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Abstract: It is estimated that 1 billion waste tires are generated every year across the globe, yet only
10% are being processed, and much rubber waste is yielded during manufacturing. These waste tires
and rubber scraps are poisonous to the environment when processed via incineration and landfill.
Rubber circular manufacturing is an effective solution that reduces not only rubber waste but also
raw material costs. In this paper we propose a two-line flowshop model for the circular rubber
manufacturing problem (CRMP), where the job sequence of two production lines is appropriately
aligned to obtain the shortest makespan while guaranteeing that sufficient rubber waste yielded in
the first line is ready to be reused for circular production in the second line. A genetic algorithm (GA)
is developed, and the design of its genetic operations is customized to the CRMP context to achieve
efficient and effective evolution. The experimental results with both real and synthetic datasets
show that the GA significantly surpasses two heuristics in the literature by delivering the minimum
makespan, which is 3.4 to 11.2% shorter than those obtained by the two competing methods.

Keywords: flowshop scheduling; circular economy; rubber circular manufacturing; heuristic;
genetic algorithm

1. Introduction

Circular economy [1] is a new recycling economic ecosystem that reduces wastes or
emissions during manufacturing and end-use of the products. It stems from the idea that
everything produced or consumed in the manufacturing and end-use stages of the products
should be part of the economy. The ecosystem of life-time production shifts from open
production to closed-loop production, facilitating zero waste and sustainable development.
The traditional open production follows a linear fashion, which goes through various stages
of the product life, that is, resource acquisition, production, distribution, consumption, and
waste. The waste generated at the end of the process is disposed, if not well processed, and
may spoil the environment. The closed-loop production in a circular economy, on the other
hand, redesigns the product life such that the end-of-life product, which can be reused or
repaired, gets into consumption again. Those products that cannot be reused or repaired
are made degradable or compostable and reenter the product life as recycled raw materials.
This kind of reuse, repair, and recycle (3R) constitutes the principal elements in a circular
economy. It requires deliberated technologies for all stages of product life to ensure the
feasibility of 3R designs [2]. A comprehensive review was presented in [3], which proposed
a circular economy framework and a practical implementation strategy. The framework
classifies existing references on aspects of waste generation, resource scarcity, and sus-
taining economic benefits. The proposed implementation strategy combines top-down
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and bottom-up approaches. Kumar et al. [4] conducted a questionnaire for manufacturing
companies in the UK and EU. With 63 responses from socio-political, economic, legal, and
environmental perspectives, the authors identified a number of benefits, opportunities,
and barriers to circular economy implementation in UK and EU. A conceptual framework
of the circular supply chain was presented in [5] where four dimensions were identified
to support the development of the new supply chain to capture additional values. The
focus of the review in [6] is particularly on the equipment and machinery sector. Multiple
strategies proposed in the literature are clustered to build a homogeneous approach for
understanding the standards and strategies. A strategy characterization framework is
proposed for the selection of the best strategy for equipment production. It was pointed
out in [7] that the inclusion of appropriate information technologies such as Industry
4.0 and Internet of Things (IoT) can facilitate a better practice of circular economy. The
deployment of IoT enables the collection of all relevant production data to better pre-
dict material demands at every production stage such that ideal zero waste (in terms of
materials, storage, and logistics) can be achieved. By implementing Industry 4.0 with
assistive artificial intelligence, the production system can diagnose abnormal reactions in
real time and troubleshoot problems, so as to reduce the gap between production reality
and expectations. As indicated in [8], the definition of circular economy is well accepted
in considering the interests and expectations of all stakeholders. Waste minimization is
achieved through better process, material, and product designs in the industrial system
that is restorative by design.

Circular economy is closely related to green economy, which focuses on reducing
environmental damages and promoting sustainable development. The United Nations
Environment Programme (UNEP) reported that the green economy must not only be
efficient but also low-carbon, resource efficient, and socially inclusive [9]. This implies
that production conforming to green economy must ideally produce no waste, and if
the waste is inevitable, it should be reused or recycled as part of the resource to make
it efficient. To this end, each individual or government of all levels in the society has
the right and obligation to consider the natural environment and sustainable ecosystem
as economical assets. Many countries and non-government organizations have set forth
eco-labelling to recognize green products and services. This green trading ecosystem brings
new challenges and opportunities. As a response to this call, the Ministry of Economic
Affairs, Taiwan, launched the Green Trade Project Office (GTPO) in 2011 to promote
the cross-national exchange of goods, services, resources, and credits that contribute to
ecological sustainability. Among others, the energy efficiency, renewable energy, low-
carbon transportation, environmental protection equipment, and sustainable materials are
important green products or services [10].

The traditional tire production model generates a huge amount of waste and is unable
to recover the end-of-life products. For example, it is estimated that 1 billion waste tires are
generated every year across the globe, yet only 10% of them are being processed [11], and
much scrap rubber is cut off during manufacturing. The poisonous materials contained
in waste tires or scrap rubber, if not well processed, have been known to be severely
harmful to the environment and human health [12]. The traditional way of scrap rubber
processing is disposal by incineration or landfill. However, the ashes emitted into the air
from rubber combustion in the incineration plant contribute to air pollution. The inorganic
residuals produced by incinerators are sent to landfill space, and they have the risk of
being washed out by heavy rain and seep into mud or groundwater. As complementary
to producing green products, which are ideally zero-waste and environmentally friendly,
waste management and recycling technology are direct solutions to the minimization of
waste and end-of-life product disposals for the current production model [5]. More efficient
ways for rubber recycling have been developed. For instance, tire pyrolysis involves
thermal degradation of waste tires and produces tire pyrolysis oil, pyro char, and pyro
gas. Tire pyrolysis oil can be used for alternative engine fuel. Pyro char can be used as
energy storage material, and pyro gas can be used as industrial fuel [13]. The rubber
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granulate processed from waste has been used in practice to produce floor coverings, cow
mattresses, and stand systems for signposting of road works and barriers [14]. This closed
circular economy for rubber not only reduces the carbon footprint but also solves the waste
processing problem of scrap tires and rubber.

The quantity of scrap rubber dumped by Taiwan rubber industries nearly doubled
in the last decade, from 3.486 million metric tons (MT) in 2011 to 6.14 MT in 2019 [15].
However, the capacity of scrap rubber incineration and landfill only increased by about
25% during the same period, necessitating a large temporary storage space for scrap rubber.
It is estimated that 57% of the 6.14 million tons of scrap rubber in 2019 can be actually
reused or recycled and should not be disposed by incinerators and landfill, indicating there
is much room to redesign closed circular materials for rubber industries in Taiwan.

In this paper we study one of the leading rubber manufacturers in Taiwan, which
aims at circular rubber material designs. The manufacturer has two main production lines.
The first line produces rolling cylinders, rubber rollers, sander wheel, and packing rubber
for use by many different industries. The second line reuses the scrap rubber granulates
and strips produced by the first line and mixes them with other materials to manufacture
light-weight rubber works such as construction materials, barriers, and stand systems for
signposting of road works. A typical process of the production is shown in Figure 1. The
rubber materials go through several operations including compounding, coating, molding,
vulcanization, demolding, and deflashing. During each operation, certain quantities of
scrap rubber are yielded, which can be reused to make light-weight rubber products. Some
of the products produced by the two lines are shown in Figure 1g,h. An application of the
circular rubber products, the stone-like wall rubber, is shown in Figure 1i.

The current practice of the two production lines follows a linear fashion, i.e., the
scheduling for the two production lines is independent. The scrap rubber granulates and
strips produced by the first line are put aside in a buffer storage, and the machines in the
second line have no expectation for the real-time availability of the circular rubber materials.
Hence, the second line is started only when the amount of scrap rubber granulates and
strips exceeds the total demand of all the jobs to be processed in the second line. Specifically,
if the scheduling of the two production lines is properly aligned, the makespan will be
significantly reduced. The objective of this paper is to find the best job sequence for each
line such that the maximum completion time for all jobs on both lines is as short as possible.
Hereafter, we name the addressed problem as the circular rubber manufacturing problem
(CRMP). Each production line in the CRMP is a flowshop where a number of jobs should
be processed by the same sequence of operations. As the flowshop scheduling problem
is NP-Hard [16], a polynomial-time exact algorithm does not exist unless P = NP. Many
approximation algorithms have been proposed. Early methods consider machines as the
only resource in the flowshop and propose effective heuristics. Johnson [17] proposed an
n-job, two-machine exact algorithm, which has been widely embedded in later heuristics
for solving general n-job, m-machine flowshop problems. One of the notable approximation
algorithms is the Campbell-Dudek heuristic [18], which considers the first k machines as
machine A and the last k machines as machine B, then solves the resulting n-job, two-
machine problem by applying Johnson’s algorithm to obtain the optimal job sequencing.
The process is repeated through k = 1, . . . , m − 1 (so machine A and machine B may cover
some original machines in common), and the minimum total processing time among these
m − 1 job sequences is the final approximation solution to the original problem. Instead
of formatting the n-job, m-machine flowshop to multiple n-job, two-machine problems,
Nawaz et al. [19] presented a NEH heuristic that generates the final job sequence in a
constructive way, where the unprocessed job with the longest processing time is tentatively
placed at every sequence position, and the best position for the job is evaluated. In this
fashion, a new job is incrementally added to the partial sequence at each evaluation step
until a full sequence is obtained. In practical flowshop production, multiple types of
resources in addition to machines usually exist and need to be properly managed. These
resources include raw materials, manpower, budgets, or circular materials, making the
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job scheduling more perplexing. The context of multiple resources constraints is more
practical and realistic in manufacturing industries. Laribi et al. [20] deals with makespan
minimization in flow shop scheduling problems where a second resource other than
machines is considered. By adapting the NEH heuristic for accommodating a second
resource constraint, an approximation solution for the n-job, m-machine flowshop problem
with resource constraint can be quickly produced.
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Recently, evolutionary algorithms have shown superior job-sequencing solutions than
those obtained by applying heuristics. Osman and Potts [21] designed a simulated anneal-
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ing (SA) algorithm to obtain approximate solutions of the optimal job order to minimize
the maximum completion time. A genetic algorithm (GA) is developed by Reeves [22] for
finding the approximate minimum makespan of the n-job, m-machine flowshop problem.
It is shown that the performance of the GA surpasses that of a neighborhood search heuris-
tic and an SA. In order to further improve the performance, Murata et al. [23] developed
a hybridization of a GA and an SA to achieve a better job sequencing than that obtained
by either GA or SA alone. Another hybridization approach was proposed in Eksioglu
and Eksioglu [24], which combines the tabu search and a variable neighborhood search
heuristic for the flowshop problem.

It is intuitive to apply existing algorithms for the flowshop scheduling to the ad-
dressed CRMP problem. However, the CRMP problem is more complex than the flowshop
scheduling in that each production line in the CRMP is already a flowshop, and that there
are multiple types of circular resources that bind the two production lines to each other.
As a result, the research objectives of this study are as follows.

• As our study scheduling context of two-line circular manufacturing has not been
contemplated before, a precise mathematical formulation that clearly defines the
objectives and the constraints of the problem has to be presented.

• Previous evolutionary algorithms for job-sequencing problems are not directly appli-
cable to the addressed CRMP problem. Therefore, the developed solution method
should take the CRMP properties into account and be customized to the problem
context to enhance the effectiveness and efficiency.

• The CRMP problem is inspired by the real circular rubber production context, so the
experimental design should include the empirical results with the dataset collected
from the real production lines of the research subject. Synthetic datasets should also
be tested to validate the robustness of the proposed approach.

• The proposed approach needs to be compared to modified versions of the tradi-
tional scheduling heuristics and demonstrate its advantages, such that the need for
developing a new method customized to CRMP is justified.

From the literature, we learned evolutionary algorithms are effective in finding ap-
proximation solutions to the flowshop scheduling. In this paper, a customized GA is
developed to tackle the NP hardness of the CRMP. The contributions of our paper are
as follows. (1) The traditional process of disposed rubber waste has the risk of poison-
ing the environment, as indicated in [11,12]. We propose a sustainable rubber circular
manufacturing model to reduce rubber waste and save material cost. (2) Exiting schedul-
ing heuristics [17–19] in the literature considers only a single production line and one
type of resource. They cannot be directly applied to efficiently tackle the CRMP problem.
To achieve efficient circular manufacturing, two production lines of the CRMP must be
appropriately aligned according to the reused material constraints. Our method aims
at minimizing the makespan of the entire production by elaborating the yielding and
reuse of the circular materials. (3) In the literature, evolutionary algorithms [21–24] have
shown excellent scheduling capability for flowshop sequencing problems. However, the
customized evolutionary algorithms for CRMP are lacking. In this context, we first present
a mathematical formulation for the newly introduced CRMP problem and then develop
a GA that is customized to the specifications of the CRMP. Our GA design guarantees
the reproduced chromosomes are feasible solutions to the CRMP problem, making the
evolution efficient without the need for handling infeasible solutions. (4) Our studied
subject is a leading rubber manufacturer. We cooperatively developed the two-line circular
manufacturing model. The real data collected from the daily operations in the factory are
used in the experiment. To evaluate the robustness of our GA, a comprehensive dataset
that synthesizes the scenarios in manufacturing is further tested. The experimental result
shows that the proposed GA outperforms two heuristics in shortening their makespan by
3.4–9.7% and 3.5–11.2% for the real and synthetic datasets, respectively.
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The remainder of the paper is organized as follows. Section 2 presents the problem
statements and the proposed methods. Section 3 elucidates the experimental results and
comparative performances. Section 4 concludes this work.

2. Problem Statements and Proposed Methods
2.1. Notations

Decision variables

xl,i1,i2 =

{
1, if job i1 operation precedes job i2 operation on line l, l ∈ {A, B}
0, otherwise.

yi1,j1,i2,j2 =

1,
if job i1 operation on machine j1 of Line A is completed before

the starting of job i2 operation on machine j2 of Line B

0, otherwise.

zi1,j1,i2,j2 =

1,
if job i1 operation on machine j1 of Line B starts before

the starting of job i2 operation on machine j2 of Line B

0, otherwise.
Parameters

Cmax
Makespan of the entire production consisting
of Line A and Line B

Cl,i,j
Completion time of job i operation on machine
j of Line l, l ∈ {A, B}

pl,i,j
Processing time of job i operation on machine j
of Line l, l ∈ {A, B}

ri,j,k

Yielded quantity of type k circular materials
after completing job i operation on machine j in
Line A

di,j,k

Required quantity of type k circular materials
before starting job i operation on machine j in
Line B

2.2. Problem Statements and Formulation

We consider the practical case of a rubber manufacturer in Taiwan. The addressed
subject has two production lines, denoted line A and line B, respectively. There are n1 jobs
to be processed on line A, and all jobs on this line go through the same m1 operations,
which should be performed in a specific order. All of the first operations of these jobs are
processed on the first machine, all of the second operations on the second, etc. Each job is
processed by only one operation at a time, and no preemption is allowed. The flow control
implies that the processed job sequence on each machine is the same. Similar flow control
is applied to line B with n2 jobs and m2 operations. Each job operation upon finishing on
line A will yield two types of circular materials (scrap rubber granulates and strips), which
can be reused or mixed with other materials in the job operations on line B. The start of
job operation on line B should wait until all required circular materials are received from
the yielding of line A. The aim of our circular rubber manufacturing problem (CRMP) is
to determine the optimal flowshop schedules for the two lines such that the makespan of
all jobs is a minimum. The CRMP is NP-Hard given that each individual line of CRMP is
itself a flowshop scheduling problem, which has been known as NP-Hard when there are
more than two machines [16].

Before presenting the problem formulation, an illustrative example is given to eluci-
date the CRMP. Assume line A has three jobs

{
JA
1 , JA

2 , JA
3
}

and two machines
{

MA
1 , MA

2
}

,
line B also has three jobs

{
JB
1 , JB

2 , JB
3
}

and two machines
{

MB
1 , MB

2
}

. The processing time of
each job on each operation of line A and the quantities of yielded scrap rubbergranulates
and strips from each operation are given in Table 1. Similar descriptive data (yielded mate-
rials become the required circular materials) for line B are displayed in Table 2. Figure 2
shows feasible job schedules,

{
JA
1 , JA

3 , JA
2
}

for line A and
{

JB
3 , JB

2 , JB
1
}

for line B. The obtained
makespan is 21.
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Table 1. The processing time and yielded materials of each job on each operation of line A.

JA
1 JA

2 JA
3

MA
1 4, 3, 1 5, 1, 3 3, 2, 2

MA
2 5, 3, 2 2, 2, 2 6, 1, 1

Table 2. The processing time and required circular materials of each job on each operation of line B.

JA
1 JA

2 JA
3

MA
1 2, 0, 1 3, 2, 2 4, 7, 1

MA
2 1, 1, 0 2, 1, 1 4, 1, 5
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Following the notations and the numerical example introduced, we now present the
integer programming formulation of CRMP as follows.

Minimize Cmax (1)

Subject to:
Cmax > Cl,i,j ∀i, ∀j, ∀l; (2)

Cl,i,j2 ≥ Cl,i,j1 + pl,i,j2 ∀i, ∀j1 < j2 ∀l; (3)

Cl,i2,j ≥ Cl,i1,jxl,i1,i2 + pl,i2,j ∀ i1 6= i2, ∀j ∀l; (4)

xl,i1,i2 + xl,i2,i1 = 1 ∀ i1 6= i2, ∀l; (5)

xl,i1,i2 + xl,i2,i3 + xl,i3,i1 ≤ 2 ∀ i1 6= i2 6= i3, ∀l; (6)

di2,j2,k ≤∑
∀i1

∑
∀j1

ri1,j1,kyi1,j1,i2,j2 −∑
∀i3

∑
∀j3

di3,j3,kzi3,j3,i2,j2 ∀i2, ∀j2, ∀k; (7)

yi1,j1,i2,j2 CA,i1,j1 ≤ yi1,j1,i2,j2
(
CB,i2,j2 − pB,i2,j2

)
∀i1, ∀j1, ∀i2, ∀j2; (8)(

1−yi1,j1,i2,j2
)
CA,i1,j1 ≥

(
1−yi1,j1,i2,j2

)(
CB,i2,j2 − pB,i2,j2

)
∀i1, ∀j1, ∀i2, ∀j2; (9)

zi1,j1,i2,j2
(
CB,i1,j1 − pB,i1,j1

)
≤ zi1,j1,i2,j2

(
CB,i2,j2 − pB,i2,j2

)
∀i1, ∀j1, ∀i2, ∀j2; (10)(

1− zi1,j1,i2,j2
)(

CB,i1,j1 − pB,i1,j1
)
≥
(
1− zi1,j1,i2,j2

)(
CB,i2,j2 − pB,i2,j2

)
∀i1, ∀j1, ∀i2, ∀j2; (11)

xl,i1,i2 ∈ {0, 1} ∀ i1 6= i2, ∀l; (12)

yi1,j1,i2,j2 ∈ {0, 1} ∀i1, ∀j1, ∀i2, ∀j2; (13)
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zi1,j1,i2,j2 ∈ {0, 1} ∀i1, ∀j1, ∀i2, ∀j2; (14)

Equation (1) is the objection function corresponding to the minimization of the
makespan of the entire production consisting of Line A and Line B. Constraint (2) stipulates
the makespan should be greater than the completion time of any job on any machine. Con-
straint (3) states that the operation of job i on machine j2 can only start after its operation
on any preceding machines has completed, so the completion time of job i on machine
j2 should be larger than the sum of its processing time and the completion time of any
preceding machine j1 in the same production line. Constraint (4) entails that the operation
of any two distinct jobs on the same machine (job i1 operation precedes job i2 operation on
machine j) cannot be preempted. Equations (5) and (6) guarantee the job flow constraints.
Constraint (7) calls for the satisfaction of the circular material demand for processing job i2
on machine j2 in Line B by requiring the demand is less than or equal to all the materials
already yielded in Line A minus all the consumed materials in Line B. Equations (8)–(11)
are used to validate the decision variables yi1,j1,i2,j2 and zi1,j1,i2,j2 , while Equations (12)–(14)
claim that all decision variables are binary ones. The integer programming model of small
problem sizes can be solved to optimality by using commercial software such as lingo.
However, for medium- and large-sized problems, quality solutions may be obtained by
applying evolutionary algorithms such as GAs.

The problem modeling with our formulation is limited to the research subject and
our interactions with the rubber manufacturer. It may not reflect the production context of
other rubber manufacturers, which has potential to implement circular manufacturing.

2.3. Proposed Methods

GAs are bio-inspired natural algorithms that simulate Darwinian evolution theory
to improve the performance of computational systems. GAs have been used for several
decades in applications such as machine learning [25], engineering optimization [26], and
operational management [27], to name a few. It has been proven in Holland’s schemata
theory [28] that GAs exponentially converge to the global optimum if no dependency
exists among the genes. In general, GAs manipulate evolution as follows. The solution
structure to the addressed problem is encoded as a chromosome, which is usually a string
of numbers. A fitness function of a chromosome is defined to evaluate how fit the delivered
gene values by the chromosome solve the problem at hand. An initial population consisting
of many chromosome instances is created by random. The population evolves through
successive generations by repeatedly performing natural genetic operations, namely selec-
tion, crossover, and mutation. When the evolution terminates with a maximum number
of generations, the chromosome with the best fitness value observed so far is output as
the final solution. In the following, we articulate our GA design customized to the CRMP
problem.

Assuming that there are n1 jobs
{

JA
1 , JA

2 , . . . , JA
n1

}
to be processed by line A and n2 jobs{

JB
1 , JB

2 , . . . , JB
n2

}
by line B. A feasible job processing schedule to the CRMP problem can

be represented by a chromosome integer string as X = ‘x1, x2, . . . , xn1+n2 ’ where 1 ≤ xi ≤
n1 + n2 and xi 6= xj if i 6= j. In other words, X is an integer permutation where xi indicates
JA
i if 1 ≤ xi ≤ n1 and xi indicates JB

i−n1
if n1 + 1 ≤ xi ≤ n1 + n2. For example, let there be 4

and 3 jobs to be processed by line A and line B, respectively. A chromosome X = ‘3614725’
indicates the job order

{
JA
3 , JA

1 , JA
4 , JA

2
}

for line A and
{

JB
2 , JB

3 , JB
1
}

for line B. The fitness
value of the chromosome is evaluated by calculating the makespan with the job orders
contained in the chromosome. In this context, the lower the fitness value (makespan) is,
the better the chromosome.

An initial population P of N chromosomes is generated at random to start the evolution.
The fitness value for each chromosome in P is evaluated. Natural selection is a process
that mimics the survival of the fitter chromosomes. We adopt the tournament selection
scheme to generate the next population Q from the current population P. The selection
process is as follows. For each empty slot in the next population Q, two chromosomes
are randomly selected from P to compete for survival. The winner of the competition is
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determined by reference to the fitness values, and the winner is cloned to fill the empty
slot. Both competitors still remain in P and are eligible for selection in the next round. The
selection process is repeated until all the empty slots in the next population Q are filled
up. The tournament selection is superior to earlier selection schemes like roulette-wheel
selection, which has a high risk of generating large stochastic errors.

The crossover operation manipulates two parental chromosomes and exchange genes
between them to produce offspring chromosomes. The crossover operation is performed
with a crossover probability Pc. In other words, N × Pc chromosomes will be manipulated
by crossover. As our chromosome structure is represented as a permutation string, the
partially matched crossover (PMX) that can reorder the permutation is applied. The
PMX crossover resembles the two-point crossover but respects a look-up table to avoid
repetitions of gene alleles. The PMX crossover consists of three steps: look-up table
establishment, gene exchange, and gene correction. An example is illustrated in Figure 3
where two parental chromosomes X and Y are shown with the PMX crossover to produce
two offspring chromosomes X’ and Y’. Firstly, two cutting sites are generated at random,
say at 3 and 6. The gene segments between the two cutting sites are used to establish a look-
up table, i.e., the list (2, 3, 10) is mapped to (5, 6, 7). Secondly, the gene segments between
the two cutting sites are exchanged. Finally, the repetitive genes in the remaining segments
due to the exchange are corrected by referring to the look-up table (the corresponding
genes before and after correction are printed in red as shown in Figure 3).
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Figure 3. Two parental chromosomes X and Y are shown with the PMX crossover to produce two offspring chromosomes X’
and Y’.

Mutation alters the gene alleles of a chromosome and is performed with a mutation
probability Pm. Mutation is an imperative operation to reserve the gene diversity in the
population in order to avoid premature convergence. The ordinary flipping mutation,
which mutates the gene by replacing its allele with an alternative one, is not applicable to
our permutation-based chromosomes because there is risk of generating repetitive gene
alleles in a chromosome. Here, we employ the 2-swap mutation that randomly selects two
genes and exchanges them. The 2-swap operation is a common heuristic that has been
embedded in sophisticated methods for combinatorial optimization problems.

In summary, the pseudo code of our GA for the CRMP problem is shown in Figure 4.
The evolution will be executed until a maximal number of generations have been repro-
duced. Upon the end of the evolution, the job sequences contained in the best chromosome
observed in the entire evolution are used to solve the CRMP problem.
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3. Results

The CRMP problem was formulated from the real context of circular rubber products
manufacturing. A real dataset was provided by the investigated manufacturer. To further
testify the characteristics of our GA, a comprehensive synthetic dataset was generated to
cover diverse profiles of production. The computation platform for our experiments was a
personal computer with a 2.4GHz CPU and 8GB RAM, and the programs were codified
using Python 3.8.5 and C#.

3.1. Experiment with Real Dataset

Our study subject was a rubber manufacturer in Taiwan that provided us real data
collected from the productions. We experimented with two production lines. The first line
(denoted Line A) consisted of six machines and was the line for producing main rubber
products. The second line (denoted Line B) had three machines, and it was where the light-
weight rubber works are manufactured. Following the notations defined in Section 2.1, the
parameters of both production lines in the real data are shown in Tables 3 and 4, respectively.
We compared our GA with two scheduling heuristics. The First-Come-First-Serve heuristic
(denoted by FCFS) processes the jobs in the order with which the jobs come to the line. The
Campbell-Dudek heuristic [18] as previously introduced in Section 1 iteratively applies
Johnson’s algorithm m − 1 times for the n-job, m-machine problem, and the best schedule
of the m − 1 job sequences is returned as the near-optimal scheduling. As the CRMP
problem has two production lines, the Campbell-Dudek heuristic should be separately
applied to each line, and the best schedule of all possible combined job sequences from
both lines is returned. The parameter setting of our GA is as follows. The population
consisted of 20 chromosomes that evolve for 50 generations. During each generation, the
next population was generated by applying the tournament selection, PMX crossover with
probability 0.8, and the 2-swap mutation with probability 0.1. The best chromosome (job
sequence) obtained in the entire evolution was returned. As GA is a stochastic optimization
method, each single run of it may produce a distinct best solution from the evolution.
To provide a reliable estimation, the GA was executed for 30 independent runs, and the
descriptive statistics will be reported.
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Table 3. The processing time and yielded materials for line A.

JA
1 JA

2 JA
3 JA

4 JA
5 JA

6 JA
7 JA

8

MA
1 115, 63, 15 77, 74, 35 107, 96, 5 93, 140, 54 91, 74, 49 62, 12, 28 77, 28, 38 72, 46, 40

MA
2 21, 20, 13 5, 4, 1 26, 33, 5 23, 32, 13 15, 6, 4 10, 11, 6 17, 19, 5 25, 22, 3

MA
3 10, 15, 5 14, 17, 7 14, 23, 3 11, 14, 2 10, 7, 4 14, 2, 5 11, 5, 5 14, 12, 8

MA
4 173, 147, 37 113, 122, 66 132, 57, 59 169, 141, 76 92, 29, 29 145, 140, 27 165, 107, 8 114, 150, 63

MA
5 12, 11, 6 7, 9, 2 3, 1, 1 14, 22, 4 8, 6, 2 4, 2, 2 5, 6, 2 11, 4, 6

MA
6 52, 39, 20 111, 33, 68 36, 28, 3 107, 91, 64 53, 37, 8 68, 67, 43 50, 68, 15 66, 107, 11

Table 4. The processing time and required circular materials for line B.

JB
1 JB

2 JB
3 JB

4 JB
5 JB

6

MB
1 51, 134, 42 54, 101, 82 37, 88, 45 71, 75, 37 32, 127, 30 78, 218, 105

MB
2 21, 76, 18 43, 40, 40 40, 114, 21 19, 71, 24 31, 72, 25 26, 65, 41

MB
3 84, 98, 103 75, 114, 44 110, 116, 96 85, 288, 55 96, 196, 50 112, 189, 111

Table 5 summarizes the experimental results obtained by the three competing methods.
The FCFS heuristic always produced the increasing-order job sequence as Line A = {1,
2, 3, 4, 5, 6, 7, 8} and Line B = {1, 2, 3, 4, 5, 6}, whose makespan was 1457 min. For
the Campbell-Dudek heuristic, 10 combinations of job sequences from both lines were
produced, and the best scheduling was Line A = {6, 2, 4, 8, 5, 1, 7, 3} and Line B = {5, 3, 1, 2,
4, 6} with the makespan being 1340 min. The average makespan of the 10 combinations
of job sequences was 1361 min with a standard deviation (Std) of 17.46. The best solution
obtained from the 30 GA runs was Line A = {6, 1, 2, 7, 8, 4, 5, 3} and Line B = {1, 3, 6, 5, 4,
2}, which gave the prevailing makespan of 1307 min. This was 33 min (2.5%) shorter than
the best makespan obtained by the Campbell-Dudek heuristic, and was 150 min (10.3%)
shorter than the makespan obtained by the FCFS heuristic The average makespan from
the 30 independent runs of GA was 1315 min, which was 3.4% and 9.7% shorter than the
average makespan obtained by the Campbell-Dudek heuristic and FCFS, respectively. It is
seen from the Std value that the variation of produced makespans among multiple GA runs
was significantly smaller than that of the multiple job-sequence combinations obtained by
the Campbell-Dudek heuristic, indicating that the GA was stable and insensitive to the
initial solutions generated by random. The CPU time spent for executing GA was 1.2764 s,
which is feasible for most scheduling applications, though it is greater than that required
by the two heuristics.

Table 5. The experimental results of the three competing methods with the real dataset.

Best Average Std CPU Time

FCFS 1457 1457 0 6.7 × 10−6

Campbell-Dudek 1340 1361 17.46 0.0223
GA 1307 1315 8.05 1.2764

Figure 5a to Figure 5c illustrates the Gantt chart of the best schedule of both lines
and the dynamic availability of the two types of circular materials obtained by FCFS,
Campbell-Dudek heuristic, and GA, respectively. In Figure 5a, we observe that the last
machine (MA

6 ) in Line A of FCFS started operation at 331 min, and Line A finished all its
operations at 1326 min. As will be noted, the FCFS job sequence in Line A was inferior
to those arranged by the other two competing methods in two aspects: the makespan for
Line A and the machine idle time in Line B. It is seen in Figure 5a that there was a long idle
time on MB

3 after finishing JB
3 at 843 min and before start processing JB

4 at 1135 min. Clearly,
this is the main bottleneck that deterred the operation of MB

3 for the subsequent jobs and
resulted in the overall makespan of 1457 min. The reason for this long idle time is the low
availability of type 1 circular material at 843 min (194 kg of type 1 material remaining) and
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the high demand (288 kg) of the same material by JB
4 . The operation of JB

4 on MB
3 has to wait

until the required material demand is satisfied with the released circular materials from the
operations in Line A during the idle time. This phenomenon reflects the appropriateness
of job scheduling in Line A, which not only depends on minimizing its makespan but also
satisfying the material demand of operations in Line B.

For the job sequence arranged by the Campbell-Dudek heuristic, as shown In Figure
5b, we observe that the last machine (MA

6 ) in Line A started operation at 235 min and
finished its processes at 1228 min; both checking time points were earlier than those in the
Gantt chart for FCFS. For Line B, we see the operations on MB

1 and MB
2 were more compact

and finished earlier than those as seen for FCFS. However, the compact operations also
incurred shortage of circular materials for the production on MB

3 . The job JB
5 finishing its

MB
2 operation at 294 min has to wait for 219 min in order to gain sufficient circular materials

for transiting to the MB
3 operation at 513 min. Another idle time occurred on MB

3 when
the operation transits from JB

2 at 896 min to JB
4 at 1057 min, also due to the low availability

of type 1 circular material (177 kg of type 1 material remaining at 896 min) and the high
demand (288 kg) of the same material by JB

4 .
For Line A production arranged by GA, as shown in Figure 5c, the makespan for

each machine was similar to that obtained by the Campbell-Dudek heuristic, showing
superiority than FCFS. For the Gantt chart in Line B, it seems GA produced a compromised
job sequence that balanced between early start-processing time and prudent reserve of
necessary materials for later production of critical jobs. We see MB

1 and MB
2 compactly

finished operations for the first six jobs and then deterred the operations for the last job (JB
2 )

in order to reserve the circular materials for the production of JB
4 on MB

3 . It is seen that the
production in Line B suggested by GA was relatively parallel to enhance the production
efficiency, in contrast to those suggested by FCFS and Campbell-Dudek heuristic where all
operations on MB

1 and MB
2 finished very early and left MB

3 to proceed with operations of
later jobs without parallelization with the other machines, which is the main reason there
was a long makespan.

3.2. Experiment with Synthetic Dataset

In Section 3.1, we have shown that our GA outperformed FCFS and Campbell-Dudek
heuristic on the real dataset provided by the manufacturer. To carry out a sound perfor-
mance evaluation that can be generally applied to diverse scenarios of the CRMP problem,
intensive experiments with a comprehensive synthetic dataset were conducted. As the
CRMP problem originated from the real production of a rubber manufacturing factory, the
real data values of the production parameters (processing time, yielding or demand of type
1 materials, yielding or demand of type 2 materials) as listed in Tables 3 and 4 were used
as a reference to create a range for drawing parameter sample values. The width of the
sample range was set to 20% of the real data value, which was also the center of this range.
We created ten CRMP synthetic problem instances by drawing random parameter values
from the sampling ranges. The synthetic dataset generated in this way not only reserves
the basic properties of the rubber circular manufacturing from real data but also generates
diverse production scenarios.
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Following the same experimental protocol applied in Section 3.1, the FCFS was con-
ducted one time, the Campbell-Dudek heuristic was iteratively applied 10 times, and the
GA was executed for 30 independent runs. The descriptive statistics with these experiments
are reported in Table 6. It is seen that the comparative performance was consistent across
all of the 10 problem instances. The makespan obtained by GA was the best, followed
by Campbell-Dudek heuristic, and the one obtained by FCFS was the longest. For the
average makespan and the Std over multiple runs, GA always obtained prevailing results
as compared to the Campbell-Dudek heuristic. At the bottom of Table 6, we show the mean
statistics over the 10 problem instances. It implies that for the best-case analysis, GA can
save 164 and 28 min in makespan as compared to the FCFS and Campbell-Dudek heuristic,
respectively. While for the average case, GA can save 159 and 46 min in makespan as
compared to its two competitors. To provide more insight, we transformed the absolute
makespan difference to a relative gap ratio, which is defined as the ratio between the abso-
lute makespan difference and the FCFS makespan. We can conclude that the makespan of
the Campbell-Dudek heuristic was 9.5% shorter than that of FCFS in the best case and 7.9%
in the average case, while the makespan of GA was 11.5% shorter than that of FCFS in the
best case and 11.2% in the average case. For comparison between the Campbell-Dudek
heuristic and GA, the makespan of GA was 2.2% shorter than that of the Campbell-Dudek
heuristic in the best case and 3.5% in the average case. From the reported standard devia-
tion across multiple runs on each of the ten problem instances, we claim that GA is robust
against diverse production scenarios of the CRMP problem and delivers consistent-quality
results as compared to FCFS and the Campbell-Dudek heuristic.
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Table 6. The experimental result of the three competing methods with the synthetic dataset.

FCFS Campbell-Dudek GA

Instance No. Best Best Average Std Best Average Std

1 1440 1271 1323.60 28.89 1254 1258.83 9.80
2 1398 1238 1257.50 17.26 1211 1211.60 2.24
3 1434 1282 1282.60 1.20 1244 1249.07 7.00
4 1431 1291 1319.40 31.71 1231 1233.57 3.03
5 1440 1295 1321.20 20.29 1284 1285.67 5.61
6 1417 1290 1301.40 9.37 1259 1266.67 5.14
7 1474 1347 1366.00 15.72 1308 1316.00 7.36
8 1465 1323 1348.60 25.09 1302 1305.43 5.79
9 1364 1299 1317.00 14.93 1270 1273.53 3.96

10 1407 1281 1299.30 11.98 1272 1278.07 6.30

Average 1427.00 1291.70 1313.66 17.64 1263.50 1267.84 5.62

Gap ratio − 9.5% 7.9% 11.5% 11.2%

3.3. Sensitivity Analysis

To analyze the robustness and characteristics of the proposed GA, the sensitivity
analysis was conducted as follows. The critical parameters of CRMP that influenced the
performance of the algorithm were the number of machines and the number of jobs for
each production line. We thus executed the GA with combinations of various parameter
setting values. We first fixed the value of the number of machines in the two lines (m1 = 6,
m2 = 3) and varied the number of jobs with different values (j1 = 4, j2 = 3; j1 = 8, j2 = 6;
j1 = 16, j2 = 12; j1 = 32, j2 = 24). Secondly, we fixed the value of the number of jobs in the
two lines (j1 = 8, j2 = 6) and varied the number of machines with different values (m1 = 4,
m2 = 2; m1 = 6, m2 = 3; m1 = 8, m2 = 4; m1 = 10, m2 = 5). The statistics over 30 independent
runs of GA for each problem instance are listed in Table 7. To realize the performance of
GA, the integer programming proposed in Section 2.2 was solved to optimality or the best
feasible bound obtained at a maximal CPU time set to 24 h (86,400 s). The computed result
of the integer programming on the same dataset is shown in Table 8.

Table 7. The sensitivity analysis of GA.

m1-m2-j1-j2 Best Average Std CPU Time

6-3-4-3 687 687 0 0.3742
6-3-8-6 1307 1315 8.05 1.2764

6-3-16-12 2370 2370.40 2.15 4.6592
6-3-32-24 4497 4501.27 4.84 16.9457

4-2-8-6 1277 1277 0 0.9479
6-3-8-6 1307 1315 8.05 1.2764
8-4-8-6 1201 1201 0 1.5196

10-5-8-6 1408 1408 0 2.0288

It is seen that the number of jobs (j1 and j2) was a more influential parameter than the
number of machines (m1 and m2). When the number of jobs increased, the best and average
makespan from multiple runs of GA may differ, and the consumed CPU time increased due
to a longer length (j1 + j2) needed for encoding the chromosome. Similarly, the increasing
complexity makes the CRMP intractable. The exact solution can only be obtained for small
problems (j1 = 4, j2 = 3; j1 = 8, j2 = 6). For larger-sized problems (j1 = 16, j2 = 12; j1 = 32,
j2 = 24), no exact solution can be obtained within 86,400 s, and only the best feasible bounds
can be returned. For small problems, GA obtained the global optimal solutions as the exact
ones. For larger-sized problems, the solutions evolved by GA were significantly better than
the best feasible bounds reported by the exact method at the maximal CPU time, validating
the robustness of our GA against the number of jobs.
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Table 8. The exact solution or the best feasible bound obtained at the maximal CPU time.

m1-m2-j1-j2 Exact Solution Feasible Bound CPU Time

6-3-4-3 687 0.5924
6-3-8-6 1307 66,667.15

6-3-16-12 2427 86,400
6-3-32-24 4619 86,400

4-2-8-6 1277 86,400
6-3-8-6 1307 66,667.15
8-4-8-6 1201 74,804.99

10-5-8-6 1408 86,400

As shown in the second part of experiments in Tables 7 and 8, the number of machines
was not as critical as the number of jobs. When we varied the number of machines, the best
and the average makespan from multiple runs of GA were the same except for the case
(m1 = 6, m2 = 3; j1 = 8, j2 = 6). The consumed CPU times were also very near to each other
because the length (j1 + j2) required for encoding the chromosome was the same. For the
exact method, the required computation time to obtain the exact solution was very close to
the maximal CPU time. When the exact solution cannot be resolved within 86,400 s, the
reported best feasible bound is likely the exact solution, which was also the best solution
obtained by the GA. Again, this phenomenon validates the robustness of the proposed GA
against the variations on the number of machines.

4. Discussions

The circular economy and circular manufacturing are re-design processes for materials,
resources, operations, reuse, recycling, recovery, and end-of-life disposal to create a closed-
loop economy such that waste is minimized. This paper studies the re-design of parallel
production lines from a rubber manufacturer and how circular economy helps improve
the effectiveness and efficiency of the use of circular materials. We propose a genetic
algorithm that is intentionally customized to the production re-design. It has been shown
that the customized genetic algorithm prevailed in minimizing the makespan as compared
to classic FCFS and Campbell-Dudek heuristic, which do not consider and utilize the
manufacturing re-design features. These findings are important for both academia and
in practice. Hence, this study has the following managerial implications. (1) Circular
economy is achievable by re-designing production process, considering the interests and
expectations of stakeholders including government agents, international organizations,
customers, manufactures, and their partners. (2) Circular economy in rubber manufacturing
is an opportunity for creating additional benefits, not just in reducing waste and cost, but
also in adding value by producing circular products and enhancing corporate social image.
(3) Classic scheduling methods may not be as efficient as for traditional manufacturing
problems. New approaches based on appropriate information technologies that fully
utilize the re-design context of circular manufacturing are prevailing. (4) To promote
the benefits of circular manufacturing to a large extent, including materials, production,
recycle, remanufacturing, reuse, logistics, and end-of-life products, cooperation between
all stakeholders is necessary to build the circular economy eco-system.

5. Conclusions

In this paper we have presented a mathematical formulation for the CRMP problem,
which is reflected from the real context of rubber circular manufacturing. The manufacturer
has two main production lines. The first line produces main rubber products, while
the second line reuses the scrap rubber granulates and strips produced by the first line
and mixes them with other materials to manufacture light-weight rubber works. A GA
customized to the CRMP context is developed. The experimental results with both real and
synthetic datasets demonstrate that the GA is applicable to the real CRMP context and is
robust enough to tackle comprehensive synthetic datasets. Our GA significantly surpasses
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the FCFS and the Campbell-Dudek heuristic by delivering the minimum makespan of
CRMP datasets. Our paper is the first attempt in the literature to address the two-line
flowshop scheduling under multiple resource constraints. The empirical experimental
results show that the proposed model and the GA method can facilitate the rubber circular
manufacturing practice and achieve efficient production to save both production time and
material cost.

The results of the current study are limited to a single case study of rubber manufac-
turer. The data collected from the real site may not reflect the production context of other
rubber manufacturers. Our future research study will focus on the simulations of uncertain
production parameters such that the achieved solutions will generalize to a broad range of
circular manufacturing. Moreover, our current approach deals with the reuse of waste in
intermediate processes. The process of reverse logistics, which allows the reuse, recycling,
and final disposal of product to go backward in the chain for possible re-manufacture, is
worth further studying. The adoption of appropriate information technologies to facilitate
circular economy considering the interests and expectations of all stakeholders is also a
promising research direction.
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