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Abstract: Biochar produced from transforming bioresource waste can benefit sustainable agriculture
and support circular bioeconomy. The objective of this study was to evaluate the effect of the ap-
plication of biochar, produced from wheat straws, and a nitrification inhibitor, sourced from neem
(Azadirachta indica), in combinition with the recommended synthetic fertilizer on soil properties,
maize (Zea mays L.) plant growth characteristics, and maize grain yield and quality paramters. The ni-
trification inhibitor was used with the concentrations of 5 and 10 mL pot−1 (N1 and N2, respectively)
with four levels of biochar (B0 = 0 g, B1 = 35 g, B2 = 70 g, B3 = 105 g, B4 = 140 g pot−1), one rec-
ommended nitrogen, phosphorous, and potassium syntactic fertilizer (250, 125, and 100 kg ha−1,
respectively) treatment, and one control treatment. The results showed that the nitrification inhibitor
enhanced crop growth while the application of biochar significantly improved soil fertility. The ap-
plication of biochar significantly enhanced soil organic matter and soil nitrogen as compared with
nitrogen–phosphorus–potassium treatment. The highest root length (65.43 cm) and root weight
(50.25 g) were observed in the maize plants treated with B4 and N2 combinedly. The grain yield,
total biomass production, protein content from biochar’s B4, and nitrogen–phosphorus–potassium
treatments were not significantly different from each other. The application of 140 g biochar pot−1

(B4) with nitrification inhibitor (10 mL pot−1) resulted in higher crop yield and the highest protein
contents in maize grains as compared to the control treatments. Therefore, the potential of biochar
application in combination with nitrification inhibitor may be used as the best nutrient management
practice after verifying these findings at a large-scale field study. Based on the experimental findings,
the applied potential of the study treatments, and results of economic analysis, it can be said that
biochar has an important role to play in the circular bioeconomy.

Keywords: bioresources; circular bioeconomy; economic analysis; Nitrification inhibitor; smog;
wheat straw

1. Introduction

Developing countries in South Asia face serious environmental problems from poor
management of waste materials such as the burning of crop residues [1]. The antienvi-
ronmental burning of crop residues takes place to get ready for the next cropping cycle.
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Through such burning, although agricultural fields are cleared and get quickly ready for
next sowing yet the adverse impacts of the release of greenhouse gases [2] on public health
offsets the personal gains of individual farmers. Avoiding the burning of crop residues can
help reduce smog-based public issues originating from poor air quality (including diseases
and traffic accidents) that have been reported for more than 2 decades in India and Pakistan
particularly between October and November every year [3]. The circular bioeconomy finds
the best place to play its role in such conditions with options for transforming crop residues
through recycling this valuable bioresource to biochar for sustainable agriculture [4]. Cir-
cular bioeconomy benefits from the enhanced circularity of bioresources (wheat and/or
rice straws) as its agriculture-based waste feedstock [1].

Biochar application to agricultural soils has been identified as a low-cost approach with
an environmentally sound option in the wake of the global depletion of clean environment.
It has attracted attentiveness in recent years mainly due to importance of soil carbon
sequestration [4,5]. Biochar application is viable in enhancing crop growth [6–8] through
improving soil chemical and physical properties [9,10] such as its extremely porous interior
structure [11,12]. It acts as a soil conditioning mediator thereby improving soil water
holding capacity by altering the soil pore size distribution [13] thus preventing nutrient
loss from agricultural fields [14–16].

Feedstock for biochar ranges from a variety of raw materials including agricultural
waste. Figueredo et al. [17] reported that the raw material and the pyrolysis temperature
impact the nutrient concentration of biochar. They characterized and reported the release of
nutrients and contaminants from types of biochar made from sugarcane bagasse, eucalyptus
bark, and sewage sludge on 350–500 ◦C pyrolysis temperature. Biochar is an enriched
carbon-based material and is the product of biomass pyrolysis and has profound impacts
on improving soil carbon storage [18]. An important attribute of biochar is its cation
exchange capacity (CEC) due to its large surface area and porosity which impact the soil
biota and nutrient dynamics [6,19]. It enhances the soil nutrient availability to plants [20,21],
flourishes the soil microbial population [19,22,23], and reduces greenhouse gas emissions
through carbon sequestration [24]. Eventually, it increases the crop yield [25]. For example,
Peng et al. [26] stated that 1% application of biochar increased 64% total biomass (above and
below ground) of the maize in ultisol soils. Henceforth, it might play a positive role against
climate change [27–29]. By active carbon sequestration, biochar has the potential to gain
carbon credits [4]. The positive response of crop productivity against biochar application is
attributed to its nutrients such as Ca, mg, K, and unintended fertility. These indirect and
direct fertility aspects of biochar are categorized as a soil conditioner and soil fertilizer,
respectively [6,26,30] that improve soil fertility [31]. The soil pH is also improved by the
alkalinity of biochar [12] and it also facilitates the availability of phosphorous [32].

Biochar had a major and significant effect on different characters like a seedling,
stem girth, number of roots, length of roots, and percentage germination [33]. Among the
positive effects of biochar on plant development, the nitrogen use efficiency (NUE) has also
been moderately recognized [10,34]. Laird et al. [35] found better N retention in soil hence,
preventing approximately 11% N loss following 2% biochar application. Similarly, Clough
et al. [36] reported that the biochar amendment had great agronomic advantages including
changes soil nitrogen dynamics.

Nitrogen losses, precisely in agricultural soils are a widespread problem and are
categorized into denitrification, leaching down with water as well as transformations into
gaseous components [37]. In the case of anthropogenic N supplementation to agricultural
soils, Zhang et al. [38] and others [39] found that about 30–80% of this N is taken up and
incorporated by crops with loss of the remaining N proportion. Reactive N is effectively
conserved through intrinsic soil N dynamics within natural environments [40–42]. Nitrate
(NO3

−) losses in soils of subtropical regions are more characterized by the leaching
or runoff due to high rainfall patterns [40]. Nitrogen losses through nitrification are
common in unsaturated N soils particularly upon the application of ammonium sulfate;
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nonetheless, in saturated agricultural soils, N immobilization and mineralization into NH4
are more frequent [43].

Nitrification inhibitors (NIs) are commonly employed in agricultural soils for enhanc-
ing the N retention by preventing its loss in the N2O form and reducing the leaching of
N [44–46]. Hence, to overcome N losses, NIs are distinguished in cropping systems [45,47]
for enhancing crop production and decreasing the N2O emission [46] hence improving
the NUE in agricultural soils [48,49]. The NIs have shown a reduction in leaching of
ammonium and urea-based fertilizers [50]. These inhibitors encourage the N retention in
the soil in NH4 by inhibiting the activity of ammonium monooxygenase (AMO). This AMO
is recognized as a broad-spectrum efficiency for substrates [51]. The NIs compete with
the active sites of this enzyme and aids in preventing the NH4-enzyme complex and in
this way, delay the rate-limiting step of nitrification [52]. A variety of NIs are used in
agricultural biochar-amended soils. For example, 3,4-dimethyl pyrazole phosphate is
viable for reducing N losses even at low application rates [53] with little adverse effects
on soil ecology [48]. Another important NI is the dicyandiamide that is useful in reducing
soil N losses [54]. These NIs have profoundly reduced N losses for example potassium
thiosulfate is also characterized as a good NI [55]. Moreover, Cai et al. [56] in a laboratory
experiment, found that dicyandiamide can reduce N2O emissions up to 70% and predicted
that these substances might be performed excellently at field scale as well [57,58].

Besides, recent studies have suggested that NIs correlate with biochar, explaining
that the sorption of NIs is influenced by applied biochar [36,59–63]. The soil amendment
of biochar, regardless of its feedstock, adds up new binding sites, thereby altering soil
attributes such as pH and hydrophobicity and ultimately affecting the sorption of applied
NIs resulting in the high productivity of cropping systems [64–66].

We hypothesized that the wheat crop residues would make nutrient-rich biochar and
that such a soil amendment (biochar mixed with NI and NPK) will benefit soil health,
plant growth, and crop yield and quality leading a way to circular bioeconomy. The hypoth-
esis was tested by evaluating the effect of the application of biochar, produced from wheat
straws, and NI, sourced from neem (Azadirachta indica), in combinition with recommended
doeses of NPK on soil properties, maize (Zea mays L.) plant growth characteristics and
maize grain yield and quality paramters. The use of neem as a NI in combination with
NPK and biochar produced from wheat crop residues accounts for novelty of this work.
Another novelty component of this work is the economic analysis that could not be found
in biochar mixed with other fertilizers literature.

2. Materials and Methods

This experimental study was carried out at COMSATS University Islamabad, Vehari
Campus Pakistan located at latitude 32◦03′ N longitude 72◦31’ E and with an altitude of 184
m. Long-term mean annual rainfall and reference evapotranspiration were approximately
231 mm and 1790 mm, respectively, while the annual mean daily maximum and minimum
temperature were 28.0 ◦C and 13.7 ◦C, respectively as the experiment (Figure 1).

2.1. Preparation of Biochar, Neem Extract, and Experimental Pots

Biochar for this study was prepared with wheat straw via the pyrolysis method,
which is also known as the thermal decomposition under oxygen-free conditions. The feed-
stock (wheat straw) of biochar were first heated at 105 ◦C for 30 min to remove the moisture
from the raw materials. During the processing of biochar production, the temperature
of the biochar pyrolysis apparatus was between 450 and 550 ◦C in a perpendicular oven.
The gas produced from biochar preparation was condensed in the plant and collected as
a liquid bio-oil for the safety of environmental pollution. The final biochar product was
milled to pass through a 1 mm filter before its use. Selective properties of the produced
biochar are given in Table 1.
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Table 1. Physio-chemical characteristics of biochar and soil used in the experiment.

Characteristics Biochar Soil

Organic matter (%) 45.5 0.74
Total nitrogen (g kg−1) 0.35 0.04

Total phosphorous (g kg−1) 1.34 6.5
Total potassium (g kg−1) 9.40 14.0

Electrical conductivity (dSm−1) — 1.41
pH 8.8 7.5

Ash content (g kg−1) 120 —
Moisture (%) 31 —

Cation exchange capacity (cmolc kg−1) 93 6.5

As per local practice of preparing neem extract for kitchen/backyard gardening,
the neem leaves plus seeds were soaked in water overnight with 1:2 neem to water ratio
(5 kg of neem leaves/seeds in 10 L of water). The same material was then boiled on the
next day to the point when approximately 50% of the water was evaporated and/or left in
the boiling pan. The boiled solution was then sieved to collect neem extract to be used as
NI in this experiment.

The soil made pots (30-cm height, 15-cm radius from the bottom, and 20-cm radius
from the neck) were used during this experiment to grow maize under the experimental
treatments. Each pot had a filling capacity of 15 kg of soil. All the pots were filled with 5 kg
of non-sterilized soil collected from a nearby agricultural field that was sieved by using a
4.5-mm sieve to remove plant roots and other debris. A small hole was permitted at the
bottom of each pot to let the excess water drain out in case of excessive rain. The properties
of experimental soil are given in Table 1.

2.2. Experimental Design and Treatments

The experimental design for this was a factorial split-plot design with three replica-
tions. Four levels of biochar (B0 = 0 g, B1 = 35 g, B2 = 70 g, B3 = 105 g, B4 = 140 g per pot),
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one treatment of recommended the N, P, and K (250, 125 and 100 kg ha−1, respectively)
and one control treatment were used to make the experimental treatments. A treatment
of one selected NI (neem extract solution; N1 = 5 mL, N2 = 10 mL pot−1) was applied to
each of the four biochar levels, one NPK level, and one control. Resultantly, the set of four
biochar treatments separately existed with 5 mL NI and with 10 mL NI. Therefore, the total
experimental units were twelve as given below.

• T1 = N1B0 (control): 5 mL neam + 0 g biochar
• T2 = N1NPK: 5 mL neam + N, P, and K added @ 250, 125 and 100 kg ha−1, respectively
• T3 = N1B1: 5 mL neam + 35 g biochar
• T4 = N1B2: 5 mL neam + 70 g biochar
• T5 = N1B3: 5 mL neam + 105 g biochar
• T6 = N1 B4: 5 mL neam + 140 g biochar
• T7 = N2B0 (control): 10 mL neam + 0 g biochar
• T8 = N2NPK: 5 mL neam + N, P, and K added @ 250, 125 and 100 kg ha−1, respectively
• T9 = N2 B1: 10 mL neam + 35 g biochar
• T10 = N2 B2: 10 mL neam + 70 g biochar
• T11 = N2 B3: 10 mL neam + 105 g biochar
• T12 = N2 B4: 10 mL neam + 140 g biochar

2.3. Sample Analysis

The experimental soil (collected from the field) and soils from each experimental
pot were analyzed for various soil properties. Soil organic matter was determined by
the dichromate oxidation method [67]. Soil electrical conductivity (EC) and pH were
determined in a 1:5 soil/water extract. Plant available-N in the soil was determined by
the methods defined by Hesse [68] and available-P was determined by using the method
as described by Olsen [69]. Available soil potassium (K) was determined by the method
described by Junsomboon and Jakmunee [70].

The experiment started on February 12, 2018 and the maize variety Pioneer 31R88
was sown in experimental pots on the same day right after fertilization and crop sowing.
At maturity, one plant was randomly extracted from each replication and washed with
water. Root length was measured from plant base to root tip with the help of scale. The plant
roots were oven-dried separately at 70 ◦C till constant weight and their dry weight was
recorded. The number of days to tasseling, silking, and maturity were noted in each plant
and the mean number of days taken to tasseling, silking, and crop maturity was calculated
from the sowing date. A sample for thousand grains was taken from each pot and sun-
dried up to standard moisture content in the grains and weighed by an electrical balance.
At maturity, grain yield was calculated. The harvested plants were threshed manually,
and grain yield was recorded on a g plant−1 basis. For biological yield whole plant was
harvested and weighed. At harvest, the grains were taken from each plant and nitrogen
contents of the seeds were calculated by using the micro-Kjeldahl method [71], and then
crude protein contents were calculated by using the following formula.

Crude protein = Nitrogen × 6.25

2.4. Statistical and Economic Analysis

The treatment effects on the studied variables were analyzed by constructing an
analysis of variance (ANOVA) using SAS [72]. When F-values were significant, the least
significant difference test was used for comparing means of treatments. The difference in
treatment means was considered significant at p < 0.05. An economic analysis of the crop
inputs (expenses) and output was performed on the basis of costs that varied in different
treatments and by adding fixed cost following the procedure devised by Byerlee [73].
For economic analysis, the yeild was converted from plant pot−1 to Ton ha−1 by considering
666,666 plants per ha as reported by Hammad et al. [74]. All the input and output prices
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were made based on numbers obtained from consulting growers and the 2018 Economic
Survey of Pakistan.

3. Results

Basis for presenting the study findings were made from the ANOVA results for the
study variables. Sample ANOVA results for selective variables (root length, grain yield,
total biomass, and protein content) are presented in Table 2. If the interaction of NIs
and biochar levels were non-significant, the results were presented individually for each
treatment. For example, the interaction of NIs and biochar levels were non-significant
for root length (p = 0.9343). Therefore, results of such variables are discussed separately
(see Tables 3 and 4). However, if interactions of the NIs and biochar levels were signif-
icant; for example, for grain yield (p = 0.0029), total biomass (p = 0.0031), and protein
contents (p = 0.0030), the results of these variables are discussed for the combined effects of
experimental treatments (see Table 5).

Table 2. Sample analysis of variance (ANOVA) values for selective variables (root length, grain yield, total biomass,
and protein content) to base method for presenting study results.

Source of Variation DF SS MS F p

Root Length
Replication 2 12.77 6.384

NI 1 81.60 81.601 42.2 0.0229
Error Replication×NI 2 3.87 1.934

Biochar 5 2547.1 509.420 61.39 0.0000
NI×Biochar 5 10.42 2.084 0.25 0.9343

Error Replication×NI×Biochar 20 165.97 8.299
Total 35 2821.73

Grain Yield
Replication 2 4.39 2.19

NI 1 348.44 348.44 33.1 0.0289
Error Replication×NI 2 21.06 10.53

Biochar 5 6050.56 1210.11 89.45 0.0000
NI× Biochar 5 358.22 71.64 5.3 0.0029

Error Replication×NI×Biochar 20 270.56 13.53
Total 35 7053.22

Total Biomass
Replication 2 30.2 15.08

NI 1 584 584.03 1617.31 0.0006
Error Replication×NI 2 0.7 0.36

Biochar 5 34,868.3 6973.65 124.04 0.0000
NI×Biochar 5 1477.1 295.43 5.25 0.0031

Error Replication×NI×Biochar 20 1124.4 56.22
Total 35 38,084.8

Protein Content
Replication 2 0.574 0.2869

NI 1 6.588 6.5878 765.03 0.0013
Error Replication×NI 2 0.017 0.0086

Biochar 5 280.939 56.1878 213.55 0.0000
NI×Biochar 5 6.922 1.3844 5.26 0.0030

Error Replication×NI×Biochar 20 5.262 0.2631
Total 35 300.302

DF: Degree of freedom, SS: Some of squares, MS: Mean squares, NI: Nitrification inhibitor.

3.1. Soil Properties

Soil organic matter is an important characteristic that plays a key role in maize grain
yield. The result showed that the maximum soil organic matter (1.03%) was observed in
the N2 treatment of NI (Table 3). The soil organic matter increased with increase of biochar
application levels. The application of biochar level B4 (140 g pot−1) resulted in soil organic
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matter of 1.30% for this treatment, which was 65% (0.84 vs. 1.30) greater from the soil
organic matter content of control treatment.

Table 3. Effect of biochar and nitrogen inhibitor application on soil physic-chemical properties.

Treatments Soil Organic
Matter (%) Soil pH Soil EC

(dSm−1)
N in the Soil

(mg g−1)
P in the Soil
(mg kg−1)

K in the Soil
(mg kg−1)

N1 1.02 a 7.61 a 1.58 a 0.046 b 6.96 a 15.60 b
N2 1.03 a 7.59 a 1.56 a 0.049 a 6.97 a 15.83 a

Significance <0.07 <0.03 <0.08 <0.001 <0.01 <0.01
LSD 5% 0.05 0.15 0.053 0.0011 0.56 0.15

Control 0.74 c 7.51 a 1.41 b 0.045 b 6.48 c 13.97 b
NPK

(Recommended) 0.83 c 7.65 a 1.54 ab 0.045 b 4.46 a 16.73 a

B1 0.92 bc 7.51 a 1.50 ab 0.046 ab 6.68 bc 14.96 ab
B2 0.98 b 7.61 a 1.59 ab 0.046 ab 6.82 abc 15.18 ab
B3 1.26 a 7.63 a 1.66 a 0.047 ab 7.05 abc 16.27 a
B4 1.30 a 7.69 a 1.69 a 0.049 a 7.26 ab 16.88 a

Mean 1.02 7.60 1.57 0.046 6.96 15.67
Significance <0.02 <0.3 <0.03 <0.021 <0.03 <0.01

LSD 5% 0.13 0.64 0.20 0.003 0.67 1.97
CV 7.45 4.65 7.02 3.57 5.28 6.96

EC: Electrical conductivity, N: Nitrogen, P: Phosphorous, K: Potassium, NPK: Nitrogen–phosphorus–potassium treatment. Means values
that share different homogeneous group letters (a, b, or c) in a column vary significantly at p ≤ 0.05, CV: coefficient of variance, LSD:
Least significance difference, N1 and N2 are neem extract solutions (5 mL, 10 mL pot−1, respectively) B1 = 35, B2 = 70, B3 = 105, B4 = 140 g
biochar pot−1.

The maximum soil pH (7.59) was observed in the N2 of NI treatment, which was was
improved with biochar applications; however, the effect biochar levels on soil pH was
non-significance. The application of biochar level B4 at the rate of 140 g pot−1 resulted in
the highest soil pH 7.69. The lowest soil pH (7.51) was observed in unfertilized treatment;
i.e., control treatment. Soil electrical conductivity (EC) is another important characteristic
that plays a key role in plant growth. The result showed that the maximum soil EC was
attained at the N1 of NI which was 1.58 dSm−1. The results showed that soil EC was
improved with increasing of the biochar application rate. The application of biochar level
B4 resulted in the highest soil EC (1.69 dSm−1). The lowest soil EC (1.41 dSm−1) was
observed in control treatment.

The result showed that the maximum N in the soil was observed at the N2 level of NI
which was 0.049 mg N g−1 (Table 3) and it increased with increase in biochar application
reaching to its higest value of 0.049 mg g−1 in B4 treatment and the lowest value (i.e.,
0.045 mg N g−1) in the soil of control treatment. Similarly, the highest P concentration
(6.97 mg kg−1) was deternined in the soil of N2 application (Table 3). Like N, the con-
centraiton of P also increased with increasing biochar application rate. The application
of biochar at the rate of 140 g pot−1 (level B4) resulted in the highest P (7.26 mg kg−1)
concentration in the soil of B4 treatment and the lowest concentration of P (6.48 mg kg−1)
was observed in the soil of control treatment. In addition to N and P, the K in the soil is
also an important characteristic that plays a key role in growth and yield quality. The con-
centration of K was the highest in soil of the N2 level of NI (15.83 mg kg−1). Its concen-
tration was significantly affected by levels of biochar application (Table 3). The K had
the increasing trends with increasing the biochar application rate also as its highest value
(16.88 mg kg−1) was from the biochar application at the 140 g pot−1 (B4) and the lowest
value was (13.97 mg kg−1) in the soil of control treatment.

3.2. Plant Growth Characteristics

The results showed that the maximum root length (55.35 cm) was observed at N2 level
(Table 4). Besides, root length was significantly also affected by levels of biochar application
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(p < 0.0001). Among the biochar treatment levels, maximum root length (65.43 cm) was
noted at B4 treatment (140 g biochar pot−1) followed by NPK treatment which had the
root length equavalent to 61.36 cm that was 38% greater (40.7 vs. 65.4) than the root length
of plants of control treatment. The lowest root length (40.70 cm) was observed in the
control treatment. Like root length, there was also a substantial difference between the root
weight of maize treated with two different treatment levels of NIs. The maximum root
weight (42.13 g plant−1) was observed for N2 level that was significantly different from N1
treatment (p < 0.01).

Table 4. Effect of biochar and nitrogen inhibitor applications on maize growth parameters.

Treatments Root Length
(cm)

Root Weight
(g) Days to Tasseling (Day) Days to Silking (Day)

N1 52.34 b 38.51 b 45 a 51 a
N2 55.35 a 42.13 a 47 a 52 a

Significance (P) <0.022 <0.02 <0.10 <0.09
LSD 5% 1.99 3.58 2.53 1.95

Control 40.70 d 30.60 d 42 c 47 c
NPK (Recommended) 61.36 ab 41.83 b 47 ab 53 ab

B1 47.15 c 35.25 cd 44 bc 49 bc
B2 51.40 c 39.90 bc 46 ab 52 abc
B3 57.01 b 44.13 b 48 a 54 a
B4 65.43 a 50.25 a 50 a 56 a

Mean 53.84 40.33 46 52
Significance (P) <0.01 <0.01 <0.01 <0.02

LSD 5% 5.22 5.57 3.99 4.88
CV 5.35 7.62 4.78 5.23

Means values that share different homogeneous group letters (a, b, c, or d) in a column vary significantly at p ≤ 0.05, CV: coefficient
of variance, LSD: Least significance difference, Control: A treatment without fertilizer, N1 and N2 are Neem extract solutions (5 mL,
10 mL pot−1, respectively) and B1: 35, B2: 70, B3: 105, and B4: 140 g biochar pot−1.

Similarly, maize treated with N2 took non-significantly lesser days (47 days) for
tasselling and silking (52 days) as compared to N1 treatment in which the tasselling
and silking took place after 45 and 51 days, respectively (Table 4). However, there was
significant differences in the tasselling and silking days of maize treated with different
biochar levels (p < 0.05). Maximum days to tasselling (50 days) and silking (56 days) were
reported at biochar level B4 while tasselling occurred after 42 days and silking after 47 days
in the control treatment. The onset of tasselling (47 days) and silking (53 days) was also a
bit earlier in maize treated with NPK. Furthermore, the results from B4 were statistically
similar to the NPK treatment level while silking in B4 treatment was statistically at par
with NPK application treatment. In both NI treatment levels; i.e., N1 and N2, crop maturity
occured after 102 days and maturity during N1 and N2 was statistically similar. However,
maturity was significantly affected by different levels of biochar application; i.e., maturity
was delayed with increasing level of biochar application. Maize treated with B4 reached
maturity after 108 days which was 11 days later than that in B1 (97 days). Maturity in B4
was statistically at par with NPK application treatment and the mean number of days to
maturity was 102 days.

3.3. Yield and Quality Parameters

Grain yield and total biomass were also significantly affected by levels of biochar and
NPK applications and significantly (p < 0.01) increased with an increasing level of biochar
application (Table 5). The maximum grain yield (84.00 g plant−1) and biomass (266.67 g
plant−1) were resulted from the application of recommended NPK with the combination of
N2. However, the application of biochar level B4 with N1 resulted in grain yield of 76.67 g
plant−1 and total biomass of 256 g plant−1. The highest grain yield (43.00 g plant−1) and
the lowest total biomass (172. 33 g plant−1) were observed in N2B0. In the case of total
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biomass, N1B4 and N2B4 were statistically similar to NPK treatment as represented by
similar LSD letters. In the case of protein content, the highest protein content (14.3%) in
maize grain was observed in the grains of NPK treatment in combination with N2. Besides,
significantly increasing protein content percentage with increasing biochar applications
was also observed. At the largest biochar application level, the protein content was 12.37%,
which was slightly lower than that of N1NPK treatment (12.97%). The lowest protein
content was observed in the N2B1 treatment (4.90%).

Table 5. Effect of biochar and nitrogen inhibitor application on maize yields and quality.

Treatments Grain Yield
(g Plant−1)

Total Biomass
(g Plant−1)

Protein Content
(%)

N1B0 (control) 43.33 f 183.33 de 5.67 g
N1NPK 73.33 b 252.67 a 12.97 ab

N1B1 44.67 f 181.00 de 6.27 fg
N1B2 51.33 e 198.00 cd 7.77 ef
N1B3 59.67 cd 221.33 b 9.80 cd
N1 B4 76.67 b 256.00 a 10.30 c

N2B0 (control) 43.00 f 172.33 e 4.90 g
N2NPK 84.00 a 266.67 a 14.30 a

N2B1 53.00 de 193.67 cde 7.53 ef
N2B2 61.33 c 214.67 bc 8.43 de
N2B3 72.67 b 245.00 a 10.37 c
N2 B4 72.33 b 248.33 a 12.37 b

Mean 61.27 219.42 9.22
Significance (P) <0.003 <0.003 <0.003

LSD 5% 6.26 22.45 1.54
CV 6.00 3.42 5.56

Means values that share different homogeneous group letters (a–g) in a column vary significantly at p ≤ 0.05, CV:
Coefficient of variance, LSD: Least significance difference, Control: A treatment without fertilizer, N1 and N2 are
Neem extract solutions (5 mL, 10 mL pot−1, respectively) and B1: 35, B2: 70, B3: 105, and B4: 140 g biochar pot−1.

3.4. Economic Analysis Results

The highest net returns were calculated for N2NPK treatment ($759.4 ha−1) followed
by N2B3 ($664.7 ha−1) and N1B4 ($587.7 ha−1) treatments (Table 6). Although the NPK
treatment had the highest returns but it is argued that the difference between its and
biochars treatments’ profit may be traded of with the long-term treasure of soil health
with a wealth of sequestered soil organic carbon and the bioremediation role of biochar
for soil health [4]. With improvements in biochar production technologies, inclusion of
biochar in the best nutrient management pracitces, and reduction of its cost due to higher
commercial production, circulation, and demand, its market price is anticipated to drop
down. Hence, the economical availability of biochar will reduce the costs of crop inputs
and will increase the farm profitability. The mixed use of biochar with compost or with
synthetic fertilizers can also be argued for its importance in farmer’s income. Numerous
studies have highlighted [75,76] that the crop growth is affected precisely due to biochar
made changes in soil nutrient cycles, specifically the cycling of P and K.
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Table 6. Economic analysis of input and output costs on maize cultivated with the experimental treatments.

Treatment Total Yield,
Ton ha−1

Adjusted
Yield after

Considering
10% Yield Lost

during Field
Harvest,

Ton ha−1

Gross
Income

Based on
Maize Grain

Price in
Pakistan

($360 ton−1)

Biochar Cost
Based on
Biochar

Price
($140 ton−1)

Fertilizer
per Hectare

Cost, $
ton−1

Variable
Cost, $ ha−1

Fixed
Cost,

$ ha−1

Net Benefit,
$ ha−1

N0B0 2.389 2.15 773.9 — — 0 415 358.9
N1NPK 4.889 4.4 1583.9 — 694.0 640.0 415 528.9

N1B1 2.978 2.68 964.9 163.3 — 163.33 415 386.5
N1B2 3.422 3.08 1108.7 326.7 — 326.66 415 367.1
N1B3 3.978 3.58 1288.9 490.0 — 490.0 415 383.7
N1B4 5.111 4.60 1656.1 653.3 — 653.33 415 587.7
N0B0 2.367 2.13 766.8 — — 0 415 351.8

N2NPK 5.600 5.04 1814.4 — 694.0 640.0 415 759.4
N2B1 3.533 3.18 1144.8 163.3 — 163.33 415 566.5
N2B2 4.089 3.68 1324.7 326.7 — 326.66 415 583.1
N2B3 4.845 4.36 1569.7 490.0 — 490 415 664.7
N2 B4 4.822 4.34 1562.3 653.3 — 653.33 415 494.0

All calculations are based on numbers obtained from consulting growers and the 2018 Economic Survey of Pakistan.

4. Discussion

The role of biochar and NIs on growth and yield of maize has been reported in
literature [7,26]. Among the direct and indirect effects of biochar, the latter are more
distinguished as reported by Glaser et al. [6]. According to Genesio et al. [77] the biochar
application to the soils changes the natural state and thermal dynamics of the soil thereby
promoting crop growth. They further reported that biochar supplementation with the NI
had a promising role in the germination and phenology of plants.

Slow-release of N from synthetic fertilizers is achieved by coating the fertilizer grains
with hydrophobic chemicals to provide a physical barrier against water for minimizing N
losses and improving N uptake by crops; however, such alternatives may harm the soil
health and crop growth [78]. In contrast, the natural NIs are soil environment friendly and
plant growth stimulators. The nature-based inhibitors have been exhaustively investigated
as alternatives [79]; these include powder of Azadirachta indica seed [62] and bark of
Acacia caven [63]. Such alternatives promote the slow release of N to soil solution [80].
In our experimentl treatments involving higher concentration of NI sourced from naturally
occurig neem significantly reduced N loss from soil. These reults are in agreement with the
finding of Mohanty et al. [62] who used neem seed powder, and found that the difference
in urea content of treated and untreated samples was less significant at the start but became
more profound with time, pointing to an inhibitory mechanism of neem whereby it takes
some time for the bio inhibitor to be activated [78].

In our study, better root length and root weight were reported for the application of
140 g biochar pot−1 that is linked with better nutrient accessibility to roots after the biochar
application to soils [26,32]. Besides, maize root growth was increased with increasing
biochar application because the biochar hold a slight ratio of labile carbon [5], which either
improves root growth or facilitates the root contact to available P [81,82].

In the case of N, biochar application increased the quantity of N reserved in the
soils that is not according to the earlier conclusions that biochar expands the absorption
capacity of the soil but decreases leakage of nitrate and ammonium because of its great
surface area and absorbent structure [35,83] as found in the soils tested by Zhang et al. [38]
with biochar adjustment. The results of the current study showed K availability was also
increased through the biochar amendment resulting in enhanced K content in the soil.
This K content then increased the maize total biomass and grain yield in treatments that
received greater biochar application. However, at this point, the fertilizing effect of biochar
is more characterized because K availability to maize was increased due to the high content
of K in biochar along with its reduced leaching [35,84]. Martinsen et al. [84] argued that K
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is the major nutrient supplied by biochar which helps in delaying the tasseling and silking
days and also helps in alleviating the nutrient stress conditions.

The treatments with increasing level of biochar application also enhanced the P
availability to maize, which also improved maize grain yield, total biomass, and protein
content For example, the B4 treatment relative to other treatments, made P available for
plants by increasing the soil pH [13,85] that helps in reducing P sorption [86,87]. DeLuca
et al. [88] further elucidated that the biochar amendment ensures better P availability to
crops, with the ability of biochar to retain exchangeable P ions due to its positively charged
sites. The increase in maize total biomass and grain yield in B4 treatment is also attributed
to biochar’s role in increasing the total soil organic carbon as reported by Trupiano et al. [89].
Likewise, Pandit et al. [30] mentioned increased maize biomass production with increasing
biochar supplementation.

Better soil water retention is governed by biochar amendments as found by Hagemann
et al. [90] suggesting that biochar influences in forming organic coatings of soils by reducing
pore spaces (resulting in increased capillary rise) and enhanced hydrophilicity. This leads
to better soil health and enhanced crop yield [7,74,91]. From our study results, it can
be assumed that the application of biochar to agricultural soils is thoughtful and can be
used as an alternative option to lime materials in raising the pH, especially in acidic soils
because it is noted that approximately 30% world’s soils are acidic and 50% of them have
the arable potential [92].

The impact of applying biochar as a soil amendment is for approximately 30% world’s
soils that are acidic and 50% of which have arable potential. The application of biochar
to agricultural soils can alternate soil liming, which is used to raising the pH of acidic
soils [93]. This leads to the potential of improving acidic soils of Atlantic Canada, to make
them suitable for potato cultivation. Soil liming is a common practice in potato fields
where the pH is either too acidic or too alkaline. The lime application in Canadian soils
varies from province to province; as 11.3 and 20.2% of the croplands of New Brunswick
and Prince Edward Island were treated with lime for making them suitable for potato
cultivation [94]. Overall, the use of biochar improves soil health especially in poor soils of
arid and semiarid regions [95]. Based on the experimental findings, the applied potential
of the study treatments, and results of economic analysis, it can be said that biochar has an
important role to play in the circular bioeconomy in future.

5. Conclusions

Biochar amendment to agricultural soils is environmentally safe and a sustainable
approach relative to synthetic fertilization. Besides, it is also helpful in increasing the
fertilizer use efficiency as well as reducing soil pollution. Like biochar supplementation,
applying the nitrification inhibitor (neem extract) revealed better maize growth and yield.
The maize had the best growth parameters namely the maximum root length, root weight,
tasseling, silking, and crop maturity under the treatment of 140 g of biochar applied
per pot/plant and 10 mL pot−1 application of neem extract. Therefore, the potential of
biochar application in combination with nitrification inhibitors should be further exploited
for sustainable crop production. It is therefore concluded that the circular bioeconomy
seems one of the solutions to transform wheat straw biowastes into a useful bioproduct
(biochar) that can ensure agricultural sustainability in terms of a closed-loop sustainability
framework involving biomass. With attributes of success of circular bioeconomy at small
as well as at large scales, farmers can recycle their crop residues and benefit from a circular
resource economy. Biochar can be synthesized by farmers themselves at a low cost instead
of spending on the purchase of commercially produced biochar that has the same fertility
components. Waste to biochar is a sustainable partway to the circular bioeconomy.
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