Sustainable Destination Marketing Ecosystem through Smartphone-Based Social Media: The Consumers’ Acceptance Perspective
Abstract
:1. Introduction
- RQ1: Do social media marketing activities satisfy consumers’ to use it for destination purposes?
- RQ2: Does the smartphone have a role in convincing consumers’ to accept it, in terms of sustainable destination marketing?
2. Literature Review and Theoretical Framework
2.1. Sustainable Marketing: Destination Context
2.2. Social Media Marketing Activities (SMMAs)
2.3. Mobile Technology Acceptance Model (MTAM)
2.4. Satisfaction
3. Conceptual Model and Hypotheses Formulation
3.1. Interaction, Mobile Usefulness, and Mobile Ease of Use
3.2. Trendiness, Mobile Usefulness, and Mobile Ease of Use
3.3. Word-of-Mouth, Mobile Usefulness, and Mobile Ease of Use
3.4. Mobile Ease of Use, Mobile Usefulness, and Satisfaction
3.5. Satisfaction and Behavioral Intention
4. Materials and Methods
4.1. Instrument Development and Measures
4.2. Sample and Data Collection Procedures
4.3. Descriptive Analysis
5. Results
5.1. Data Analysis
5.2. Reliability and Validity Testing
5.3. Discriminant Validity
5.4. Structural Equation Modeling (SEM)
5.5. Hypotheses Testing
5.6. Indirect-Impact Assessment
6. Discussion and Implications
6.1. Theoretical Implications
6.2. Managerial Implications
7. Conclusions
Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Latent Variable | Observed Variable | Item Text | Reference |
---|---|---|---|
Interaction | INTER1 | Social media enables quick responses from the community about destination marketing. | [23,32] |
INTER2 | Social media enables destination marketing information sharing with others. | ||
INTER3 | Social media enables close interactions with others about destination marketing. | ||
INTER4 | Social media enables opinion exchange with others about destination marketing. | ||
INTER5 | Social media enables intensive interactions with others about destination marketing. | ||
Trendiness | TREND1 | Social media provides the latest content about destination marketing. | [23,32] |
TREND2 | Social media is very trendy about destination marketing. | ||
TREND3 | Social media is very popular in destination marketing. | ||
TREND4 | Social media is cool about destination marketing. | ||
TREND5 | Social media provides exclusive features of destination marketing. | ||
Word-of-Mouth | WoM1 | I would like to share destination marketing information through a social media platform. | [23,32] |
WoM2 | I would like to share destination marketing content through a social media platform. | ||
WoM3 | I would like to read destination marketing reviews through a social media platform. | ||
WoM4 | I would like to get the destination marketing opinion from others through a social media platform. | ||
WoM5 | I would like to recommend others about social media-based destination marketing. | ||
Mobile usefulness | MU1 | Using the smartphone-based social media enables to book travel accommodation and air tickets faster. | [19,22,83] |
MU2 | Using the smartphone-based social media enables the chances of getting more competence in travel planning. | ||
MU3 | Using the smartphone-based social media improves travel planning efficiency. | ||
MU4 | Using the smartphone-based social media saves a lot of time in planning my trip. | ||
Mobile ease of use | MEOU1 | Learning to use smartphone-based social media platform for destination marketing will be easy for me. | [19,22,83] |
MEOU2 | Using the smartphone-based social media platform towards destination marketing does not require a lot of mental effort. | ||
MEOU3 | It would be easy for me to become skilful at using smartphone-based social media platform for destination marketing. | ||
MEOU4 | I think that I can use a smartphone-based social media platform for destination marketing without the help of an expert. | ||
Satisfaction | SAT1 | I am satisfied with the experience of using a smartphone-based social media platform for destination marketing. | [50,51,52] |
SAT2 | I am pleased with the experience of using a smartphone-based social media platform for destination marketing. | ||
SAT3 | My decision to use smartphone-based social media platform for destination marketing was a wise one. | ||
SAT4 | I have achieved my goal towards smartphone-based social media for destination marketing. | ||
Behavioral intention | BI1 | I am likely to increase my use of smartphone-based social media platform for destination marketing shortly. | [21,22,83] |
BI2 | I will continue to use smartphone-based social media platform for the destination marketing frequently. | ||
BI3 | I will always try to use smartphone-based social media platform for destination marketing in my daily life. | ||
BI4 | I will think about using smartphone-based social media platform for destination marketing. |
References
- Wong, C.; Tan, G.W.; Tan, B.; Ooi, K. Mobile advertising: The changing landscape of the advertising industry. Telemat. Inform. 2015, 32, 720–734. [Google Scholar] [CrossRef]
- Tan, G.W.H.; Lee, V.H.; Hew, J.J.; Ooi, K.B.; Wong, L.W. The interactive mobile social media advertising: An imminent approach to advertise tourism products and services? Telemat. Inform. 2018, 35, 2270–2288. [Google Scholar] [CrossRef]
- Chen, C.; Tsai, J. Determinants of behavioral intention to use the Personalized Location-based Mobile Tourism Application: An empirical study by integrating TAM with ISSM. Future Gener. Comput. Syst. 2019, 96, 628–638. [Google Scholar] [CrossRef]
- Zhang, T.; Cobanoglu, C. Generation Y’s positive and negative eWOM: Use of social media and mobile technology. Int. J. Contemp. Hosp. Manag. 2017, 29, 732–761. [Google Scholar] [CrossRef]
- Chen, H.; Li, X. The contribution of mobile social media to social capital and psychological well-being: Examining the role of communicative use, friending and self-disclosure. Comput. Hum. Behav. 2017, 75, 958–965. [Google Scholar] [CrossRef]
- McLean, G.; Osei-Frimpong, K.; Al-Nabhani, K.; Marriott, H. Examining consumer attitudes towards retailers’ m-commerce mobile applications-An initial adoption vs. continuous use perspective. J. Bus. Res. 2020, 106, 139–157. [Google Scholar] [CrossRef]
- O’Dea, S. Number of Smartphone Users Worldwide. Available online: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on 10 December 2020).
- Clement, J. Mobile Internet Usage Worldwide-Statistics & Facts. Available online: https://www.statista.com/topics/779/mobile-internet/ (accessed on 11 September 2019).
- Clement, J. Number of Social Network Users Worldwide. Available online: https://www.statista.com/statistics/278414/number-of-worldwide-socialnetwork-users/ (accessed on 15 July 2020).
- Tan, G.W.; Ooi, K. Gender and age: Do they really moderate mobile tourism shopping behavior? Telemat. Inform. 2018, 35, 1617–1642. [Google Scholar] [CrossRef]
- Alnawas, I.; Aburub, F. The effect of benefits generated from interacting with branded mobile apps on consumer satisfaction and purchase intentions. J. Retail. Consum. Serv. 2016, 31, 313–322. [Google Scholar] [CrossRef]
- Odgers, T. The State of Mobile Bookings for Tours and Activities. Available online: https://www.checkfront.com/mobile-bookings-report (accessed on 20 April 2020).
- Font, X.; McCabe, S. Sustainability and marketing in tourism: Its contexts, paradoxes, approaches, challenges and potential. J. Sustain. Tour. 2017, 25, 869–883. [Google Scholar] [CrossRef] [Green Version]
- McDonagh, P.; Prothero, A. Sustainability marketing research: Past, present and future. J. Mark. Manag. 2014, 30, 1186–1219. [Google Scholar] [CrossRef]
- Tan, W.; Lu, K. Smartphone use at tourist destinations: Interaction with social loneliness, aesthetic scope, leisure boredom, and trip satisfaction. Telemat. Inform. 2019, 39, 64–74. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.; Chung, N.; Blakeney, A. A unified perspective on the factors influencing usage intention toward mobile financial services. J. Bus. Res. 2012, 65, 1590–1599. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H. Exploring the impact of use context on mobile hedonic services adoption: An empirical study on mobile gaming in China. Comput. Hum. Behav. 2011, 27, 890–898. [Google Scholar] [CrossRef]
- Morosan, C.; Defranco, A. It’s about time: Revisiting UTAUT2 to examine consumers’ intentions to use NFC mobile payments in hotels. Int. J. Hosp. Manag. 2016, 53, 17–29. [Google Scholar] [CrossRef]
- Davis, F.D. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V. Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. Inf. Syst. Res. 2000, 11, 342–365. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Morris, M.G.; Hall, M.; Davis, G.B.; Davis, F.D.; Walton, S.M. User acceptance of information technology: Toward a Unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Ooi, K.B.; Tan, G.W.H. Mobile technology acceptance model: An investigation using mobile users to explore smartphone credit card. Expert Syst. Appl. 2016, 59, 33–46. [Google Scholar] [CrossRef]
- Kim, A.J.; Ko, E. Do social media marketing activities enhance customer equity? An empirical study of luxury fashion brand. J. Bus. Res. 2012, 65, 1480–1486. [Google Scholar] [CrossRef]
- Gerdt, S.; Wagner, E.; Schewe, G. The relationship between sustainability and customer satisfaction in hospitality: An explorative investigation using eWOM as a data source. Tour. Manag. 2019, 74, 155–172. [Google Scholar] [CrossRef]
- Keeble, B.R. The Brundtland Report: “Our Common Future”. Med. War 1988, 4, 17–25. [Google Scholar] [CrossRef]
- Minton, E.; Lee, C.; Orth, U.; Kim, C.-H.; Kahle, L. Sustainable Marketing and Social Media. A Cross-Country Analysis of Motives for Sustainable Behaviors. J. Advert. 2012, 41, 69–84. [Google Scholar] [CrossRef]
- Hanna, P.; Font, X.; Scarles, C.; Weeden, C.; Harrison, C. Tourist destination marketing: From sustainability myopia to memorable experiences. J. Destin. Mark. Manag. 2018, 9, 36–43. [Google Scholar] [CrossRef]
- Wang, H.; Ko, E.; Woodside, A.; Yu, J. SNS marketing activities as a sustainable competitive advantage and traditional market equity. J. Bus. Res. 2020. [Google Scholar] [CrossRef]
- Pike, S.; Page, S.J. Destination Marketing Organizations and destination marketing: A narrative analysis of the literature. Tour. Manag. 2014, 41, 202–227. [Google Scholar] [CrossRef] [Green Version]
- Buhalis, D.; Foerste, M. SoCoMo marketing for travel and tourism: Empowering co-creation of value. J. Destin. Mark. Manag. 2015, 4, 151–161. [Google Scholar] [CrossRef]
- Hudson, S.; Thal, K. The Impact of Social Media on the Consumer Decision Process: Implications for Tourism Marketing. J. Travel Tour. Mark. 2013, 30, 156–160. [Google Scholar] [CrossRef]
- Godey, B.; Manthiou, A.; Pederzoli, D.; Rokka, J.; Aiello, G.; Donvito, R.; Singh, R. Social media marketing efforts of luxury brands: Influence on brand equity and consumer behavior. J. Bus. Res. 2016, 69, 5833–5841. [Google Scholar] [CrossRef]
- Khan, Z.; Yang, Y.; Shafi, M.; Yang, R. Role of social media marketing activities (SMMAs) in apparel brands customer response: A moderated mediation analysis. Sustainability 2019, 11, 5167. [Google Scholar] [CrossRef] [Green Version]
- Fotiadis, A.K.; Stylos, N. The effects of online social networking on retail consumer dynamics in the attractions industry: The case of ‘E-da’ theme park, Taiwan. Technol. Forecast. Soc. Chang. 2017, 124, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Seo, E.; Park, J. A study on the effects of social media marketing activities on brand equity and customer response in the airline industry. J. Air Transp. Manag. 2018, 66, 36–41. [Google Scholar] [CrossRef]
- Syed-Ahmad, S.F.; Murphy, J. Social Networking as a Marketing Tool: The Case of a Small Australian Company. J. Hosp. Mark. Manag. 2010, 19, 700–716. [Google Scholar] [CrossRef]
- Chen, S.; Lin, C. Understanding the effect of social media marketing activities: The mediation of social identification, perceived value, and satisfaction. Technol. Forecast. Soc. Chang. 2019, 140, 22–32. [Google Scholar] [CrossRef]
- Kaosiri, Y.N.; Fiol, L.J.C.; Tena, M.Á.M.; Artola, R.M.R.; García, J.S. User-Generated Content Sources in Social Media: A New Approach to Explore Tourist Satisfaction. J. Travel Res. 2019, 58, 253–265. [Google Scholar] [CrossRef]
- Xiang, Z.; Gretzel, U. Role of social media in online travel information search. Tour. Manag. 2010, 31, 179–188. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Ismagilova, E.; Hughes, D.L.; Carlson, J.; Filieri, R.; Jacobson, J.; Jain, V.; Karjaluoto, H.; Kefi, H.; Krishen, A.S.; et al. Setting the future of digital and social media marketing research: Perspectives and research propositions. Int. J. Inf. Manag. 2020, 102168. [Google Scholar] [CrossRef]
- Shareef, M.A.; Mukerji, B.; Dwivedi, Y.K.; Rana, N.P. Social media marketing: Comparative effect of advertisement sources. J. Retail. Consum. Serv. 2019, 46, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Delone, W.H.; Mclean, E.R. Information systems success: The quest for the dependent variable. Inf. Syst. Res. 1992, 3, 60–95. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.M. Diffusion of Innovations, 4th ed.; The Free Press: New York, NY, USA, 1995; ISBN 1451602472. [Google Scholar]
- Casaló, L.V.; Flavián, C.; Guinalíu, M. Determinants of the intention to participate in firm-hosted online travel communities and effects on consumer behavioral intentions. Tour. Manag. 2010, 31, 898–911. [Google Scholar] [CrossRef]
- Hew, J.; Leong, L.; Tan, G.W.; Lee, V.; Ooi, K. Mobile social tourism shopping: A dual-stage analysis of a multi-mediation model. Tour. Manag. 2018, 66, 121–139. [Google Scholar] [CrossRef]
- Wong, C.H.; Tan, G.W.H.; Loke, S.P.; Ooi, K.B. Mobile TV: A new form of entertainment? Ind. Manag. Data Syst. 2014, 114, 1050–1067. [Google Scholar] [CrossRef]
- Tsang, M.M.; Ho, S.; Liang, T. Consumer Attitudes Toward Mobile Advertising: An Empirical Study. Int. J. Electron. Commer. 2004, 8, 65–78. [Google Scholar] [CrossRef]
- Huang, Y.C.; Chang, L.L.; Yu, C.P.; Chen, J. Examining an extended technology acceptance model with experience construct on hotel consumers’ adoption of mobile applications. J. Hosp. Mark. Manag. 2019, 28, 957–980. [Google Scholar] [CrossRef]
- Stal, J.; Grażyna, P.-P. Mobile Technology Acceptance Model: An Empirical Study on Users’ Acceptance and Usage of Mobile Technology for Knowledge Providing. In Proceedings of the European, Mediterranean, and Middle Eastern Conference on Information Systems, Limassol, Cyprus, 4–5 October 2018; Springer: Cham, Switzerland, 2019; pp. 547–559. [Google Scholar]
- Oliver, R.L. Cognitive, Affective, and Attribute Bases of the Satisfaction Response. J. Consum. Res. 1993, 20, 418. [Google Scholar] [CrossRef]
- Oliver, R.L. A cognitive model of the antecedents and consequences of satisfaction decisions. J. Mark. Res. 1980, 17, 460. [Google Scholar] [CrossRef]
- Bhattacherjee, A. Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Shin, D.H. Effect of the customer experience on satisfaction with smartphones: Assessing smart satisfaction index with partial least squares. Telecommun. Policy 2015, 39, 627–641. [Google Scholar] [CrossRef]
- Tse, D.K.; Wilton, P.C. Models of Consumer Satisfaction Formation: An Extension. J. Mark. Res. 1988, 25, 204. [Google Scholar] [CrossRef]
- Kuo, Y.; Wu, C.; Deng, W. The relationships among service quality, perceived value, customer satisfaction, and post-purchase intention in mobile value-added services. Comput. Hum. Behav. 2009, 25, 887–896. [Google Scholar] [CrossRef]
- Wang, C.; Hsu, M.K.; Wang, C.; Hsu, M.K. The relationships of Destination image, satisfaction, and Behavioral Intentions: An Integrated Model. J. Travel Tour. Mark. 2010, 27, 829–843. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, L.; Peng, X.; Dong, Y.; Barnes, S.J. Understanding Chinese users’ continuance intention toward online social networks: An integrative theoretical model. Electron. Mark. 2014, 24, 57–66. [Google Scholar] [CrossRef]
- Choi, E.C.; Fowler, D.; Goh, B.; Yuan, J.J. Social Media Marketing: Applying the Uses and Gratifications Theory in the Hotel Industry. J. Hosp. Mark. Manag. 2016, 25, 771–796. [Google Scholar] [CrossRef]
- Hew, J.; Tan, G.W.; Lin, B.; Ooi, K. Generating travel-related contents through mobile social tourism: Does privacy paradox persist? Telemat. Inform. 2017, 34, 914–935. [Google Scholar] [CrossRef]
- Natarajan, T.; Balasubramanian, S.A.; Kasilingam, D.L. Understanding the intention to use mobile shopping applications and its influence on price sensitivity. J. Retail. Consum. Serv. 2017, 37, 8–22. [Google Scholar] [CrossRef]
- Zhonggen, Y.; Xiaozhi, Y. An extended technology acceptance model of a mobile learning technology. Comput. Appl. Eng. Educ. 2019, 27, 721–732. [Google Scholar] [CrossRef]
- Mangold, W.G.; Faulds, D.J. Social media: The new hybrid element of the promotion mix. Bus. Horiz. 2009, 52, 357–365. [Google Scholar] [CrossRef]
- Voorveld, H.A.M.; Van Noort, G.; Muntinga, D.G.; Bronner, F. Engagement with Social Media and Social Media Advertising: The Differentiating Role of Platform Type. J. Advert. 2018, 47, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Pornsakulvanich, V.; Dumrongsiri, N. Internal and external influences on social networking site usage in Thailand. Comput. Hum. Behav. 2013, 29, 2788–2795. [Google Scholar] [CrossRef]
- Muntinga, D.G.; Moorman, M.; Smit, E.G. Introducing COBRAs: Exploring motivations for Brand-Related social media use. Int. J. Advert. 2011, 30, 13–46. [Google Scholar] [CrossRef]
- Erkan, I.; Evans, C. The influence of eWOM in social media on consumers’ purchase intentions: An extended approach to information adoption. Comput. Hum. Behav. 2016, 61, 47–55. [Google Scholar] [CrossRef]
- Wang, T.; Yeh, R.K.J.; Chen, C.; Tsydypov, Z. What drives electronic word-of-mouth on social networking sites? Perspectives of social capital and self-determination. Telemat. Inform. 2016, 33, 1034–1047. [Google Scholar] [CrossRef]
- Jalilvand, M.R.; Samiei, N. The impact of electronic word of mouth on a tourism destination choice Testing the theory of planned behavior (TPB). Internet Res. 2012, 22, 591–612. [Google Scholar] [CrossRef]
- Tham, A.; Croy, G.; Mair, J. Social Media in Destination Choice: Distinctive Electronic Word-of-Mouth Dimensions. J. Travel Tour. Mark. 2013, 30, 144–155. [Google Scholar] [CrossRef]
- Hernández-méndez, J.; Muñoz-leiva, F.; Sánchez-fernández, J. The influence of e-word-of-mouth on travel decision-making: Consumer profiles. Curr. Issues Tour. 2015, 18, 1001–1021. [Google Scholar] [CrossRef]
- Yap, S.; Gaur, S.S. Integrating functional, social, and psychological determinants to explain online social. Behav. Inf. Technol. 2016, 35, 166–183. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, C.; Wang, J. The effects of psychological ownership and TAM on social media loyalty: An integrated model. Telemat. Inform. 2016, 33, 959–972. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, Y.; Zhang, C. A TAM-based approach to explore the effect of online experience on destination image: A smartphone user’s perspective. J. Destin. Mark. Manag. 2018, 8, 259–270. [Google Scholar] [CrossRef]
- Kim, T.T.; Karatepe, O.M.; Lee, G.; Demiral, H. Do Gender and Prior Experience Moderate the Factors Influencing Attitude toward Using Social Media for Festival Attendance? Sustainability 2018, 10, 3509. [Google Scholar] [CrossRef] [Green Version]
- Lisha, C.; Fei, C.; Yifan, S.; Rasli, A. Integrating guanxi into technology acceptance: An empirical investigation of WeChat. Telemat. Inform. 2017, 34, 1125–1142. [Google Scholar] [CrossRef]
- Liu, Y.; Pu, B.; Guan, Z.; Yang, Q. Online Customer Experience and Its Relationship to Repurchase Intention: An Empirical Case of Online Travel Agencies in China. Asia Pac. J. Manag. 2016, 21, 1085–1099. [Google Scholar] [CrossRef]
- Kim, K.J. Can smartphones be specialists? Effects of specialization in mobile advertising. Telemat. Inform. 2014, 31, 640–647. [Google Scholar] [CrossRef]
- Lu, H.; Hsiao, K. The influence of extro/introversion on the intention to pay for social networking sites. Inf. Manag. 2010, 47, 150–157. [Google Scholar] [CrossRef]
- Lu, J.; Yao, J.E.; Yu, C.S. Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. J. Strateg. Inf. Syst. 2005, 14, 245–268. [Google Scholar] [CrossRef]
- Agrebi, S.; Jallais, J. Explain the intention to use smartphones for mobile shopping. J. Retail. Consum. Serv. 2015, 22, 16–23. [Google Scholar] [CrossRef]
- Verma, V.K.; Chandra, B.; Kumar, S. Values and ascribed responsibility to predict consumers’ attitude and concern towards green hotel visit intention. J. Bus. Res. 2019, 96, 206–216. [Google Scholar] [CrossRef]
- Brislin, R.W. Back-Translation For Cross-Cultural Research. J. Cross Cult. Psychol. 1970, 1, 185–216. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Textor, C. China’s Revenue from Tourism. Available online: https://www.statista.com/statistics/236040/revenue-from-tourism-in-china/ (accessed on 20 December 2020).
- Thomala, L.L. Number of Internet Users in China. Available online: https://www.statista.com/statistics/278417/number-of-internet-users-in-china/ (accessed on 20 February 2021).
- Statista Number of Smartphone Users in China. Available online: https://www.statista.com/statistics/467160/forecast-of-smartphone-users-in-china/ (accessed on 20 February 2021).
- Bush, A.J.; Hair, J.F. An assessment of the mall intercept as a data collection method. J. Mark. Res. 1985, 22, 158–167. [Google Scholar] [CrossRef]
- World Population Review Shanghai Population. Available online: https://worldpopulationreview.com/world-cities/shanghai-population (accessed on 10 August 2020).
- Kasim, A.; Alfandi, A. Managing destination image for potential gulf countries tourists via communication effects assessment: The case of Malaysia. Int. J. Bus. Soc. 2014, 15, 503–518. [Google Scholar]
- Khare, A. Consumers’ susceptibility to interpersonal influence as a determining factor of ecologically conscious behaviour. Mark. Intell. Plan. 2014, 32, 2–20. [Google Scholar] [CrossRef]
- Prakash, G.; Pathak, P. Intention to buy eco-friendly packaged products among young consumers of India: A study on developing nation. J. Clean. Prod. 2017, 141, 385–393. [Google Scholar] [CrossRef]
- Priporas, C.; Stylos, N.; Eirini, I. City image, city brand personality and generation Z residents’ life satisfaction under economic crisis: Predictors of city-related social media engagement. J. Bus. Res. 2019. [Google Scholar] [CrossRef]
- Recuero, N.; Gomez, J.; Francisca, M.; López, B.; Figueiredo, J.; Rey, U.; Carlos, J. Perceived relationship investment as a driver of loyalty: The case of Conimbriga Monographic Museum. J. Destin. Mark. Manag. 2019, 11, 23–31. [Google Scholar] [CrossRef]
- Ilieş, A.; Dehoorne, O.; Ilies, D.C. The cross-border territorial system in Romanian-Ukrainian Carpathian Area. Elements, mechanisms and structures generating premises for an integrated cross-border territorial system with tourist function. Carpath. J. Earth Environ. Sci. 2012, 7, 27–38. [Google Scholar]
- Filieri, R.; Alguezaui, S.; Mcleay, F. Why do travelers trust TripAdvisor? Antecedents of trust towards consumer-generated media and its influence on recommendation adoption and word of mouth. Tour. Manag. 2015, 51, 174–185. [Google Scholar] [CrossRef] [Green Version]
- Nickerson, R.S. Confirmation bias: A ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 1998, 2, 175–220. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; The Guilford Press: New York, NY, USA; London, UK, 2011. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson New International Edition: Essex, UK, 2014. [Google Scholar]
- Chin, W.W. The Partial Least Squares Approach to Structural Equation Modeling. Adv. Hosp. Leis. 1998, 8, 295–336. [Google Scholar]
- Armstrong, J.S.; Overton, T.S. Estimating Nonresponse Bias in Mail Surveys. J. Mark. Res. 1977, 14, 396. [Google Scholar] [CrossRef] [Green Version]
- Sax, L.J.; Gilmartin, S.K.; Bryant, A.N. Assessing response rates and nonresponse bias in web and paper surveys. Res. High. Educ. 2003, 44, 409–432. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef] [PubMed]
- Fuller, C.M.; Simmering, M.J.; Atinc, G.; Atinc, Y.; Babin, B.J. Common methods variance detection in business research. J. Bus. Res. 2016, 69, 3192–3198. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of Tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Hundleby, J.D.; Nunnally, J. Psychometric Theory. Am. Educ. Res. J. 1968, 5, 431. [Google Scholar] [CrossRef]
- Bagozzi, R.R.; Yi, Y. On the Evaluation of Structural Equation Models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.; Boudreau, M.-C. Structural Equation Modeling and Regression: Guidelines for Research Practice. Commun. Assoc. Inf. Syst. 2000, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Chi, T. Understanding Chinese consumer adoption of apparel mobile commerce: An extended TAM approach. J. Retail. Consum. Serv. 2018, 44, 274–284. [Google Scholar] [CrossRef]
- Nikou, S.A.; Economides, A.A. Mobile-Based Assessment: Integrating acceptance and motivational factors into a combined model of Self-Determination Theory and Technology Acceptance. Comput. Hum. Behav. 2017, 68, 83–95. [Google Scholar] [CrossRef]
- Huang, L.; Mou, J.; See-to, E.W.K.; Kim, J. Perceived value preferences for mobile marketing in China: A mixed method approach. J. Retail. Consum. Serv. 2019, 48, 70–86. [Google Scholar] [CrossRef]
Characteristics | Category | Frequency (n) | Percentage (%) |
---|---|---|---|
Gender | Male | 158 | 43.3 |
Female | 207 | 56.7 | |
Age group (years) | 18–25 | 80 | 21.9 |
26–33 | 120 | 32.9 | |
34–41 | 135 | 37.0 | |
42 or above | 30 | 8.2 | |
Educational level | High school or less | 45 | 12.3 |
Undergraduate | 130 | 35.6 | |
Master’s or above | 190 | 52.1 | |
Employment status | Employed | 180 | 49.3 |
Student | 132 | 36.2 | |
Unemployed | 53 | 14.5 | |
Monthly income (RMB) | 5000 or below | 67 | 18.4 |
5001–7000 | 124 | 34.0 | |
7001 or above | 174 | 47.7 | |
Destination marketing experience | 0–1 year | 55 | 15.1 |
2–3 years | 123 | 33.7 | |
4 years or above | 187 | 51.2 | |
Frequency of using | once to several times a week | 53 | 14.5 |
several times a month | 132 | 36.2 | |
several times a year | 180 | 49.3 | |
Social media platforms | Sina Weibo or Weibo | 90 | 24.7 |
124 | 34.0 | ||
Renren | 67 | 18.4 | |
Youku | 53 | 14.5 | |
Others | 31 | 8.5 |
Construct | Items | Mean | SD | S.E. | S.F.L. | CR | AVE | Cronbach’s Alpha (α) |
---|---|---|---|---|---|---|---|---|
Interaction | INTER1 | 4.14 | 0.660 | 0.035 | 0.702 | 0.879 | 0.571 | 0.866 |
INTER2 | 4.22 | 0.683 | 0.036 | 0.777 | ||||
INTER3 | 4.15 | 0.666 | 0.035 | 0.853 | ||||
INTER4 | 4.22 | 0.685 | 0.036 | 0.715 | ||||
INTER5 | 4.18 | 0.639 | 0.033 | 0.724 | ||||
Trendiness | TREND1 | 4.22 | 0.642 | 0.034 | 0.874 | 0.892 | 0.625 | 0.890 |
TREND2 | 4.28 | 0.623 | 0.033 | 0.750 | ||||
TREND3 | 4.27 | 0.623 | 0.033 | 0.812 | ||||
TREND4 | 4.24 | 0.637 | 0.033 | 0.768 | ||||
TREND5 | 4.27 | 0.652 | 0.034 | 0.743 | ||||
Word-of-Mouth | WoM1 | 4.26 | 0.616 | 0.032 | 0.859 | 0.891 | 0.622 | 0.890 |
WoM2 | 4.27 | 0.647 | 0.034 | 0.796 | ||||
WoM3 | 4.25 | 0.621 | 0.032 | 0.752 | ||||
WoM4 | 4.26 | 0.625 | 0.033 | 0.771 | ||||
WoM5 | 4.32 | 0.605 | 0.032 | 0.762 | ||||
Mobile usefulness | MU1 | 4.29 | 0.613 | 0.032 | 0.819 | 0.885 | 0.570 | 0.865 |
MU2 | 4.27 | 0.607 | 0.032 | 0.709 | ||||
MU3 | 4.26 | 0.650 | 0.034 | 0.734 | ||||
MU4 | 4.32 | 0.640 | 0.034 | 0.901 | ||||
Mobile ease of use | MEOU1 | 4.34 | 0.607 | 0.032 | 0.710 | 0.797 | 0.569 | 0.856 |
MEOU2 | 4.34 | 0.602 | 0.032 | 0.717 | ||||
MEOU3 | 4.31 | 0.642 | 0.034 | 0.830 | ||||
MEOU4 | 4.30 | 0.636 | 0.033 | 0.837 | ||||
Satisfaction | SAT1 | 4.38 | 0.624 | 0.033 | 0.891 | 0.847 | 0.650 | 0.880 |
SAT2 | 4.33 | 0.618 | 0.032 | 0.751 | ||||
SAT3 | 4.42 | 0.626 | 0.033 | 0.771 | ||||
SAT4 | 4.39 | 0.644 | 0.034 | 0.819 | ||||
Behavioral intention | BI1 | 4.38 | 0.624 | 0.033 | 0.918 | 0.914 | 0.727 | 0.900 |
BI2 | 4.33 | 0.618 | 0.033 | 0.878 | ||||
BI3 | 4.42 | 0.626 | 0.034 | 0.796 | ||||
BI4 | 4.39 | 0.644 | 0.032 | 0.815 |
Sl. No. | Constructs | INTER | TREND | WoM | MU | MEOU | SAT | BI |
---|---|---|---|---|---|---|---|---|
1. | Interaction | 1 | 0.551 ** | 0.530 ** | 0.621 ** | 0.511 ** | 0.415 ** | 0.394 ** |
2. | Trendiness | 0.551 ** | 1 | 0.469 ** | 0.521 ** | 0.477 ** | 0.425 ** | 0.436 ** |
3. | Word-of-Mouth | 0.530 ** | 0.469 ** | 1 | 0.530 ** | 0.518 ** | 0.427 ** | 0.375 ** |
4. | Mobile usefulness | 0.621 ** | 0.521 ** | 0.530 ** | 1 | 0.530 ** | 0.453 ** | 0.383 ** |
5 | Mobile ease of use | 0.511 ** | 0.477 ** | 0.518 ** | 0.530 ** | 1 | 0.452 ** | 0.427 ** |
6. | Satisfaction | 0.415 ** | 0.425 ** | 0.427 ** | 0.453 ** | 0.452 ** | 1 | 0.662 ** |
7. | Behavioral intention | 0.394 ** | 0.436 ** | 0.375 ** | 0.383 ** | 0.427 ** | 0.662 ** | 1 |
Sl. No. | Constructs | INTER | TREND | WoM | MU | MEOU | SAT | BI |
---|---|---|---|---|---|---|---|---|
1. | Interaction | 0.76 | ||||||
2. | Trendiness | 0.551 ** | 0.79 | |||||
3. | Word-of-Mouth | 0.530 ** | 0.469 ** | 0.79 | ||||
4. | Mobile usefulness | 0.621 ** | 0.521 ** | 0.530 ** | 0.75 | |||
5. | Mobile ease of use | 0.511 ** | 0.477 ** | 0.518 ** | 0.530 ** | 0.76 | ||
6. | Satisfaction | 0.415 ** | 0.425 ** | 0.427 ** | 0.453 ** | 0.452 ** | 0.81 | |
7. | Behavioral intention | 0.394 ** | 0.436 ** | 0.375 ** | 0.383 ** | 0.427 ** | 0.662 ** | 0.85 |
Hypothesis | Hypothesis (Path) | Standardized Regression Coefficient (β) | Standardized Error (S.E.) | C.R. (=t Value) | Decision |
---|---|---|---|---|---|
H1a | INTER → MU | 0.387 | 0.085 | 5.702 *** | Supported |
H1b | INTER → MEOU | 0.259 | 0.065 | 3.719 *** | Supported |
H2a | TREND → MU | 0.121 | 0.067 | 2.051 * | Supported |
H2b | TREND → MEOU | 0.212 | 0.054 | 3.338 *** | Supported |
H3a | WoM → MU | 0.177 | 0.077 | 2.828 ** | Supported |
H3b | WoM → MEOU | 0.335 | 0.062 | 5.044 *** | Supported |
H4a | MEOU → MU | 0.191 | 0.086 | 2.937 ** | Supported |
H4b | MEOU → SAT | 0.374 | 0.089 | 5.419 *** | Supported |
H5 | MU → SAT | 0.282 | 0.064 | 4.305 *** | Supported |
H6 | SAT → BI | 0.704 | 0.050 | 14.408 *** | Supported |
Indirect Path | Standardized Estimate | Lower Level | Upper Level | p-Value |
---|---|---|---|---|
INTER → MEOU → MU → SAT → BI | 0.049 ** | 0.005 | 0.029 | 0.002 |
INTER → MEOU → SAT → BI | 0.097 *** | 0.046 | 0.142 | 0.001 |
INTER → MU → SAT → BI | 0.109 *** | 0.053 | 0.160 | 0.000 |
TREND → MEOU → MU → SAT → BI | 0.040 ** | 0.003 | 0.021 | 0.003 |
TREND → MEOU → SAT → BI | 0.079 ** | 0.029 | 0.118 | 0.002 |
TREND → MU → SAT → BI | 0.034 * | 0.005 | 0.071 | 0.045 |
WoM → MEOU → MU → SAT → BI | 0.064 ** | 0.006 | 0.033 | 0.002 |
WoM → MEOU → SAT → BI | 0.125 *** | 0.059 | 0.174 | 0.001 |
WoM → MU → SAT → BI | 0.050 ** | 0.014 | 0.089 | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharmin, F.; Sultan, M.T.; Badulescu, D.; Badulescu, A.; Borma, A.; Li, B. Sustainable Destination Marketing Ecosystem through Smartphone-Based Social Media: The Consumers’ Acceptance Perspective. Sustainability 2021, 13, 2308. https://doi.org/10.3390/su13042308
Sharmin F, Sultan MT, Badulescu D, Badulescu A, Borma A, Li B. Sustainable Destination Marketing Ecosystem through Smartphone-Based Social Media: The Consumers’ Acceptance Perspective. Sustainability. 2021; 13(4):2308. https://doi.org/10.3390/su13042308
Chicago/Turabian StyleSharmin, Farzana, Mohammad Tipu Sultan, Daniel Badulescu, Alina Badulescu, Afrodita Borma, and Benqian Li. 2021. "Sustainable Destination Marketing Ecosystem through Smartphone-Based Social Media: The Consumers’ Acceptance Perspective" Sustainability 13, no. 4: 2308. https://doi.org/10.3390/su13042308
APA StyleSharmin, F., Sultan, M. T., Badulescu, D., Badulescu, A., Borma, A., & Li, B. (2021). Sustainable Destination Marketing Ecosystem through Smartphone-Based Social Media: The Consumers’ Acceptance Perspective. Sustainability, 13(4), 2308. https://doi.org/10.3390/su13042308