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Abstract: Nuisance faults are caused by weather events, which result in solar farms being discon-
nected from the electricity grid. This results in long stretches of downtime for troubleshooting as
data are mined manually for possible fault causes, and consequently, cost thousands of dollars in
lost revenue and maintenance. This paper proposes a novel fault detection technique to identify
nuisance faults in solar farms. To initialize the design process, a weather model and solar farm model
are designed to generate both training and testing data. Through an iterative design process, a fine
tree model with a classification accuracy of 96.7% is developed. The proposed model is successfully
implemented and tested in real-time through a server and web interface. The testbed is capable of
streaming in data from a separate source, which emulates a supervisory control and data acquisition
(SCADA) or weather station, then classifies the data in real-time and displays the output on another
computer (which imitates an operator control room).

Keywords: nuisance faults; photovoltaic farms; machine learning; fine tree classifier; supervisory
control and data acquisition (SCADA)

1. Introduction

The energy consumed in the form of electricity in Ontario is about 135 TWh per year [1].
This energy is currently derived using nuclear and fossil fuels and renewable sources (such
as wind and photovoltaic). The growing proliferation of renewable sources could limit
the dependence on fossil fuels, thus, reducing greenhouse gas emissions, which is a large
contributor to global warming and climate change [2]. Most of the photovoltaic (PV) farms
have a supervisory control and data acquisition (SCADA) system that is implemented to
collect voltage and current data. There is also a weather station on-site that collects various
weather information. All of these data can be analyzed during troubleshooting. Extreme
weather conditions such as high ambient temperatures, non-uniform shading, heavy snow,
and rain, and humidity can severely impact the energy harnessing of PV arrays [3]. Several
hours of generation may be lost by the time an issue is identified, resolved and a formal
report is submitted to the power system operator to which a PV farm is connected.

A PV fault is detected when there is an untypical output power reduction from the PV
array [4]. PV farms are prone to various fault types, such as partial shading [5], short-circuit
faults [6], open-circuit faults [7], and snow-rated faults [8]. A significant number of fault
alarms that go off are the result of some weather-rated scenarios, such as a hot breeze that
temporarily trips the ambient air temperature sensor found on the on-site weather station
of a PV farm. These kinds of faults are known as nuisance faults and cause the entire
system to be shut down even though there is no need to actually take the grid offline. Many
times, these nuisance faults will clear themselves before anyone arrives on-site, making
root cause analysis even more difficult, and thus, a nuisance. For the temporary faults,
only data mining will help find the cause of the problem. Although they are not critical
errors, a PV farm of size 10 MW sells about CAD 30,000 of electricity a day, so even an
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hour of downtime can reasonably exceed CAD 5000 of lost revenue at noon [9]. The CAD
5000/h loss is the combined loss of both revenues from not operating along with the cost of
sending three trucks with crew in them to the site to determine what went wrong. As solar
intensity is not constant across the entire day, noon is the most profitable time as it has the
most direct sunlight. While the farm makes nothing at night, a solar farm can make that
much revenue in an hour, given summer noon sunlight. This number was not an average,
but a worst-case scenario directly quoted from [9]. In Ontario, where solar subsidies are
high, rates of up to USD 0.50/kwh are not unheard of [10].

Machine learning can play a significant role in fault detection, classification, and
generation forecasting in PV farms [11,12]. In [13], a deep residual network model is
developed for photovoltaic arrays to detect partial shading, short-circuit, open circuit, and
degradation faults. An algorithm is developed based on artificial neural networks to detect
open and short-circuit circuit faults in PV farms [14]. Line-to-line faults are detected based
on support vector machine classifiers and multiresolution signal decomposition [15]. A
low-cost web server is implemented in [16] using ESP32 for manual monitoring PV panels.
However, the proposed system is not self-automated and does not feature intelligent moni-
toring or notification. In [17], a system for data collection from PV farms is implemented
to identify possible extreme meteorological phenomena, relying on data collected from
weather stations and other data sources that have access to the Internet. Using the mean
voltage of PV panels and voltage dips, a fault detection method is developed in [18] based
on power line communication.

An online detection algorithm that identifies faulty PV models is developed in [19]
based on temperature scanning. However, this technique requires an infrared camera
and is limited to small-size PV arrays. In [20], a probabilistic neural network is proposed
to identify PV faults with 85% accuracy. However, the accuracy of fault classification
can be improved when employing artificial neural networks (ANNs) [21]. Utilizing an
ANN, a real-time monitoring system for PV panels is proposed in [22]. The NN model is
developed to predict the output of PV arrays during normal environmental conditions.
Based on that model, performance degradation in PV arrays can be detected during faulty
conditions. In [23], a multilayer NN (MNN) is developed to classify open-circuit, short-
circuit, mismatch, and multiple faults under partial shading. Most of the reported literature
focuses on short-circuit, open-circuit, partial shading faults with less emphasis on weather-
related (nuisance) faults. The paper contribution can be summarized as follows: (i) based
on real-time data from a PV farm and PV-data generation model, a fine tree machine
learning algorithm is trained to detect and classify nuisance faults; (ii) a SCADA server is
implemented to test and validate the accuracy in real-time.

2. Problem Statement

Based on an in-person interview with the Director of Operations at Northwind So-
lutions, a Spark Power company (Northwind) in Ontario, Canada, it was determined
that whenever a fault occurs, it normally takes a couple of hours to send a crew out and
determine the fault that caused the issue [9]. All of the solar farms have a SCADA system
that is implemented to collect voltage and current data, and there is a weather station on
site that collects various weather information. All of these data can be analyzed during
troubleshooting. By the time a nuisance fault is identified, resolved, and a formal report
submitted to the power system operator, several hours of generation may be lost.

The primary goal of this paper is to detect faults in photovoltaic power plants using
artificial intelligence (AI). Generation systems are of particular interest because revenue
is directly based on power generated by electric companies. It is in the best interest of
power system operators to minimize and mitigate any potential sources of downtime.
One of the most frequent problems that plague power system operators are intermittent
weather-related events that cause unpredictable situations resulting in the SCADA system
responding with alarms. The Independent Energy System Operators (IESO)—which
oversees the operation of the Ontario electricity grid—automatically disconnects solar
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farms for protection immediately following alarms. Once a disconnect is initiated, an
investigation must be conducted, and a formal report submitted to IESO outlining the
cause of the fault and resolution measures in order to be reconnected to the grid [24]. These
intermittent faults are the hardest to troubleshoot because the cause of the alarm is not
obvious. The conditions may clear themselves before the root cause is found, making the
reporting process even more difficult. All of this work results in serious revenue losses due
to lost generation time, and the associated cost of technician crews also increases losses.
According to Wayne Eyraud, Director of Operations of a renewable energy company,
during peak generation times, a typical 10 MW solar farm can lose up to USD 5000 of lost
revenue in just one hour of downtime [9].

The intermittent faults mentioned above are known in the industry as nuisance faults.
These faults are weather-related events whose impacts on a solar farm induce the system
to show faults, when the events that cause these faults have not happened. They are
known as such due to their tendency to appear randomly. For example, a very hot and
humid day may cause difficulty for the cooling system to keep the internal inverter hut
temperature below the heat alarm threshold. This alarm would register in the operating
room as an overheating inverter and appear as an electrical fault even though there is
nothing electrically wrong. A trained technician crew would be sent out to respond to an
overheating inverter when the only response required would be to have one person prop
open the door to increase airflow. Many times, operators are left guessing when nuisance
faults occur, and there has not been any research found that solves this problem through
some kind of detection scheme.

3. Proposed Machine Learning Solution

The proposed solution is to utilize machine learning (ML) to determine which common
nuisance fault caused the reported SCADA system alarm. This is achieved by analyzing
the data that are already being collected by most typical solar farms. These data contain, at
a minimum, basic voltage, current, and power measurements along with current weather
data obtained from an on-site weather station. The weather data include the solar irradi-
ance values along with the temperature and relative humidity of the ambient air. With
available real-time measurements, fault conditions are classified and then used to train
an ML algorithm. This algorithm is then implemented into a system to classify new data
in real-time and detect potential nuisance fault conditions. The inherent nature of the
algorithm allows it even to forecast upcoming potential faults. The proposed implementa-
tion of the ML algorithm is delivered as a Software as a Service (SaaS), which allows for
centralized classification and storage of data points that can be easily recalled for further
algorithm training.

In order to achieve the proposed solution, a supervisory classification training tech-
nique was chosen due to the problem being well defined. The nuisance faults can all be
classified based on specific weather conditions. These include temperature, precipitation,
cloud cover, and humidity. For the purposes of this research, five fault conditions were
analyzed, as shown in Table 1.

Table 1. List of nuisance faults and their common causes.

Class Condition Causes

1 Snowfall Temperature below freezing, precipitation conditions
2 Humidity Humidex >90% (20% chance of setting alarm)
3 Cloudiness Irradiance drops by 30%
4 Dust cover Gradual degradation of panel performance caused by dust or dirt
5 High temperature Temperature exceeds 31 ◦C (40% chance of setting alarm)

Since the fault scenarios are the direct result of known weather phenomena, as shown
in Table 1, going with a supervised ML algorithm is the obvious choice of action. The data
utilized in this paper were created by a weather generator (as detailed in Section 3.1) based
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on climate records for the city of Windsor, Ontario, Canada. Each of these weather events
can lead to a nuisance fault appearing based on the impacts weather has on solar farms.
For example, a threshold of 31 ◦C represents the cutoff of the ambient air temperature.
When the ambient air temperature rises above 31 ◦C, there will be a chance that an error
would occur, representing a nuisance fault from overheating. Likewise, a humidity level
of 90% represents the point at which a humidity error could occur. These nuisance faults
have a higher chance of occurrence when their respective thresholds are violated.

The ambient temperature threshold (31 ◦C) is the outside air temperature at ground
level when high-temperature alarms would start tripping on inverters. It does not always
result in high-temperature alarms tripping because weather effects (such as wind, rain)
would play a role in the inverter temperatures. This threshold is regarded to likely trigger
a heatwave nuisance fault, which is to be predicted using the proposed model such that
less costly measures can be taken to prevent more costly problems. This temperature
may be subject to change depending on the installation and general conditions of the site
of implementation, but it was the point chosen on available sample data and prevailing
weather conditions of the area being used for the proposed model. The 90% humidity
threshold is determined with the same rationale for the ambient temperature. It also
belongs to the high humidity range specified by IET 60721-3-1 (i.e., above 75%).

It is worth mentioning that nuisance faults, defined in this paper, are weather-related
and cause the SCADA system to raise alarms but are not actually real electrical or mechan-
ical faults. This makes these events annoying to troubleshoot and resolve. For instance,
dust builds up on solar arrays over time, and thus, deteriorates the performance of the
solar farm. Similarly, cloudiness, which denotes the cloud impacts on a solar farm, and
snowfalls are not physical faults. However, the SCADA system may interpret these events
as undervoltage, or may not report it at all, but still shows as a negative statement. In the
case of cloudiness, a sudden drop in light levels to less than 30% of the nominal sunlight
would result in the chance of a cloud fault being thrown. The sensitivity of cloudiness
detection depends on the 30% threshold. The higher the threshold, the lower the sensitiv-
ity, and vice versa. It is up to the SCADA operator to choose the threshold value based
on his/her site experience. Over time, the site continued data collection can be used to
fine-tune the nuisance fault thresholds and retrain the algorithm for improved accuracy.

This paper aims at devising an ML algorithm that can be added to the existing SCADA
system to detect nuisance faults and show their actual causes, rather than the current
method of manual data tracing and discussion. Neural networks are used for artificial
intelligence when it is better for the machine to find its own patterns in the data being fed
and arrive at its own conclusions. Given the data that were provided from a real PV farm
that showed alarm codes that were attributed to thresholds in the data set, the outcomes
were already defined. Through an iterative process of training various model types, it is
determined that a Fine Tree Classifier is the most efficient and accurate approach to solving
the problem.

3.1. Data Generation

Training an ML algorithm requires a huge set of data. Initially, this was provided by a
solar farm from Southern Ontario. The data contained electrical and thermal readings from
the inverters every 10 s. Data from the weather stations were reported every few minutes.
The weather reporting is not as regular as electrical reporting. The faults are manually
classified based on the alarm codes provided by the SCADA system. The electrical readings
that are attributed to the fault code are then compared with the weather readings at the
time. The results were promising and showed definite correlations between conditions
and specific outcomes. However, since the data obtained were incomplete and did not
span an entire year of weather cycles, they were not feasible to be used in the final model
development. It is a great proof of concept that shows a clear correlation to weather
conditions triggering nuisance faults. A more robust model is created using a generated
data set that models local weather conditions and solar farm power characteristics. This
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data set includes an entire year of weather and power data for a hypothetical solar farm
located in the city of Windsor, Ontario. Seeds (a number used to initialize pseudorandom
algorithms) are utilized to randomly generate each year’s precipitation and temperature
fluctuations within set parameters of a region’s climate patterns. These random variations
are then used to calculate the temperature, humidity, solar irradiance, dust levels, and
snow depth at fifteen-second intervals for an entire year. Nuisance faults are generated as
a result of the weather conditions with randomness to the actual occurrence to incorporate
their unpredictable nature. This generated data set allows for a much more complete
training data set to be created, resulting in increased robustness of the ML algorithm.
The data generation process is broken down into two major sections: weather and PV
data generations.

3.1.1. Weather Data Generation

Weather data generation is separated into defining initial conditions of the system and
determining the impact of independent weather phenomena, which includes precipitation,
cloud cover, extreme temperature events, and the accumulation of dust and snow, as
demonstrated in Figure 1.

Figure 1. Weather data generation.

Defining these initial conditions involves determining the standard cycles of meteo-
rology so that a second-by-second model can be inferred. This involves finding averages
in annual and daily changes in temperature, humidity, precipitation, and solar irradiance.
These data were aggregated from these five sources [25–29]. These data were then used
in combination with a given random seed to create the initial conditions for a year, which
would then have weather events added. The following weather model, i.e., described in
(1)–(7), is developed using the aggregated data:

Tyear = −13.5 cos
(
2πFc,yeart

)
+ 9.1 ◦C (1)
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Tday = −8.92 cos
(

2πFc,dayt
)

◦C (2)

Tbase = Tyear + Tday
◦C (3)

RHyear = −4.16 sin
(
2πFc,yeart

)
+ 81.16% (4)

IRyear = −2.33 cos
(
2πFc,yeart

)
+ 3.61 kWh/m2/day (5)

IRday = 0.5 cos
(

4πFc,dayt
)
+ 0.5 kWh/m2/day (6)

CCday = 0.2 cos
(

2πFc,yeart − 35
365

∗ 2π

)
+ 0.5% (7)

The weather model is developed by creating curves that would fit the tabulated data
found from the meteorological references used. Tyear is the general average temperature
throughout the year. Tday is the typical daily temperature swing to be superimposed onto
the yearly average temperature to create the temperature curve for the whole year known
as Tbase. RHyear is the relative humidity curve, while IRyear and IRday are average annual
and typical daily solar irradiance levels, respectively. CCday is the cloud cover curve as
measured in intensity as a result of typical precipitation patterns for the given region. Fc,year
is the frequency for one a year, in seconds, and Fc,day is the frequency for a day in seconds.

Precipitation is considered to be the most impactful event on weather, as it modifies
all of the parameters of weather over its duration. After precipitation is generated, its
duration and its impact on the parameters are calculated, modifying the base year weather.
For solar panels, cloudiness has a major impact on the performance, so randomized clouds
are also added to mimic these conditions. For this, the ten recognized types of clouds are
modeled, and their impact on solar irradiance is also calculated [30]. The ten recognized
cloud types, in increasing opacity, are shown in Table 2.

Table 2. Cloud code and relative cloud type visible in sky cloud.

Code Cloud Type

1 Cloudless
2 Cirrus
3 Altocumulus Cirrostratus Cirrocumulus
4 Altocumulus
5 Altostratus
6 Nimbostratus
7 Stratocumulus
8 Stratus
9 Cumulous

10 Cumulonimbus cumulous

The corresponding ground-level solar intensity factor from [30] for each cloud is then
plotted, and a curve of best fit is obtained to continuously transition between each type as

Solar Intensity Factor(%) = 0.4655C3 − 7.8953C2 + 26.596C + 78.139 (8)

where C is the cloud type number from Table 2. The relationship in (8) allows for the
transition periods between different types of clouds through changing weather patterns.

Heatwaves and cold snaps also occur, both of which can negatively impact solar panel
performance. These are modeled after the heat waves and cold snaps of Windsor, ON,
where there are two to three of each per year, with each instance lasting 2–3 days. Their
modified temperatures are incorporated by applying a scaling ramp function to the temper-
ature for a random set of days. These phenomena would occur within seasonal parameters.

Dust and snow coverage of panels also greatly affect solar panel performance. Dust
slowly accumulates over time, but in light rain, the dust cakes onto the panels, causing the
panels to perform increasingly worse. The accumulation and rinsing of dust are modeled
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based on the work carried out by [31]. Snow depth and its impact on solar intensity have
also been studied, and the derived model from [32] is used as given by

ψ = ψoe−1.107061d (9)

where ψo represents the input irradiance flux density, ψ is the output irradiance flux density,
and d is the depth of snow. Time to melt was also simulated based on an hour above 0 ◦C
to warm the panels being required for the snow to melt and slip off.

3.1.2. PV Data Generation

Any available solar panel model includes transient characteristics. However, due to
the low sampling time of the system being monitored [9], these models are not required
as the transient behavior observed settles sooner than the sampling time. For increased
efficiency, PV modeling equations are developed. The equations model the power output
of the panel, along with the voltage and current for any given solar irradiance and panel
temperature. The model assumes maximum power point tracking (MPPT) is integrated
with the inverter. These are the basic parameters required for any successful modeling
of solar panel conditions and faults [33]. Figure 2 displays the proposed method for
generating PV data for fault classification.

Figure 2. PV data generation.

The power characteristics of a PV panel are modeled using the panel area of the system
and the efficiency characteristics available in the datasheet for a SunPower SPR-305E-WHT-
D solar panel [34], as follows:

P = ψAη
(
1 + ∆Tτp

)
(10)

where P is the PV output power, and A is the area of the panel, η denotes the panel efficiency,
and ∆T is the difference in temperature from the performance testing parameter of 25◦.
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Usually, a sensor attached to the back of a module is used to measure its temperature [35].
This difference is then multiplied by the power temperature coefficient τp (which equals
−0.38%/◦C). Solar panel performance is temperature-dependent, and all specifications are
based upon one testing scenario, usually conducted at 25 ◦C. Therefore, this inherent
property, known as the temperature coefficient of efficiency of the solar panel, must
be incorporated into any model where the solar panel will be in operation outside of
lab conditions.

To obtain a function of PV panel voltage and a function of its output power and
temperature, a series of power–voltage (P/V) and current–voltage (I/V) curves are plotted
as shown in Figures 3 and 4. These curves are inherent properties of the solar panel and are
given by the manufacturer’s specification. The MPPT data points are taken from the curves
put into Excel. The coefficients for the modeling equation are then derived using curve
fitting techniques, which yield equations of best fit, as shown in Figure 5, and given in (11).

V = 1.7537ln(P) + 45.339 (11)

Figure 3. Photovoltaic current–voltage (I/V) characteristics at various irradiances.

Figure 4. Photovoltaic power–voltage (P/V) characteristics at various irradiances.
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Figure 5. Extracted maximum peak power tracking voltage–power (V/P) curve.

Using (10) and (11), the PV output current can be determined by

I =
ψAη

(
1 + ∆Tτp

)
1.7537 ln(P) + 45.339

(12)

The PV voltage and current are calculated using (11) and (12) after adjusting the
output power using τp in (10). Therefore, (11) and (12) take into account the temperature
variations. It should be noted that the voltage and current in (11) and (12) typically
represent readings from an inverter that applies an MPPT algorithm, which also responds
to temperature variations.

3.2. Algorithm Training

The faults in Table 1 are implemented based on the weather conditions and built-
in pseudorandomness, simulating the nature of nuisance faults. For example, when
temperature and humidity levels reached certain thresholds, there would be a 33% chance
that a heat fault event would occur. These fault events are coded to also create the outcome
flag so that the manual classification could be automated. As described earlier, a supervised
ML algorithm is trained that compares inputs to pre-classified outputs to determine faults
rather than manually going and classifying the faults after the data were generated from
the PV farm model, the correct classifications are immediately generated with the rest of
the data.

The weather and PV data-generation processes are run multiple times to generate
many years’ worth of PV farm data. MATLAB’s machine learning toolbox is used to
construct and train the machine learning algorithm [36]. Many algorithms are tested to
determine which model performs the best based on accuracy and efficiency. The classifiers
had issues with the extended periods of dust and mainly confused it with normal operation.
This was addressed by increasing the training set with seeds that had a more even number
of faults overall. It was clear very early into the training process that decision trees were
the best models for the kind of data being used in training due to the model training
quickly and having the highest accuracy of the many that were tested. Training data sets
are generated and chosen based on their distribution of fault conditions.

Since nuisance fault events are quite rare compared to the amount of normal operation
that should be expected from a functional solar farm, the original data sets needed to be
manipulated for training accuracy. A typical year-long data set provided by the model has
a very disproportionate number of normal operation classifications than faulted conditions.
This proportion of a single case to the rest of the case affects how sensitive the model is to
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that particular data type. In the case of the model being discussed, the algorithm favors the
“normal” fault case over the rest because it is the most prominent, but the exact opposite
response is desired. This problem is known as overfitting. The final training data set is
manipulated by under-sampling the data to filter out approximately 99.5% of the normal
cases from multiple years of data. This shows how uncommon fault events are in the grand
scheme of things, yet when they do happen, the economic impacts are significant.

The under-sampling technique filters through the data set only keeping 1 in 200
“normal” cases. When the filter script hits faulted scenarios, it stops filtering before and
after the condition so that the AI can learn what kind of data lead up to a fault. This results
in a single data set for training that has a more blended mix of various fault conditions and
prevents the training AI from becoming too partial to the normal case and ignoring faulted
scenarios in the interest of better raw accuracy.

The system’s performance is evaluated based on its accuracy and how fast it could
make the classifications. The error rate of the system is evaluated using two different
methods. The first is the raw error rate: how many faults are incorrectly classified versus
how many data points are classified in total. This is used to determine the bulk accuracy of
the system and how well it classified the set.

In fine-tuning the system, a second method of determining accuracy is used. The
sensitivity is the number of data points of a specific classification from a set that the system
can correctly identify. The error rate is taken as how many faults are incorrectly classified
minus the misclassified normal cases as a fraction of the total number of data points. The
sensitivity of normal cases is ignored because the system would sometimes classify the
circumstances of a normal case as an error, but if nothing is wrong on the operator’s end,
then no action would need to be taken. In the case of monitoring for nuisance faults, it
is more desirable to misclassify normal operations as a potential fault than to misclassify
faulted conditions as a normal operation as this creates a forecasting ability of the system.
The confusion matrix in Figure 6 illustrates these concepts visually. Classes 1 through 5 are
outlined in Table 1, and Class 0 is the normal case, where no fault is occurring.

Figure 6. Confusion matrix showcasing training performance.

The confusion matrix in Figure 6 shows the correct classifications along the diagonal
in blue and incorrect classifications anywhere else in red. The actual fault in the data, or the
true class, is shown along the vertical axis. The predicted value returned by the system, or
the predicted class, is shown on the horizontal axis, and the data are mapped accordingly.
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The sensitivity of normal cases is calculated from here as the true positives of the class 0
row over the total cases in the class 0 row. This shows that the system classifies 81.68% of
the normal cases correctly. The other 18.32% of cases in this class are ignored in calculating
the accuracy because they would be the preferred misclassification of a normal operation
as being a fault.

An example of this playing out, in reality, would be the monitoring AI notifying
the operator of an overheating fault condition. However, the actual temperature sensors
on the SCADA system are not signaling an alarm condition. This situation would be an
incorrect classification by the AI but is desirable nevertheless because the operator can
begin preparing for a fault event. The AI is anticipating this result based on all of the
combined data it is analyzing. Hence, the operator may be able to begin an immediate heat
mitigation response that will ultimately result in the alarms never going off and the PV
system staying online the entire time. Ultimately this apparent fault with the AI from a
numbers standpoint yields the predictive nature of the AI that was originally desired.

Through the iterative process of training various ML algorithms using various settings,
a fine tree model was selected. The fine-tree classifier shines out from the rest of the options
for a couple of different reasons. Firstly, it is computationally simple. A tree model
classifier simply created a large decision tree to classify the data. At each node, a true/false
decision must be made based on the data values so that the AI can successfully arrive at
the conclusion it is given for that point. The other options, such as Gaussian mixtures and
K-Nearest Neighbor algorithms, use complicated curve fitting techniques that are much
slower than the fine tree. For example, on the same set of data, a fine tree model can be
trained in minutes, while a KNN algorithm takes several days. Secondly, the accuracy of
the fine tree was higher than all of the other options. The nature of the data being classified
is such that the classifications are made based mainly on threshold values and correlations
which are easily determined using decision trees.

The final fine-tree model is further tested for accuracy on more data generated from
the weather/PV system model. Table 3 shows the total number of misclassifications minus
the ignored normal cases. The mean accuracy was calculated to be 96.7%. Two separate AI
models were trained using the same data and compared for accuracy. Each training session
ultimately yields different results, and the best one can be hand-picked at the end.

Table 3. List of seeds and the recorded errors of two final candidates.

Seed
Misclassification Count

Classification Model A Classification Model B

1234 168,383 171,419
826453 51,451 48,908
745123 55,588 53,531
785412 52,551 49,876
745698 199,216 193,852
132542 24,162 22,739
8712312 34,110 31,449
1325412 55,739 51,336
132123 48,594 44,225
462513 61,870 59,239
128465 56,774 52,254
432156 63,933 59,955

The seeds were chosen based on the wide variety of fault conditions that were gen-
erated in them. Most of the seeds generated a normal spread of faults, while other seeds
had little to no dust accumulation issues. This was because the weather that year had
regularly occurring rain to keep the panels clean. On the other end of the spectrum, 1234
and 745,698 had long periods of no rain that resulted in a severe buildup of dirt upon the
panels. This resulted in a disproportionately large number of faults compared to other
nominal scenario seeds.
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4. Server Implementation

Once the development and training of an effective ML algorithm in the MATLAB
Machine Learning Toolbox environment are complete, the trained ML algorithm is exported
to a code script. This MATLAB language code script is then translated into C code using the
C-coder tool for use outside the MATLAB ecosystem. This was to allow for a client-facing
system that would collect and classify all the data as they were received and display the
result to the operators. There were two choices for the implementation of this system: an
embedded black box or a web application. Both of these approaches had their advantages,
but a web application was picked for a few key reasons. First, in a web application, the data
would be sent to a server to be processed rather than processed on site. This means that
the algorithm can be retrained on the new data that were received to even further improve
the performance. The black box approach would have made this impractical. Second, the
low upfront cost to adopters supported by a web application means that more operators
would be inclined to implement this for their system. The black-box approach, in contrast,
would require special hardware hookups, leading to a higher upfront cost. Third, a web
application allows for cheaper maintenance and updating as clients would be unaffected so
long as there is no downtime, which is common for many web technologies and services.

The system was implemented with three distinct points where data exist. The diagram
in Figure 7 displays the data pathways of the system.

Figure 7. Data flow diagram showing the connectivity between the data agent, server, and local operator.

Data in this system are created by the “data agent”, the system that logs the data and
sends them to the server. The data agent of most solar farms would be SCADA, or some
system attached to SCADA designed to read all the sensor data and send them to the server.
The SCADA system in question would require an external network interface to allow it
to communicate with the server. The server is a representational state transfer (REST)
service created using the Ruby on Rails web framework and the PostgreSQL relational
database [37,38]. In a REST environment, requests are divided into categories [39]. The
data agent makes only POST requests to the server as it only commits data autonomously.
Operators make GET requests to view the data. For convenience, the service was deployed
using Capistrano to a virtual dedicated server running Ubuntu Server 18.04 [40,41]. The
study was served using the Puma web server through Nginx as a reverse proxy to easily
manage and regulate requests [42,43]. The operator is the system where information of
the solar farm is viewed. This system, being a web application, is viewed through a web
browser from anywhere. The advantage of the system herein is data management and
reclassification. Holding all of the data and sorting it according to the location of the
collection means that the data can be reclassified to correctly reflect what fault occurred
in erroneous cases. This, in turn, will allow for retraining of the algorithm or, with more
advanced techniques, adaptive classification.

The speed of the algorithm is important as the server system would require this
to run over and over on as much data as can be given to it. MATLAB offers a metric
for training speed within their environment, but when the AI exported to C code, it ran
considerably faster. When classifying within MATLAB, the sets in Table 2 took seconds to
classify, whereas when given to the C code, the data were classified in only a few hundred
milliseconds, including network latency. This proposed solution is effective at solving the
problem as it is both cost-effective and requires minimal added infrastructure to install.
This is due to the cloud infrastructure inherent in the SaaS delivery model. Data analysis
is streamlined by actively monitoring SCADA and weather station data to determine a
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possible outcome. As a result, the proposed solution will mitigate economic losses by
minimizing generation downtime.

5. Conclusions

Information is key in any industry; it is essential for every decision made on a daily
basis. However, the information needs to be analyzed in order to be used effectively
in decision making. Solar generation is a burgeoning industry that creates and collects
vast quantities of data, which are currently processed manually. When a fault occurs, a
technician is dispatched to fix the issue. A large amount of the time, these issues will
disappear while the technician is on the route, so sending out a technician would be a
waste of time and money. In this paper, a fine tree model-based machine learning classifier
is developed in the hopes that it could help industries save money from resolving this issue,
commonly known as nuisance faults. This classifier is able to learn from the previous data
to give the user a solution on what caused the fault condition. The initial data originally
came from a real solar farm and were used to give a basis for this machine learning
algorithm training. Due to incompleteness in the data obtained, a model was created using
past Windsor weather history to create training and testing data. Using MATLAB, weather
and PV data generators were created that were capable of generating infinite amounts of
weather data based on a provided seed and the weather trends of the past five years.

The parameters that the classifier was trained on were temperature, humidity, irradi-
ance, voltage, current, and power. Other parameters may be used in addition to training,
but these six are the minimum most solar farms produce, which shows that any system is
capable of detecting these faults without added sensing equipment. Once the parameters
were chosen, the AI was trained using various models. Through an iterative design process,
it was determined that the fastest model is a fine resolution decision tree algorithm that
ultimately has an effective accuracy of over ninety-six percent. The initial AI model was
trained using the MATLAB Machine Learning toolbox. The trained algorithm was then
converted to C code using MATLAB’s C Coder to allow for implementation on external
systems and hardware independent of the MATLAB environment.

An interface was created to allow operators access to the classifier’s output. This
interface was given a variety of functions to allow the operators to understand what the
algorithm returns, along with facilitating the ability to manually reclassify previous data if
they are found to be wrong. From the aforementioned process, the initial hypothesis was
deemed to be correct. The AI is capable of helping organize data faster, and it can give the
user a clearer representation of the current situation. This solution could help companies
save thousands of dollars per year, provided sufficient data are available. By implementing
this machine learning system, a higher level of efficiency and reliability for solar generation
may be obtained.
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