One Year Residual Effect of Sewage Sludge Biochar as a Soil Amendment for Maize in a Brazilian Oxisol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Production
2.2. Field Trial Area and Experimental Design
2.3. Mineral Fertilizer Application
2.4. Biochar Application
2.5. Planting and Maize Harvest
2.6. Plant Collection and Analysis
2.7. Soil Sampling and Analysis
2.8. Statistical Analyses
3. Results and Discussion
3.1. Physicochemical Properties of Feedstock, Biochar, and Soil
3.2. Nutrient Uptake by Maize
3.3. Maize Grain Yield
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jindo, K.; Hernández, T.; García, C.; Sánchez-Monedero, M.A. Influence of stability and origin of organic amendments on humification in semiarid soils. Soil Sci. Soc. Am. J. 2011, 75, 2178–2187. [Google Scholar] [CrossRef]
- Wang, Q.; Shaheen, S.M.; Jiang, Y.; Li, R.; Slaný, M.; Abdelrahman, H.; Kwon, E.; Bolan, N.; Rinklebe, J.; Zhang, Z. Fe/Mn- and P-modified drinking water treatment residuals reduced Cu and Pb phytoavailability and uptake in a mining soil. J. Hazard. Mater. 2021, 403. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Nieto, A.; Méndez, A.; Askeland, M.; Gascó, G. Biochar from biosolids pyrolysis: A review. Int. J. Environ. Res. Public Health 2018, 15, 956. [Google Scholar] [CrossRef] [Green Version]
- Paneque, M.; De La Rosa, J.M.; Kern, J.; Reza, M.T.; Knicker, H. Hydrothermal carbonization and pyrolysis of sewage sludges: What happen to carbon and nitrogen? J. Anal. Appl. Pyrolysis 2017, 128, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Song, X.D.; Xue, X.Y.; Chen, D.Z.; He, P.J.; Dai, X.H. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere 2014, 109, 213–220. [Google Scholar] [CrossRef]
- Krueger, B.C.; Fowler, G.D.; Templeton, M.R.; Moya, B. Resource recovery and biochar characteristics from full-scale faecal sludge treatment and co-treatment with agricultural waste. Water Res. 2020, 169. [Google Scholar] [CrossRef]
- Agrafioti, E.; Bouras, G.; Kalderis, D.; Diamadopoulos, E. Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrol. 2013, 101, 72–78. [Google Scholar] [CrossRef]
- Mclennon, E.; Solomon, J.K.Q.; Neupane, D.; Davison, J. Biochar and nitrogen application rates effect on phosphorus removal from a mixed grass sward irrigated with reclaimed wastewater. Sci. Total Environ. 2020, 715. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, R.; Shakoor, A.; Abdullah, M.; Arooj, A.; Hussain, A.; Xing, S. Impact of integrated application of biochar and nitrogen fertilizers on maize growth and nitrogen recovery in alkaline calcareous soil. Soil Sci. Plant Nutr. 2017, 63, 488–498. [Google Scholar] [CrossRef]
- Figueiredo, C.C.; Wickert, E.G.; Vieira Neves, H.C.; Coser, T.R.; Paz-Ferreiro, J. Sewage sludge biochar increases nitrogen fertilizer recovery: Evidence from a 15N tracer field study. Soil Use Manag. 2020. [Google Scholar] [CrossRef]
- Faria, W.M.; Figueiredo, C.C.; Coser, T.R.; Vale, A.T.; Schneider, B.G. Is sewage sludge biochar capable of replacing inorganic fertilizers for corn production? Evidence from a two-year field experiment. Arch. Agron. Soil Sci. 2018, 64, 505–519. [Google Scholar] [CrossRef]
- Sousa, A.A.T.C.; Figueiredo, C.C. Sewage sludge biochar: Effects on soil fertility and growth of radish. Biol. Agric. Hortic. 2016, 32, 127–138. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, T.; Wang, Y.; Chen, Y.; Lei, T. Sewage sludge biochar: Nutrient composition and its effect on the leaching of soil nutrients. Geoderma 2016, 267, 17–23. [Google Scholar] [CrossRef]
- Tian, X.; LI, C.; Zhang, M.; Wan, Y.; Xie, Z.; Chen, B.; Li, W. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield. PLoS ONE 2018, 13, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; Van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- Glaser, B.; Lehr, V.-I. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, H.; Lu, T.; Huang, H.; Zhao, D.; Kobayashi, N.; Chen, Y. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. J. Anal. Appl. Pyrolysis 2015, 112, 284–289. [Google Scholar] [CrossRef]
- Li, F.; Liang, X.; Niyungeko, C.; Sun, T.; Liu, F.; Arai, Y. Effects of biochar amendments on soil phosphorus transformation in agricultural soils. Adv. Agron. 2019. [Google Scholar] [CrossRef]
- Frišták, V.; Pipíška, M.; Soja, G. Pyrolysis treatment of sewage sludge: A promising way to produce phosphorus fertilizer. J. Clean Prod. 2018, 172, 1772–1778. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P.; Charmas, B.; Skubiszewska-Zięba, J.; Pasieczna-Patkowska, S. Effect of sewage sludge properties on the biochar characteristic. J. Anal. Appl. Pyrolysis 2015, 112, 201–213. [Google Scholar] [CrossRef]
- Bach, M.; Wilske, B.; Breuer, L. Current economic obstacles to biochar use in agriculture and climate change mitigation. Carbon Manag. 2016, 7, 183–190. [Google Scholar] [CrossRef]
- Nielsen, S.; Joseph, S.; Ye, J.; Chia, C.; Munroe, P.; Van Zwieten, L.; Thomas, T. Crop-season and residual effects of sequentially applied mineral enhanced biochar and N fertilizer on crop yield, soil chemistry and microbial communities. Agric. Ecosyst. Environ. 2018, 255, 52–61. [Google Scholar] [CrossRef]
- Figueiredo, C.C.; Pinheiro, T.D.; Zacanaro de Oliveira, L.E.; Araujo, A.S.; Coser, T.R.; Paz-Ferreiro, J. Direct and residual effect of biochar derived from biosolids on soil phosphorus pools: A four-year field assessment. Sci. Total Environ. 2020, 739. [Google Scholar] [CrossRef]
- USEPA. Method 3050B Acid Digestion of Sediments, Sludges, and Soils. 1996. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-3050b-aciddigestion-sediments-sludges-and-soils (accessed on 21 January 2018).
- Da Silva, F.C. Manual de Análises Químicas de Solos, Plantas e Fertilizantes, 2nd ed.Embrapa Informação Tecnológica: Brasília, Brazil, 2009; 627p. (In Portuguese) [Google Scholar]
- Bremner, J.M.; Keeney, D.R. Steam distillation methods for determination of ammonium, nitrate and nitrite. Anal. Chim. Acta 1965, 32, 485–495. [Google Scholar] [CrossRef]
- Swift, R.S. Organic Matter Characterization. In Methods of Soil Analysis Part 3—Chemical Methods. Soil Science Society of America; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; American Society of Agronomy: Madison, WI, USA, 1996; pp. 1011–1069. [Google Scholar] [CrossRef]
- Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Chagas, J.K.M.; Figueiredo, C.C.; Silva, J.; Shah, K.; Paz-Ferreiro, J. Long term effects of sewage sludge derived biochar on the accumulation and availability of trace elements in a tropical soil. J. Environ. Qual. 2020. [Google Scholar] [CrossRef]
- Davidson, K.; Guttman, N.; Ropelewski, C.; Canfield, N.C.; Spackman, E.; Gullett, D. Calculation of Monthly and Annual 30-Year Standard Normals; World Meteorological Organization: Washington, DC, USA, 1989; pp. 1–11. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- World Reference Base for Soil Resources; Report 103; IUSS: Rome, Italy, 2006. [CrossRef]
- Dos Santos, H.G.; Jacomine, P.T.; Dos Anjos, L.H.; De Oliveira, V.Á.; Lumbreras, J.F.; Coelho, M.R.; De Almeida, J.A.; de Araujo Filho, J.C.; De Oliveira, J.B.; Cunha, T.J. Brazilian Soil Classification System; Embrapa: Rio de Janeiro, Brazil, 2013; 353p. [Google Scholar]
- Matsumoto, K.; Sato, S.; Fujita, T.; Sánchez-Monedero, M.A.; Kindo, K. Effect of charcoal-blended compost on plant growth of Brassica rapa var. peruviridis for reduction of nitrogen fertilizer use. Acta Hortic. 2016. [Google Scholar] [CrossRef]
- Singh, R.; Singh, P.; Singh, H.; Raghubanshi, A.S. Impact of sole and combined application of biochar, organic and chemical fertilizers on wheat crop yield and water productivity in a dry tropical agro-ecosystem. Biochar 2019, 1, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Malavolta, E.; Vitti, G.C.; Oliveira, A.S. Avaliação do Estado Nutricional das Plantas: Princípios e Aplicações; Associação Brasileira para Pesquisa da Potassa e do Fosfato: Piracicaba, Brazil, 1989. [Google Scholar]
- Coelho, A.M.; França, G.E.; Pitta, G.V.E.; Alves, V.M.C. Cultivo do Milho—Diagnose Foliar do Estado Nutricional da Planta; Comunicado Técnico 45; EMBRAPA: Sete Lagoas, Brazil, 2002. [Google Scholar]
- Teixeira, P.C.; Dobagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise do Solo. Manual de Métodos de Análise do Solo, 3rd ed.; Teixeira, P.C., Dobagemma, G.K., Fontana, A., Teixeira, W.G., Eds.; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- Addinsoft. Xlstat 2013: Statistical Software to MS Excel; Addinsoft: New York, NY, USA, 2013. [Google Scholar]
- Tarelho, L.A.C.; Hauschild, T.; Vilas-Boas, A.C.M.; Silva, D.F.R.; Matos, M.A.A. Biochar from pyrolysis of biological sludge from wastewater treatment. Energy Rep. 2020, 6, 757–763. [Google Scholar] [CrossRef]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Menderero, M.A.; Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 2014, 11, 6613–6621. [Google Scholar] [CrossRef] [Green Version]
- Zancanaro de Oliveira, L.E.; Nunes, R.S.; Sousa, D.M.G.; Figueiredo, C.C. Dynamics of residual phosphorus forms under different tillage systems in a Brazilian Oxisol. Geoderma 2020, 367. [Google Scholar] [CrossRef]
- Figueiredo, C.; Lopes, H.; Coser, T.; Vale, A.; Busato, J.; Aguiar, N.; Novotny, E.; Canellas, L. Influence of pyrolysis temperature on chemical and physical properties of biochar from sewage sludge. Arch. Agron. Soil Sci. 2018, 64, 881–889. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y.; Ren, L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 2014, 164, 47–54. [Google Scholar] [CrossRef]
- Zhang, J.; Lü, F.; Zhang, H.; Shao, L.; Chen, D.; He, P. Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Collivignarelli, M.C.; Canato, M.; Abba, A.; Miino, M.C. Biosolids: What are the different types of reuse? J. Clean. Prod. 2019, 238. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.K.; Strezov, V.V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Pavinato, P.S.; Withers, P.J.A.; Teles, A.P.B.; Herrera, W.F.B. Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna. Sci. Total Environ. 2016, 542, 1050–1061. [Google Scholar] [CrossRef]
- Xu, G.; Sun, J.N.; Shao, H.B.; Chang, S.X. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol. Eng. 2014, 62, 54–60. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Mete, F.Z.; Mia, S.; Dijkstra, F.A.; Abuyusuf, M.; Hossain, A.S.M.I. Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil. Pedosphere 2015, 25, 713–719. [Google Scholar] [CrossRef]
- Adhikari, A.; Gascó, G.; Méndez, A.; Surapaneni, A.; Jegatheesan, V.; Shah, K.; Paz-Ferreiro, J. Influence of pyrolysis parameters on phosphorus fractions of biosolids derived biochar. Sci. Total Environ. 2019, 695. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Speir, R.A.; Harris, K.; Das, K.C.; Lee, R.D.; Morris, L.A.; Fisher, D.S. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J. 2010, 102, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.E.; Wang, D.; Parikh, S.J.; Scow, K.M. Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment. Agric. Ecosyst. Environ. 2017, 236, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Chen, C.; Chen, X.; Jiang, F.; Hopkins, I.; Zhang, X.; Han, Z.; Billy, G.; Benavides, J. Soil acidity, available phosphorus content, and optimal biochar and nitrogen fertilizer application rates: A five-year field trial in upland red soil, China. Field Crops Res. 2019, 232, 77–87. [Google Scholar] [CrossRef]
- Luo, Y.; Durenkamp, M.; De Nobili, M.; Lin, Q.; Brookes, P.C. Short term soil priming effects and the mineralization of biochar following its incorporation to soils of different pH. Soil Biol. Biochem. 2011, 43, 2304–2314. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Xu, R.-K.; Qian, W.; Wang, R.-H. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J. Soils Sediments 2011, 11, 741–750. [Google Scholar] [CrossRef]
- Kirchmann, H.; Börjesson, G.; Kätterer, T.; Cohen, Y. From agricultural use of sewage sludge to nutrient extraction: A soil science outlook. Ambio 2017, 46, 143–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajayi, A.E.; Holthusen, D.; Horn, R. Changes in microstructural behavior and hydraulic functions of biochar amended soils. Soil Till. Res. 2016, 155, 166–175. [Google Scholar] [CrossRef]
- Zornoza, R.; Moreno-Barriga, F.; Acosta, J.A.; Muñoz, M.A.; Faz, A. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 2016, 144, 122–130. [Google Scholar] [CrossRef]
- Jien, S.H.; Wang, C.S. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 2013, 110, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Tang, Y. Speciation dynamics of phosphorus during (Hydro)thermal treatments of sewage sludge. Environ. Sci. Technol. 2015, 49, 14466–14474. [Google Scholar] [CrossRef] [PubMed]
- Mackay, J.E.; Cavagnaro, T.R.; Jakobsen, I.; Macdonald, L.M.; Grønlund, M.; Thomsen, T.P.; Müller-Stöver, D.S. Evaluation of phosphorus in thermally converted sewage sludge: P pools and availability to wheat. Plant Soil 2017, 418, 307–317. [Google Scholar] [CrossRef]
- Xu, G.; Shao, H.; Zhang, Y.; Junna, S. Non-additive effects of biochar amendments on soil phosphorus fractions in two contrasting soils. Land Degrad. Dev. 2018, 29, 2720–2727. [Google Scholar] [CrossRef]
- Slaný, M.; Jankovič, L.; Madejová, J. Structural characterization of organo-montmorillonites prepared from a series of primary alkylamines salts: Mid-IR and near-IR study. Appl. Clay Sci. 2019, 176, 11–20. [Google Scholar] [CrossRef]
- Murphy, P.N.C.; Stevens, R.J. Lime and gypsum as source measures to decrease phosphorus loss from soils to water. Water Air Soil Pollut. 2010, 212, 101–111. [Google Scholar] [CrossRef]
- Deluca, T.H.; Gundale, M.F.; Mackenzie, M.D.; Gundale, M.J. Bio-Char Effects on Soil Nutrient Transformation. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Stephen, J., Eds.; Earthscan: London, UK, 2009; pp. 251–270. [Google Scholar]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Islami, T.; Kurniawan, S.; Utomo, H.W. Yield stability of cassava (Manihot esculenta Crantz) planted in intercropping system after 3 years of biochar application. Am. J. Sustain. Agric. 2013, 7, 349–355. [Google Scholar]
- Jones, D.L.; Rousk, J.; Edwards-Jones, G.; Deluca, T.H.; Murphy, D.V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 2012, 45, 113–124. [Google Scholar] [CrossRef]
- Liang, F.; Li, G.; Lin, Q.; Zhao, X. Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil. J. Integr. Agric. 2014, 13, 525–532. [Google Scholar] [CrossRef]
- Pandit, N.R.; Mulder, J.; Hale, S.E.; Zimmerman, A.R.; Pandit, B.H.; Cornelissen, G. Multi-year double cropping biochar field trials in Nepal: Finding the optimal biochar dose through agronomic trials and cost-benefit analysis. Sci. Total Environ. 2018, 637–638, 1333–1341. [Google Scholar] [CrossRef]
Property a | Unity | SS | SSB300 | SSB500 | Soil |
---|---|---|---|---|---|
pH (CaCl2) | − | 4.8 ± 0.4 | 5.8 ± 0.2 | 6.5 ± 0.3 | 4.9 |
C | % | 21.0 ± 0.4 | 23.4 ± 0.4 | 19.0 ± 0.2 | 1.98 b |
H | % | 4.2 ± 0.1 | 3.6 ± 0.1 | 1.7 ± 0.1 | nd |
N | % | 3.0 ± 0.1 | 3.3 ± 0.1 | 2.3 ± 0.1 | nd |
C/N | − | 7.0 ± 0.1 | 7.0 ± 0.1 | 8.3 ± 0.1 | nd |
P | g kg−1 | 35.7 ± 2.8 | 41.1 ± 3.2 | 61.3 ± 5.6 | 0.0023 c |
K | g kg−1 | 0.8 ± 0.1 | 1.1 ± 0.1 | 1.3 ± 0.1 | 0.061 |
Ca | g kg−1 | 6.6 ± 0.2 | 6.7 ± 0.2 | 8.2 ± 0.3 | 1.908 |
Mg | g kg−1 | 0.8 ± 0.1 | 1.8 ± 0.1 | 1.7 ± 0.1 | 0.418 |
S | g kg−1 | 6.7 ± 0.2 | 15.1 ± 1.0 | 7.4 ± 0.4 | nd |
PV | mL g−1 | 0.022 ± 0.001 | 0.027 ± 0.001 | 0.053 ± 0.002 | nd |
SSA | m2 g−1 | 18.2 ± 1.2 | 20.2 ± 1.8 | 52.5 ± 4.3 | nd |
Volatile material | % (db) | 55.3 ± 3.4 | 36.8 ± 4.4 | 17.8 ± 0.6 | nd |
Ash | % (db) | 41.0 ± 3.7 | 56.6 ± 2.6 | 77.6 ± 0.6 | nd |
Fixed carbon | % (db) | 3.6 ± 1.3 | 6.5 ± 1.8 | 4.7 ± 0.1 | nd |
Yield | % | - | 86 ± 8 | 65 ± 4 | - |
Total Heavy Metal Content | |||||
Cd | mg kg−1 | 21 ± 8 | 24 ± 1 | 32 ± 1 | 19 ± 1 |
Co | mg kg−1 | 14 ± 1 | 16 ± 1 | 19 ± 2 | 22 ± 1 |
Cr | mg kg−1 | 86 ± 2 | 79 ± 3 | 121 ± 4 | 116 ± 3 |
Cu | mg kg−1 | 110 ± 2 | 152 ± 2 | 138 ± 3 | 6 ± 1 |
Mn | mg kg−1 | 82 ± 2 | 102 ± 1 | 128 ± 4 | 70 ± 4 |
Ni | mg kg−1 | 59 ± 5 | 50 ± 4 | 76 ± 2 | 23 ± 2 |
Pb | mg kg−1 | 142 ± 19 | 198 ± 2 | 193 ± 14 | 0.6 ± 1.4 |
Zn | mg kg−1 | 391 ± 2 | 446 ± 8 | 537 ± 2 | 24 ± 1 |
Available Heavy Metal Content | |||||
Cd | mg kg−1 | 4.1 ± 0.1 | 0.9 ± 0.2 | 1.6 ± 0.2 | 0.02 ± 0.03 |
Co | mg kg−1 | 0.7 ± 0.1 | 0.2 ± 0.1 | 0.4 ± 0.1 | 0.01 ± 0.01 |
Cr | mg kg−1 | 0.4 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.09 ± 0.04 |
Cu | mg kg−1 | 9.1 ± 0.2 | 3.9 ± 0.2 | 0.6 ± 0.2 | 0.39 ± 0.01 |
Mn | mg kg−1 | 17.9 ± 1.3 | 3.6 ± 0.7 | 3.8 ± 0.6 | 1.72 ± 0.09 |
Ni | mg kg−1 | 2.0 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.16 ± 0.01 |
Pb | mg kg−1 | 3.0 ± 0.1 | 1.3 ± 0.4 | 1.9 ± 0.8 | 0.53 ± 0.04 |
Zn | mg kg−1 | 61.1 ± 1.5 | 15.1 ± 0.3 | 16.1 ± 2.3 | 0.34 ± 0.17 |
Treatment | pH | K | Ca | Mg | ||||
---|---|---|---|---|---|---|---|---|
CaCl2 | mg kg−1 | cmolc kg−1 | ||||||
Control | 5.01 | ±0.34a | 48.90 | ±3.90b | 2.36 | ±0.53a | 0.57 | ±0.18a |
NPK | 5.21 | ±0.32a | 77.40 | ±16.05a | 2.88 | ±0.59a | 0.65 | ±0.24a |
SSB300 | 4.76 | ±0.54a | 48.83 | ±7.62b | 2.32 | ±1.28a | 0.53 | ±0.36a |
SSB300+NPK | 4.87 | ±0.21a | 77.06 | ±26.35a | 2.68 | ±0.59a | 0.46 | ±0.10a |
SSB500 | 5.18 | ±0.23a | 49.37 | ±7.97b | 2.87 | ±1.04a | 0.68 | ±0.31a |
SSB500+NPK | 4.77 | ±0.15a | 66.11 | ±14.29ab | 2.23 | ±0.60a | 0.46 | ±0.17a |
Treatments | N | P | K | |||
kg ha−1 | ||||||
Control | 52.44 | ±8.73c | 7.03 | ±0.23c | 62.11 | ±5.32c |
NPK | 170.70 | ±27.69ab | 12.29 | ±3.74abc | 138.73 | ±18.80ab |
SSB300 | 141.09 | ±39.37ab | 17.19 | ±4.09ab | 119.27 | ±30.32bc |
SSB300+NPK | 186.93 | ±50.78a | 21.87 | ±9.48a | 137.45 | ±52.96ab |
SSB500 | 110.92 | ±33.20c | 10.50 | ±0.87bc | 93.44 | ±7.042bc |
SSB500+NPK | 194.14 | ±26.52a | 21.65 | ±5.05a | 157.04 | ±43.72a |
Treatments | Ca | Mg | S | |||
kg ha−1 | ||||||
Control | 15.94 | ±3.23b | 12.95 | ±2.57b | 5.27 | ±0.79c |
NPK | 29.54 | ±1.11ab | 18.22 | ±1.25ab | 12.20 | ±3.73ab |
SSB300 | 36.88 | ±6.39a | 26.95 | ±8.80a | 11.51 | ±2.58ab |
SSB300+NPK | 33.11 | ±7.89a | 12.00 | ±6.45b | 13.42 | ±6.39ab |
SSB500 | 26.75 | ±3.37ab | 20.98 | ±3.81ab | 8.95 | ±0.55bc |
SSB500+NPK | 35.08 | ±11.07a | 17.12 | ±3.53ab | 16.33 | ±3.15a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fachini, J.; Coser, T.R.; Araujo, A.S.d.; Vale, A.T.d.; Jindo, K.; Figueiredo, C.C.d. One Year Residual Effect of Sewage Sludge Biochar as a Soil Amendment for Maize in a Brazilian Oxisol. Sustainability 2021, 13, 2226. https://doi.org/10.3390/su13042226
Fachini J, Coser TR, Araujo ASd, Vale ATd, Jindo K, Figueiredo CCd. One Year Residual Effect of Sewage Sludge Biochar as a Soil Amendment for Maize in a Brazilian Oxisol. Sustainability. 2021; 13(4):2226. https://doi.org/10.3390/su13042226
Chicago/Turabian StyleFachini, Joisman, Thais Rodrigues Coser, Alyson Silva de Araujo, Ailton Teixeira do Vale, Keiji Jindo, and Cícero Célio de Figueiredo. 2021. "One Year Residual Effect of Sewage Sludge Biochar as a Soil Amendment for Maize in a Brazilian Oxisol" Sustainability 13, no. 4: 2226. https://doi.org/10.3390/su13042226
APA StyleFachini, J., Coser, T. R., Araujo, A. S. d., Vale, A. T. d., Jindo, K., & Figueiredo, C. C. d. (2021). One Year Residual Effect of Sewage Sludge Biochar as a Soil Amendment for Maize in a Brazilian Oxisol. Sustainability, 13(4), 2226. https://doi.org/10.3390/su13042226