4416_Middle_Danube_100K_Y-19_Borsa_ 1944.jpg (accessed on 24 October 2016).
- Set 4 of maps from 1961. Archive of the library of the Department of Geography, Faculty of History and Geography, Stefan cel Mare University of Suceava. Topographic Maps of Romania. Ministry of Armed Forces of the People’s Republic of Romania, Military Topographic Directorate, 1:25.000 (accessed several times during 2016–2020). (in file)
- Set 5 of maps from 1984. Archive of the library of the Department of Geography, Faculty of History and Geography, Stefan cel Mare University of Suceava. Topographic Maps of Romania. Ministry of Armed Forces of the Socialist Republic of Romania. Military Topographic Directorate. Second edition. 1:25.000 (accessed several times during 2016–2020). (in file)
- Set 1 of Aerial Photographs (Ortophotoplans) from 2012. ANCPI. Available online: http://geoportal.ancpi. ro/ geoportal/imobile /Harta.html (accessed on 26 October 2017).
- Set 2 of Aerial Photographs (Ortophotoplans) from 2018. ANCPI. Available online: http://geoportal. ancpi.ro/geoportal/imobile/ Harta.html (accessed on 6 September 2019).
- MODIS Database from 2018. Available online: https://earthobservatory.nasa.gov/global-maps /MOD14A1_M_FIRE (accessed on 9 November 2019).
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Salmi, T.; Maatta, A.; Anttila, P.; Airola, T.R.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates: The Excel Template Application Makesens, Finnish Meteorological Institute. Publ. Air Qual. 2002, 31, 1–35. [Google Scholar]
- CRU TS Version 4.02. Available online: https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.02/ (accessed on 2 November 2019).
- Brinkmann, W. Growing season length as an indicator of climatic variations. Clim. Chang. 1979, 2, 127–138. [Google Scholar] [CrossRef]
- Liang, E.; Camarero, J.J. Threshold-dependent and non-linear associations between temperature and tree growth at and below the alpine treeline. Trees 2018, 32, 661–662. [Google Scholar] [CrossRef]
- Morariu, T. Viaţa pastorală din Munţii Rodnei, in Romanian (Pastoral life in the Rodnei Mountains)—In Romanian. Societatea Regală Română de Geografie. Studii şi Cercet. Geogr. 1937, II, 240. [Google Scholar]
- Miron, M.S. Cercetări Privind Mecanismele de Adaptare Ale Unor Specii de Conifere la SchimbăRile Climatice (Research on the Mechanisms of Ad-Aptation of Some Species of Conifers to Climate Change). Ph.D. Thesis, Banat University of Agricultural Sciences and Veterinary Medicine’ King Mihai I of Romania from Timisoara, Timisoara, Romania, 2019. (In Romanian). [Google Scholar]
- Popa, I. Fundamente Metodologice şi AplicaţII de Dendrocronologie (Methodological Foundations and Dendrochronology Applications); Forestry Technical Publishing House: Bucharest, Romania, 2003; p. 194. [Google Scholar]
- Kozak, J.; Estreguil, C.; Troll, M. Forest cover changes in the northern Carpathians in the 20th century: A slow transition. J. Land Use Sci. 2007, 22, 127–146. [Google Scholar] [CrossRef]
- Coldea, G. Munţii Rodnei. Studiu Geobotanic (Rodnei Mountains. Geobotanical Study); Academy Publishing House: Bucharest, Romania, 1990; p. 183. [Google Scholar]
- Florescu, G.; Vannière, B.; Feurdean, A. Exploring the influence of local controls on fire activity using multiple charcoal records from northern Romanian Carpathians. Quat. Int. 2018, 488, 41–57. [Google Scholar] [CrossRef]
- Florescu, G.; Brown, K.J.; Carter, V.A.; Feurdean, A. Holocene rapid climate changes and ice-rafting debris events reflected in high-resolution European charcoal records. Quat. Sci. Rev. 2019, 222, 105877. [Google Scholar] [CrossRef]
- Haliuc, A.; Hutchinson, S.M.; Florescu, G.; Feurdean, A. The role of fire in landscape dynamics: An example of two sediment records from the Rodna Mountains, northern Romanian Carpathians. Catena 2016, 137, 432–440. [Google Scholar] [CrossRef]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Lazpita Gutierrez, J.; Gibon, A. Agricultural abandonment in mountainareas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Hunziker, M. The spontaneous reafforestation in abandoned agricultural lands: Perception and aesthetic assessment by locals and tourists. Landsc. Urban. Plan. 1995, 31, 399–410. [Google Scholar] [CrossRef]
- Didier, L. Invasion patterns of European larch and Swiss stone pine in subalpine pastures in the French Alps. For. Ecol. Manag. 2001, 145, 67–77. [Google Scholar] [CrossRef]
- Motta, R.; Nola, P. Growth trends and dynamics in sub-alpine forest stands in the Varaita Valley (Piedmont, Italy) and their relationship with human activities and global change. J. Veg. Sci. 2001, 12, 219–230. [Google Scholar]
- Bunce, R.G.H.; Pérez-Soba, M.; Jongman, R.H.G.; Gómez Sal, A.; Herzog, F.; Austad, I. Transhumance and Biodiversity in European Mountains; Report from the EU-FP5 Project TRANSHUMOUNT A review of the role of transhumance in mountain ecosystem processand dynamics (EVK2-CT-2002-80017); Wageningen Environmental Research (Alterra): Wageningen, The Netherlands, 2004; pp. 25–29. [Google Scholar]
- Rybníčková, E.; Rybníček, K. Czech and Slovak Republics. Palaeoecological Events During the Last 15,000 Years. In Regional Syntheses of Palaeoecological Studies of Lakes and Mires in Europe; Berglund, B.E., Birks, H.J.B., Ralskajasiewiczowa, M., Wright, H.E., Eds.; John Wiley & Sons: Chichester, UK, 1996; pp. 473–505. [Google Scholar]
- Jones, P.D.; Briffa, K.R.; Barnett, T.P.; Tett, S.F.B. High resolution palaeoclimatic records for the last millennium: Integration, interpretation and comparison with General Circulation Model control run temperatures. Holocene 1998, 8, 455–471. [Google Scholar] [CrossRef]
- Mann, M.E.; Bradley, R.S. Northern Hemisphere Temperatures During the Past Millennium: Inferences, Uncertainties, and Limitations. Geophys. Res. Lett. 1999, 26, 759–762. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 1998, 115, 445–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grace, J.; Allen, S.J.; Wilson, C. Climate and the meristem temperatures of plant communities near the tree-line. Oecologia 1989, 79, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
J | F | M | A | M | J | J | A | S | O | N | D | Annual | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Average monthly temperature | −6.9 | −7.0 | −4.5 | 0.2 | 5.5 | 8.3 | 10.1 | 9.9 | 6.1 | 2.7 | −1.3 | −5.3 | 1.5 |
Average minimum temperature | −12.7 | −14.3 | −10.1 | −3.8 | 1.9 | 5.5 | 7.0 | 5.9 | −2.1 | −1.1 | −7.7 | −9.4 | −14.3 |
Measured monthly minima | −27.5 | −29.0 | −27.3 | −17.4 | −10.1 | −4.1 | −1.5 | −1.9 | −16.6 | −16.5 | −21.0 | −22.4 | −29.0 |
1961–2017 | 1976–2017 | |||||
---|---|---|---|---|---|---|
Time Series | Signific. | Sen’s Slope Estimate | °C/ Decade | Signific. | Sen’s Slope Estimate | °C/ Decade |
J | 0.024 | 0.24 | 0.016 | 0.16 | ||
F | * | 0.050 | 0.5 | 0.059 | 0.59 | |
M | 0.020 | 0.2 | 0.000 | 0 | ||
A | * | 0.030 | 0.3 | * | 0.057 | 0.57 |
M | + | 0.030 | 0.3 | + | 0.047 | 0.47 |
J | ** | 0.045 | 0.45 | *** | 0.075 | 0.75 |
J | *** | 0.054 | 0.54 | *** | 0.086 | 0.86 |
A | *** | 0.064 | 0.64 | *** | 0.094 | 0.94 |
S | 0.017 | 0.17 | * | 0.056 | 0.56 | |
O | 0.020 | 0.2 | 0.000 | 0 | ||
N | + | 0.036 | 0.36 | 0.025 | 0.25 | |
D | 0.018 | 0.18 | 0.018 | 0.18 | ||
Annual | *** | 0.029 | 0.29 | *** | 0.040 | 0.4 |
W | * | 0.027 | 0.27 | 0.019 | 0.19 | |
S | * | 0.025 | 0.25 | * | 0.032 | 0.32 |
S | *** | 0.051 | 0.51 | *** | 0.085 | 0.85 |
A | + | 0.021 | 0.21 | 0.029 | 0.29 | |
Oct-Mar | * | 0.019 | 0.19 | 0.012 | 0.12 | |
Apr-Sep | *** | 0.040 | 0.4 | *** | 0.068 | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihăilă, D.; Bistricean, P.-I.; Horodnic, V.-D. Drivers of Timberline Dynamics in Rodna Montains, Northern Carpathians, Romania, over the Last 131 Years. Sustainability 2021, 13, 2089. https://doi.org/10.3390/su13042089
Mihăilă D, Bistricean P-I, Horodnic V-D. Drivers of Timberline Dynamics in Rodna Montains, Northern Carpathians, Romania, over the Last 131 Years. Sustainability. 2021; 13(4):2089. https://doi.org/10.3390/su13042089
Chicago/Turabian StyleMihăilă, Dumitru, Petruț-Ionel Bistricean, and Vasilică-Dănuț Horodnic. 2021. "Drivers of Timberline Dynamics in Rodna Montains, Northern Carpathians, Romania, over the Last 131 Years" Sustainability 13, no. 4: 2089. https://doi.org/10.3390/su13042089
APA StyleMihăilă, D., Bistricean, P. -I., & Horodnic, V. -D. (2021). Drivers of Timberline Dynamics in Rodna Montains, Northern Carpathians, Romania, over the Last 131 Years. Sustainability, 13(4), 2089. https://doi.org/10.3390/su13042089