Biophilia beyond the Building: Applying the Tools of Urban Biodiversity Planning to Create Biophilic Cities
Abstract
:1. Introduction
2. What Can Be Achieved by Making Cities More Biodiverse and Biophilic?
3. How Can Urban Biodiversity Planning Support Biophilic Cities?
3.1. Step 1: Solicit Community Participation
3.2. Step 2: Identify Science-Based Biodiversity Goals
3.2.1. Goal 1: Systematically Increase the Quantity, Quality, and Connectivity of Habitat
3.2.2. Goal 2: Create and Conserve Natural Areas That Highlight Local Species, Ecosystems, and Features
3.2.3. Goal 3: Emphasize the Geophysical Setting and Processes
3.3. Step 3: Set Priorities for Action
4. Key Challenges and Considerations
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDonald, R.I.; Mansur, A.V.; Ascensão, F.; Crossman, K.; Elmqvist, T.; Gonzalez, A.; Güneralp, B.; Haase, D.; Hamann, M.; Hillel, O. Research Gaps in Knowledge of the Impact of Urban Growth on Biodiversity. Nat. Sustain. 2020, 3, 16–24. [Google Scholar] [CrossRef]
- Nilon, C.H.; Aronson, M.F.J.; Cilliers, S.S.; Dobbs, C.; Frazee, L.J.; Goddard, M.A.; O’Neill, K.M.; Roberts, D.; Stander, E.K.; Werner, P.; et al. Planning for the Future of Urban Biodiversity: A Global Review of City-Scale Initiatives. BioScience 2017, 67, 332–342. [Google Scholar] [CrossRef]
- Africa, J.; Heerwagen, J.; Loftness, V.; Ryan Balagtas, C. Biophilic Design and Climate Change: Performance Parameters for Health. Front. Built Env. 2019, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Söderlund, J. The Progression of Biophilic Design. In The Emergence of Biophilic Design; Springer: Cham, Switzerland, 2019; pp. 187–195. [Google Scholar]
- Beatley, T. Biophilic Cities: Integrating Nature into Urban Design and Planning; Island Press: Washington, DC, USA, 2011; ISBN 978-1-59726-714-4. [Google Scholar]
- Browning, W.D.; Ryan, C.O.; Clancy, J.O. 14 Patterns of Biophilic Design; Terrapin Bright Green: New York, NY, USA, 2014. [Google Scholar]
- Kellert, S.R.; Heerwagen, J.; Mador, M. Biophilic Design: The Theory, Science and Practice of Bringing Buildings to Life; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 1-118-17424-0. [Google Scholar]
- Thompson, M. Vo Trong Nghia Creates a Secret Garden Hotel in Vietnam’s Hoi An. Available online: https://thespaces.com/vo-trong-nghia-garden-hotel-vietnams-hoi/ (accessed on 5 November 2020).
- Biophilic Cities Phipps Conservatory and Botanical Gardens. Available online: https://vimeo.com/486828265 (accessed on 22 December 2020).
- Piacentini, R. Biophilic design: A living case study at Phipps Conservatory, Pittsburgh. Living Architecture Monitor, 16 July 2018; 16–19.
- Biophilic Cities Partner Cities. Available online: https://www.biophiliccities.org/partner-cities (accessed on 22 December 2020).
- Beatley, T.; University of Virginia, Charlottesville, VA, USA. Personal communication, 2020.
- Beatley, T.; Newman, P. Biophilic Cities Are Sustainable, Resilient Cities. Sustainability 2013, 5, 3328–3345. [Google Scholar] [CrossRef] [Green Version]
- Maddox, D.; Anderson, P.; Douglas, I.; Goode, D.; Katzschner, T.; Roös, P.; Timmer, F.; Yeang, K.; Beatley, T.; Downton, P.; et al. What Are We Trying to Accomplish with Biophilic Cities? What Are Ambitious Goals and Targets, and Measures of Success? Available online: https://www.thenatureofcities.com/2017/03/27/ambitious-goals-targets-biophilic-cities-right-metrics-progress-toward-goals (accessed on 22 December 2020).
- Sustainable, D.C. Sustainable DC 2.0 Plan; Sustainable DC: Washington, DC, USA, 2019. [Google Scholar]
- Greater London Authority. London Environment Strategy; Greater London Authority: London, UK, 2018. [Google Scholar]
- Vancouver Board of Parks and Recreation. Biodiversity Strategy; Vancouver Board of Parks and Recreation: Vancouver, BC, Canada, 2016. [Google Scholar]
- Toronto City Planning; Toronto and Region Conservation Authority; Toronto Parks, Forestry and Recreation. Wild, Connected and Diverse: A Biodiversity Strategy for Toronto; City of Toronto: Toronto, ON, Canada, 2019; p. 61. [Google Scholar]
- City of Melbourne. Nature in the City: Thriving Biodiversity and Healthy Ecosystems; City of Melbourne: Melbourne, Australia, 2017. [Google Scholar]
- Spotswood, E.; Grossinger, R.; Hagerty, S.; Bazo, M.; Benjamin, M.; Beller, E.; Grenier, L.; Askevold, R. Making Nature’s City: A Science-Based Framework for Building Urban Biodiversity; San Francisco Estuary Institute: Richmond, CA, USA, 2019. [Google Scholar]
- Aronson, M.F.J.; La Sorte, F.A.; Nilon, C.H.; Katti, M.; Goddard, M.A.; Lepczyk, C.A.; Warren, P.S.; Williams, N.S.G.; Cilliers, S.; Clarkson, B.; et al. A Global Analysis of the Impacts of Urbanization on Bird and Plant Diversity Reveals Key Anthropogenic Drivers. Proc. R. Soc. B Biol. Sci. 2014, 281, 20133330. [Google Scholar] [CrossRef]
- Spotswood, E.N.; Beller, E.E.; Grossinger, R.; Grenier, J.L.; Heller, N.E.; Aronson, M.F.J. The Biological Deserts Fallacy: Cities in Their Landscapes Contribute More than We Think to Regional Biodiversity. BioScience 2021. [Google Scholar] [CrossRef] [PubMed]
- Beatley, T. Biophilic Cities. In Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2018. [Google Scholar]
- Cox, D.T.C.; Hudson, H.L.; Shanahan, D.F.; Fuller, R.A.; Gaston, K.J. The Rarity of Direct Experiences of Nature in an Urban Population. Landsc. Urban Plan. 2017, 160, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Soga, M.; Gaston, K.J. Extinction of Experience: The Loss of Human-Nature Interactions. Front Ecol Env. 2016, 14, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Turner, W.R.; Nakamura, T.; Dinetti, M. Global Urbanization and the Separation of Humans from Nature. BioScience 2004, 54, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Hartig, T.; Mitchell, R.; de Vries, S.; Frumkin, H. Nature and Health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, M.; Fluehr, J.; McKeon, T.; Branas, C. Urban Green Space and Its Impact on Human Health. IJERPH 2018, 15, 445. [Google Scholar] [CrossRef] [Green Version]
- Kuo, M. How Might Contact with Nature Promote Human Health? Promising Mechanisms and a Possible Central Pathway. Front. Psychol. 2015, 6. [Google Scholar] [CrossRef]
- Yin, J.; Yuan, J.; Arfaei, N.; Catalano, P.J.; Allen, J.G.; Spengler, J.D. Effects of Biophilic Indoor Environment on Stress and Anxiety Recovery: A between-Subjects Experiment in Virtual Reality. Environ. Int. 2020, 136, 105427. [Google Scholar] [CrossRef] [PubMed]
- Mackay, C.M.L.; Schmitt, M.T. Do People Who Feel Connected to Nature Do More to Protect It? A Meta-Analysis. J. Environ. Psychol. 2019, 65, 101323. [Google Scholar] [CrossRef] [Green Version]
- Livesley, S.J.; McPherson, E.G.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Edmondson, J.L.; Stott, I.; Davies, Z.G.; Gaston, K.J.; Leake, J.R. Soil Surface Temperatures Reveal Moderation of the Urban Heat Island Effect by Trees and Shrubs. Sci. Rep. 2016, 6, 33708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chàfer, M.; Pisello, A.L.; Piselli, C.; Cabeza, L.F. Greenery System for Cooling Down Outdoor Spaces: Results of an Experimental Study. Sustainability 2020, 12, 5888. [Google Scholar] [CrossRef]
- Bratman, G.N.; Anderson, C.B.; Berman, M.G.; Cochran, B.; de Vries, S.; Flanders, J.; Folke, C.; Frumkin, H.; Gross, J.J.; Hartig, T.; et al. Nature and Mental Health: An Ecosystem Service Perspective. Sci. Adv. 2019, 5, eaax0903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ICLEI—Local Governments for Sustainability. BiodiverCITIES: A Handbook for Municipal Biodiversity Planning and Management; ICLEI-Local Government for Sustainability (Management) Inc.: Toronto, ON, Canada, 2015. [Google Scholar]
- Cox, D.T.C.; Shanahan, D.F.; Hudson, H.L.; Plummer, K.E.; Siriwardena, G.M.; Fuller, R.A.; Anderson, K.; Hancock, S.; Gaston, K.J. Doses of Neighborhood Nature: The Benefits for Mental Health of Living with Nature. BioScience 2017, 67, 147–155. [Google Scholar] [CrossRef]
- Methorst, J.; Rehdanz, K.; Mueller, T.; Hansjürgens, B.; Bonn, A.; Böhning-Gaese, K. The Importance of Species Diversity for Human Well-Being in Europe. Ecol. Econ. 2020, 106917. [Google Scholar] [CrossRef]
- Wood, E.; Harsant, A.; Dallimer, M.; Cronin de Chavez, A.; McEachan, R.R.C.; Hassall, C. Not All Green Space Is Created Equal: Biodiversity Predicts Psychological Restorative Benefits from Urban Green Space. Front. Psychol. 2018, 9, 2320. [Google Scholar] [CrossRef]
- Beatley, T. Handbook of Biophilic City Planning & Design; Island Press: Washington, DC, USA, 2017; ISBN 1-61091-621-2. [Google Scholar]
- City of Melbourne Green Your Laneway: Laneway Visions. Available online: https://participate.melbourne.vic.gov.au/greenlaneways/laneway-visions (accessed on 15 August 2020).
- Cooper, C.B.; Shirk, J.; Zuckerberg, B. The Invisible Prevalence of Citizen Science in Global Research: Migratory Birds and Climate Change. Plos ONE 2014, 9, e106508. [Google Scholar] [CrossRef] [Green Version]
- Kobori, H.; Dickinson, J.L.; Washitani, I.; Sakurai, R.; Amano, T.; Komatsu, N.; Kitamura, W.; Takagawa, S.; Koyama, K.; Ogawara, T.; et al. Citizen Science: A New Approach to Advance Ecology, Education, and Conservation. Ecol. Res. 2016, 31, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Roman, L.A.; Walker, L.A.; Martineau, C.M.; Muffly, D.J.; MacQueen, S.A.; Harris, W. Stewardship Matters: Case Studies in Establishment Success of Urban Trees. Urban For. Urban Green. 2015, 14, 1174–1182. [Google Scholar] [CrossRef] [Green Version]
- Sivek, D.J. Environmental Sensitivity among Wisconsin High School Students. Environ. Educ. Res. 2002, 8, 155–170. [Google Scholar] [CrossRef]
- Cooper, C.; Larson, L.; Dayer, A.; Stedman, R.; Decker, D. Are Wildlife Recreationists Conservationists? Linking Hunting, Birdwatching, and Pro-environmental Behavior. J. Wildl. Manag. 2015, 79, 446–457. [Google Scholar] [CrossRef]
- Zaradic, P.A.; Pergams, O.R.; Kareiva, P. The Impact of Nature Experience on Willingness to Support Conservation. PLoS ONE 2009, 4, e7367. [Google Scholar] [CrossRef] [Green Version]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in Cities Needs Space: A Meta-analysis of Factors Determining Intra-urban Biodiversity Variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef] [PubMed]
- New York City Nature Goals 2050 Home Page. Available online: naturegoals.nyc (accessed on 20 January 2020).
- Aronson, M.F.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the City: Key Challenges for Urban Green Space Management. Front Ecol. Env. 2017, 15, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Nature in the City Green Hairstreak Corridor. Available online: http://natureinthecity.org/green-hairstreak (accessed on 5 November 2020).
- Ramalho, C.E.; Hobbs, R.J. Time for a Change: Dynamic Urban Ecology. Trends Ecol. Evol. 2012, 27, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Higgs, E.; Falk, D.A.; Guerrini, A.; Hall, M.; Harris, J.; Hobbs, R.J.; Jackson, S.T.; Rhemtulla, J.M.; Throop, W. The Changing Role of History in Restoration Ecology. Front. Ecol. Environ. 2014, 12, 499–506. [Google Scholar] [CrossRef]
- Swetnam, T.W.; Allen, C.D.; Betancourt, J.L. Applied Historical Ecology: Using the Past to Manage for the Future. Ecol. Appl. 1999, 9, 18. [Google Scholar] [CrossRef]
- Fahey, R.T.; Casali, M. Distribution of Forest Ecosystems over Two Centuries in a Highly Urbanized Landscape. Landsc. Urban Plan. 2017, 164, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Chicago Wilderness. Chicago Wilderness Oak Ecosystem Recovery Plan; Chicago Wilderness: Chicago, IL, USA, 2015. [Google Scholar]
- Wintle, B.A.; Kujala, H.; Whitehead, A.; Cameron, A.; Veloz, S.; Kukkala, A.; Moilanen, A.; Gordon, A.; Lentini, P.E.; Cadenhead, N.C.R.; et al. Global Synthesis of Conservation Studies Reveals the Importance of Small Habitat Patches for Biodiversity. Proc. Natl. Acad. Sci. USA 2019, 116, 909–914. [Google Scholar] [CrossRef] [Green Version]
- Almas, A.D.; Conway, T.M. The Role of Native Species in Urban Forest Planning and Practice: A Case Study of Carolinian Canada. Urban For. Urban Green. 2016, 17, 54–62. [Google Scholar] [CrossRef]
- Ordóñez, C.; Duinker, P.N. Ecological Integrity in Urban Forests. Urban Ecosyst. 2012, 15, 863–877. [Google Scholar] [CrossRef] [Green Version]
- Butler, C.; Butler, E.; Orians, C.M. Native Plant Enthusiasm Reaches New Heights: Perceptions, Evidence, and the Future of Green Roofs. Urban For. Urban Green. 2012, 11, 1–10. [Google Scholar] [CrossRef]
- Berthon, K.; Thomas, F.; Bekessy, S. The Role of ‘Nativeness’ in Urban Greening to Support Animal Biodiversity. Landsc. Urban Plan. 2021, 205, 103959. [Google Scholar] [CrossRef]
- Narango, D.L.; Tallamy, D.W.; Shropshire, K.J. Few Keystone Plant Genera Support the Majority of Lepidoptera Species. Nat. Commun. 2020, 11, 5751. [Google Scholar] [CrossRef]
- Hausmann, A.; Slotow, R.; Burns, J.K.; Di Minin, E. The Ecosystem Service of Sense of Place: Benefits for Human Well-Being and Biodiversity Conservation. Envir. Conserv. 2016, 43, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Ignatieva, M. Design and Future of Urban Biodiversity. In Urban Biodiversity and Design; Müller, N., Werner, P., Kelcey, J.G., Eds.; Wiley-Blackwell: Oxford, UK, 2010; pp. 118–144. ISBN 978-1-4443-1865-4. [Google Scholar]
- Ryfield, F.; Cabana, D.; Brannigan, J.; Crowe, T. Conceptualizing ‘Sense of Place’ in Cultural Ecosystem Services: A Framework for Interdisciplinary Research. Ecosyst. Serv. 2019, 36, 100907. [Google Scholar] [CrossRef]
- Schirpke, U.; Meisch, C.; Tappeiner, U. Symbolic Species as a Cultural Ecosystem Service in the European Alps: Insights and Open Issues. Landsc. Ecol. 2018, 33, 711–730. [Google Scholar] [CrossRef] [Green Version]
- London Wildlife Trust Hedgehog Help. Available online: https://www.wildlondon.org.uk/hedgehog-help (accessed on 5 November 2020).
- Winkler, D.E.; Brooks, E. Tracing Extremes across Iconic Desert Landscapes: Socio-Ecological and Cultural Responses to Climate Change, Water Scarcity, and Wildflower Superblooms. Hum. Ecol. 2020, 48, 211–223. [Google Scholar] [CrossRef]
- Biophilic Cities. Portland Swifts Roost. Available online: https://vimeo.com/311286706 (accessed on 25 January 2021).
- Beller, E.E.; Spotswood, E.N.; Robinson, A.H.; Anderson, M.G.; Higgs, E.S.; Hobbs, R.J.; Suding, K.N.; Zavaleta, E.S.; Grenier, J.L.; Grossinger, R.M. Building Ecological Resilience in Highly Modified Landscapes. BioScience 2019, 69, 80–92. [Google Scholar] [CrossRef]
- Coutts, A.; Tapper, N. Trees for a Cool City: Guidelines for Optimised Tree Placement; Cooperative Research Centre for Water Sensitive Cities: Melbourne, Australia, 2017; p. 25. [Google Scholar]
- Showstack, R. Scientists Call for a Renewed Emphasis on Urban Geology. Eos Trans. Agu. 2014, 95, 431–432. [Google Scholar] [CrossRef]
- Reano, D.; Ridgway, K.D. Connecting Geology and Native American Culture on the Reservation of Acoma Pueblo, New Mexico, USA. GSAT 2015, 26–28. [Google Scholar] [CrossRef]
- Freire-Lista, D.M.; Fort, R. Historical City Centres and Traditional Building Stones as Heritage: Barrio de Las Letras, Madrid (Spain). Geoheritage 2019, 11, 71–85. [Google Scholar] [CrossRef]
- City of Melbourne. Green Our City Strategic Action Plan; City of Melbourne: Melbourne, Australia, 2017. [Google Scholar]
- Wijesooriya, N.; Brambilla, A. Bridging Biophilic Design and Environmentally Sustainable Design: A Critical Review. J. Clean. Prod. 2021, 283, 124591. [Google Scholar] [CrossRef]
- Grove, M.; Ogden, L.; Pickett, S.; Boone, C.; Buckley, G.; Locke, D.H.; Lord, C.; Hall, B. The Legacy Effect: Understanding How Segregation and Environmental Injustice Unfold over Time in Baltimore. Ann. Am. Assoc. Geogr. 2018, 108, 524–537. [Google Scholar] [CrossRef]
- Roman, L.A.; Pearsall, H.; Eisenman, T.S.; Conway, T.M.; Fahey, R.T.; Landry, S.; Vogt, J.; van Doorn, N.S.; Grove, J.M.; Locke, D.H.; et al. Human and Biophysical Legacies Shape Contemporary Urban Forests: A Literature Synthesis. Urban For. Urban Green. 2018, 31, 157–168. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality Risk Attributable to High and Low Ambient Temperature: A Multicountry Observational Study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Harlan, S.L.; Declet-Barreto, J.H.; Stefanov, W.L.; Petitti, D.B. Neighborhood Effects on Heat Deaths: Social and Environmental Predictors of Vulnerability in Maricopa County, Arizona. Environ. Health Perspect. 2013, 121, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.S.; Shandas, V.; Pendleton, N. The Effects of Historical Housing Policies on Resident Exposure to Intra-Urban Heat: A Study of 108 US Urban Areas. Climate 2020, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Jenerette, G.D.; Harlan, S.L.; Stefanov, W.L.; Martin, C.A. Ecosystem Services and Urban Heat Riskscape Moderation: Water, Green Spaces, and Social Inequality in Phoenix, USA. Ecol. Appl. 2011, 21, 2637–2651. [Google Scholar] [CrossRef] [PubMed]
- Anguelovski, I.; Connolly, J.J.T.; Masip, L.; Pearsall, H. Assessing Green Gentrification in Historically Disenfranchised Neighborhoods: A Longitudinal and Spatial Analysis of Barcelona. Urban Geogr. 2018, 39, 458–491. [Google Scholar] [CrossRef]
- Immergluck, D.; Balan, T. Sustainable for Whom? Green Urban Development, Environmental Gentrification, and the Atlanta Beltline. Urban Geogr. 2018, 39, 546–562. [Google Scholar] [CrossRef]
- Rigolon, A.; Németh, J. Green Gentrification or ‘Just Green Enough’: Do Park Location, Size and Function Affect Whether a Place Gentrifies or Not? Urban Stud. 2020, 57, 402–420. [Google Scholar] [CrossRef]
- Wilder, V.; Mirto, A.-L.; Arniella, G. The Health Impact of Gentrification. J. Gen. Emerg. Med. 2017, 2, 4. [Google Scholar]
- Mohnot, S.; Bishop, J.; Sanchez, A. Making Equity Real in Climate Adaptation and Community Resilience Policies and Programs: A Guidebook; The Greenlining Institute: Oakland, CA, USA, 2019. [Google Scholar]
- Rigolon, A.; Christensen, J. Greening without Gentrification: Learning from Parks-Related Anti-Displacement Strategies Nationwide; UCLA: Los Angeles, CA, USA, 2019; p. 5. [Google Scholar]
- Marshall, A.J.; Williams, N.S.G. Communicating Biophilic Design: Start with the Grasslands. Front. Built Env. 2019, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Carter, V.; Derudder, B.; Henríquez, C. Assessing Local Governments’ Perception of the Potential Implementation of Biophilic Urbanism in Chile: A Latent Class Approach. Land Use Policy 2021, 101, 105103. [Google Scholar] [CrossRef]
- Cleary, A.; Fielding, K.S.; Murray, Z.; Roiko, A. Predictors of Nature Connection among Urban Residents: Assessing the Role of Childhood and Adult Nature Experiences. Environ. Behav. 2020, 52, 579–610. [Google Scholar] [CrossRef]
- Dearborn, D.C.; Kark, S. Motivations for Conserving Urban Biodiversity. Conserv. Biol. 2010, 24, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Totaforti, S. Emerging Biophilic Urbanism: The Value of the Human–Nature Relationship in the Urban Space. Sustainability 2020, 12, 5487. [Google Scholar] [CrossRef]
- Buttke, D.; Allen, D.; Higgins, C. Benefits of Biodiversity to Human Health and Well-Being. Park Sci. 2014, 31, 24–29. [Google Scholar]
- Borgström, S.; Zachrisson, A.; Eckerberg, K. Funding Ecological Restoration Policy in Practice—Patterns of Short-Termism and Regional Biases. Land Use Policy 2016, 52, 439–453. [Google Scholar] [CrossRef]
- Halme, P.; Allen, K.A.; Auniņš, A.; Bradshaw, R.H.; Brūmelis, G.; Čada, V.; Clear, J.L.; Eriksson, A.-M.; Hannon, G.; Hyvärinen, E. Challenges of Ecological Restoration: Lessons from Forests in Northern Europe. Biol. Conserv. 2013, 167, 248–256. [Google Scholar] [CrossRef]
- Manning, A.D.; Lindenmayer, D.B.; Fischer, J. Stretch Goals and Backcasting: Approaches for Overcoming Barriers to Large-scale Ecological Restoration. Restor. Ecol. 2006, 14, 487–492. [Google Scholar] [CrossRef]
- Pagano, M.A. Funding and Investing in Infrastructure; The Urban Institute: Washington, DC, USA, 2011. [Google Scholar]
- Herrera, D. Environmental Impact Bonds: Next Big Thing for Green Investments? Available online: https://www.edf.org/blog/2017/07/14/environmental-impact-bonds-next-big-thing-green-investments (accessed on 22 December 2020).
- Clean Water America Alliance. Barriers and Gateways to Green Infrastructure; Clean Water America Alliance: Washington, DC, USA, 2011. [Google Scholar]
- Wigginton, S.K.; Meyerson, L.A. Passive Roadside Restoration Reduces Management Costs and Fosters Native Habitat. Ecol. Rest. 2018, 36, 41–51. [Google Scholar] [CrossRef]
- O’Sullivan, O.S.; Holt, A.R.; Warren, P.H.; Evans, K.L. Optimising UK Urban Road Verge Contributions to Biodiversity and Ecosystem Services with Cost-Effective Management. J. Environ. Manag. 2017, 191, 162–171. [Google Scholar] [CrossRef]
- Solanki, V.K.; Venkaesan, M.; Katiyar, S. Conceptual Model for Smart Cities: Irrigation and Highway Lamps Using IoT. IJIMAI 2017, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Mason, B.; Rufí-Salís, M.; Parada, F.; Gabarrell, X.; Gruden, C. Intelligent Urban Irrigation Systems: Saving Water and Maintaining Crop Yields. Agric. Water Manag. 2019, 226, 105812. [Google Scholar] [CrossRef]
- Calvillo, C.F.; Sánchez-Miralles, A.; Villar, J. Energy Management and Planning in Smart Cities. Renew. Sustain. Energy Rev. 2016, 55, 273–287. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panlasigui, S.; Spotswood, E.; Beller, E.; Grossinger, R. Biophilia beyond the Building: Applying the Tools of Urban Biodiversity Planning to Create Biophilic Cities. Sustainability 2021, 13, 2450. https://doi.org/10.3390/su13052450
Panlasigui S, Spotswood E, Beller E, Grossinger R. Biophilia beyond the Building: Applying the Tools of Urban Biodiversity Planning to Create Biophilic Cities. Sustainability. 2021; 13(5):2450. https://doi.org/10.3390/su13052450
Chicago/Turabian StylePanlasigui, Stephanie, Erica Spotswood, Erin Beller, and Robin Grossinger. 2021. "Biophilia beyond the Building: Applying the Tools of Urban Biodiversity Planning to Create Biophilic Cities" Sustainability 13, no. 5: 2450. https://doi.org/10.3390/su13052450
APA StylePanlasigui, S., Spotswood, E., Beller, E., & Grossinger, R. (2021). Biophilia beyond the Building: Applying the Tools of Urban Biodiversity Planning to Create Biophilic Cities. Sustainability, 13(5), 2450. https://doi.org/10.3390/su13052450