A Framework of an Integrated Livestock Vehicle Trajectory Database Using Digital Tachograph Data
Abstract
:1. Introduction
2. Data Description
2.1. Necessity of Methodology
2.2. Data Description
3. Results
3.1. Building Process in the Integrated Data
3.2. Integrated Database (DB) Establishment for the Analysis of Livestock-Related Vehicles
3.3. Utilization of Analysis Results and Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez-Sanchez, B.; Sanchez-Vizcaino, J.M.; Uttenthal, Å.; Rasmussen, T.B.; Hakhverdyan, M.; King, D.P.; Ferris, N.P.; Ebert, K.; Reid, S.M.; Kiss, I.; et al. Improved diagnosis for nine viral diseases considered as notifiable by the world organization for animal health. Transbound. Emerg. Dis. 2008, 55, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Schloegel, L.M.; Daszak, P.; Cunningham, A.A.; Speare, R.; Hill, B. Two amphibian diseases, chytridiomycosis and ranaviral disease, are now globally notifiable to the World Organization for Animal Health (OIE): An assessment. Dis. Aquat. Org. 2010, 92, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansour, S.M.; Ali, H.; Chase, C.C.; Cepica, A. Loop-mediated isothermal amplification for diagnosis of 18 World Organization for Animal Health (OIE) notifiable viral diseases of ruminants, swine and poultry. Anim. Health Res. Rev. 2015, 16, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Kim, H.; Yoe, H. A Study on the Android Based Livestock Vehicle Management System. Int. J. Multimed. Ubiquitous Eng. 2014, 9, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.J.; Pak, S.I.; Lee, K.N.; Hong, S. Movement-Based Biosecurity Zones for Control of Highly Infectious Animal Diseases: Application of Community Detection Analysis to a Livestock Vehicle Movement Network. Sustainability 2019, 11, 1642. [Google Scholar] [CrossRef] [Green Version]
- Chaters, G.L.; Johnson, P.C.D.; Cleaveland, S.; Crispell, J.; De Glanville, W.A.; Doherty, T.; Matthews, L.; Mohr, S.; Nyasebwa, O.M.; Rossi, G.; et al. Analysing livestock network data for infectious disease control: An argument for routine data collection in emerging economies. Philos. Trans. R. Soc. B 2019, 374, 20180264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horst, H.S. Risk and Economic Consequences of Contagious Animal Disease Introduction. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 1998; p. 159. [Google Scholar]
- Lim, J.K.; Sul, J.H.; Jeong, Y.S. A Study on Traffic Management Measures for Preventing the Spread of Foot and Mouth Disease in Korea; The Korea Transport Institute: Gyeonggi-do, Korea, 2011. [Google Scholar]
- Lowe, J.; Gauger, P.; Harmon, K.; Zhang, J.; Connor, J.; Yeske, P.; Loula, T.; Levis, I.; Dufresne, L.; Main, R. Role of transportation in spread of porcine epidemic diarrhea virus infection, United States. Emerg. Infect. Dis. 2014, 20, 872. [Google Scholar] [CrossRef] [PubMed]
- Hybschmann, G.K.; Ersbøll, A.K.; Vigre, H.; Baadsgaard, N.P.; Houe, H. Herd-level risk factors for antimicrobial demanding gastrointestinal diseases in Danish herds with finisher pigs: A register-based study. Prev. Vet. Med. 2011, 98, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Dargatz, D.A.; Lombard, J.E. Summary of BRD data from the 2011 NAHMS feedlot and dairy heifer studies. Anim. Health Res. Rev. 2014, 15, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Guinat, C.; Relun, A.; Wall, B.; Morris, A.; Dixon, L.; Pfeiffer, D.U. Exploring pig trade patterns to inform the design of risk-based disease surveillance and control strategies. Sci. Rep. 2016, 6, 28429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gho, K. Livestock Infectious Diseases; Korea Institute of S&T Evaluation and Planning: Chungcheongbuk-do, Korea, 2018. [Google Scholar]
- Park, J.M.; Ku, I.H. Bioethical perspective on stamping out livestock affected by infectious disease focused on communal life theory. J. Korean Bioeth. Assoc. 2018, 19, 17–35. [Google Scholar] [CrossRef]
- Kim, J.H.; Heo, D.; Jeong, M.K.; Wu, B.J.; Kim, C.H. 2010–2011 Foot-and-Mouth Report: A Study on the Causes and Prevention of Reoccurrence of Foot and Mouth Disease; Korea Rural Economic Institute: Jeollanam-do, Korea, 2011. [Google Scholar]
- Ham, T.S. A Study on Legislative Improvement of Livestock Stamping Out. Inha Law Rev. 2019, 22, 525–553. [Google Scholar] [CrossRef]
- Choi, S.K.; Song, H.H.; Park, K.S. Analysis of foot-and-mouth disease diffusion velocity using network tool. J. Korean Soc. Geospat. Inf. Syst. 2012, 20, 101–107. [Google Scholar]
- Miranda-De La Lama, G.C.; Villarroel, M.; María, G.A. Livestock transport from the perspective of the pre-slaughter logistic chain: A review. Meat Sci. 2014, 98, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Shon, S.S. Development of Integrated Device for Livestock Vehicles; Ministry of Agriculture, Food and Rural Affairs: Sejong-si, Korea, 2017.
- Smith, L.; Paiba, G.; Holdship, S.; Lysons, R.; Lawton, S.; Hicks, J.; Roberts, S. (UK surveillance: Adding value to data by conforming domains and deriving additional attributes. In Proceedings of the 11th International Symposium on Veterinary Epidemiology and Economics, Cairns Convention Centre, Cairns, Australia, 7–11 August 2006. [Google Scholar]
- Jensen, V.F.; Jacobsen, E.; Bager, F. Veterinary antimicrobial-usage statistics based on standardized measures of dosage. Prev. Vet. Med. 2004, 64, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture, Food and Rural Affairs. The Major Statistics of Agriculture, Food and Rural Affairs. Available online: https://lib.mafra.go.kr/Search/Detail/48112 (accessed on 21 January 2021).
- Xu, G.; Ding, Y.; Wu, C.; Zhai, Y.; Zhao, J. Explore maximal frequent itemsets for big data pre-processing based on small sample in cloud computing. In Proceedings of the 2016 8th International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops (ICUMT), Lisbon, Portugal, 18–20 October 2016; pp. 235–239. [Google Scholar]
- Dagdia, Z.C.; Zarges, C.; Beck, G.; Lebbah, M. A distributed rough set theory-based algorithm for an efficient big data pre-processing under the spark framework. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 911–916. [Google Scholar]
- Cho, W.; Choi, E. Big data pre-processing methods with vehicle driving data using MapReduce techniques. J. Supercomput. 2017, 73, 3179–3195. [Google Scholar] [CrossRef]
- South Korea Policy Briefing. Status of Foot-and-Mouth Disease and AI Spread Nationwide. Available online: https://www.korea.kr/news/visualNewsView.do?newsId=148704937 (accessed on 21 January 2021).
Date and Time | Facility Type | Address | Livestock Type | Purpose of Visit | Vehicle ID |
---|---|---|---|---|---|
5 December 2017 22:32:04 | Farm | 32, Danjae-ro, Sangdang-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea | Local chicken | Livestock transport | 1 |
9 December 2017 20:46:07 | Farm | 34, Danjae-ro, Sangdang-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea | Duck, Rabbit | Livestock transport | 2 |
14 December 2017 04:46:45 | Farm | 35, Danjae-ro, Sangdang-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea | Duck, Rabbit | Livestock transport | 3 |
14 December 2017 13:50:06 | Farm | 31, Changcheon-gil, Gacheon-myeon, Seongju-gun, Gyeongsangbuk-do, Republic of Korea | Local cow | Livestock transport | 10 |
17 December 2017 20:18:19 | Farm | 33, Changcheon-gil, Gacheon-myeon, Seongju-gun, Gyeongsangbuk-do, Republic of Korea | Local cow, Milk cow | Livestock transport | 11 |
Vehicle ID | Type ID | Speed (km/h) | X Coordinate | Y Coordinate | Date and Time (yy:mm:dd:hh:mm:ss) |
---|---|---|---|---|---|
C-212184620717120607530000 | 31 | 0 | 126.715956 | 37.60597 | 171206075400 |
C-212184620717120607530000 | 31 | 0 | 126.715978 | 37.605951 | 171206075500 |
C-212184620717120607530000 | 31 | 0 | 126.715971 | 37.605918 | 171206075600 |
C-212184620717120607530000 | 31 | 0 | 126.715991 | 37.605965 | 171206075700 |
C-212184620717120607530000 | 31 | 0 | 126.715976 | 37.605961 | 171206075800 |
Roadway Link ID | Street Name | Length (km) | Link Type |
---|---|---|---|
412300044 | Myeongseong-ro | 0.02400000000 | General |
412300047 | Sutgol-gil | 0.03900000000 | General |
412300057 | Sambuyeon-ro | 0.06200000000 | General |
412300058 | Changdong-ro | 0.03700000000 | General |
412300076 | Changdong-ro 1894beon-gil | 0.03000000000 | Bridge |
412300086 | Yonghwadong-gil | 0.03200000000 | Bridge |
Purpose of Transport | Number of Vehicles | Percentages |
---|---|---|
Livestock transport | 15,730 | 45.42% |
Feed transport | 7968 | 23.01% |
Consulting | 2939 | 8.49% |
Egg transport | 1853 | 5.35% |
Livestock excretions transport | 1322 | 3.82% |
Compost transport | 909 | 2.62% |
Diagnosis/Vaccination | 809 | 2.34% |
Artificial insemination | 796 | 2.30% |
Livestock medicine transport | 718 | 2.07% |
Chaff/Sand dust/Straw transport | 672 | 1.94% |
Milk transport | 630 | 1.82% |
Repair machine | 219 | 0.63% |
Bulky feed transport | 69 | 0.20% |
Total | 34,634 | 100.00% |
Criteria | Number of Cargo Vehicles | Number of Livestock-Related Vehicles | Ratio (%) |
---|---|---|---|
Registered vehicles | 103,700 | 5441 | 5.25 |
Extraction vehicles (stop for 2 min) | 112,215 | 7375 | 6.57 |
Extraction vehicles (stop for 5 min) | 112,215 | 5146 | 4.59 |
Extraction vehicles (stop for 10 min) | 112,215 | 4293 | 3.83 |
Departure Facility ID | Facility Type | Livestock Type | Vehicle’s Travel Purpose | Arrival Facility ID | Facility Type | Livestock Type | Vehicle’s Travel Purpose | Vehicle ID | Date and Time | Roadway Link Number | Travel Time by Link (s) |
---|---|---|---|---|---|---|---|---|---|---|---|
2464 | farm | local cow, milk cow, local chicken | feed transport, milk transport | 1407 | livestock farm | milk cow | feed transport, milk transport | C-1348… | 17120610371600 | 576610117 | 18 |
C-1348… | 17120610373400 | 576612978 | 24 | ||||||||
C-1348… | 17120610375800 | 576613304 | 1 | ||||||||
C-1348… | 17120610375900 | 576611638 | 241 | ||||||||
C-1348… | 17120610400000 | 576611638 | … | ||||||||
… | … | … | … | ||||||||
91 | farm | local cow, milk cow | feed transport, milk transport, Consulting | 262 | Slaughter house | local cow, milk cow | Livestock transport | C-3440… | 17120412365400 | 571156976 | 1 |
C-3440… | 17120412365500 | 571156971 | 2 | ||||||||
C-3440… | 17120412365700 | 571156883 | 4 | ||||||||
C-3440… | 17120412366100 | 571147502 | 2 | ||||||||
C-3440… | 17120412366300 | 571154080 | … | ||||||||
… | … | … | … |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.; Hong, J.; Park, D. A Framework of an Integrated Livestock Vehicle Trajectory Database Using Digital Tachograph Data. Sustainability 2021, 13, 2694. https://doi.org/10.3390/su13052694
Jeong H, Hong J, Park D. A Framework of an Integrated Livestock Vehicle Trajectory Database Using Digital Tachograph Data. Sustainability. 2021; 13(5):2694. https://doi.org/10.3390/su13052694
Chicago/Turabian StyleJeong, Heehyeon, Jungyeol Hong, and Dongjoo Park. 2021. "A Framework of an Integrated Livestock Vehicle Trajectory Database Using Digital Tachograph Data" Sustainability 13, no. 5: 2694. https://doi.org/10.3390/su13052694
APA StyleJeong, H., Hong, J., & Park, D. (2021). A Framework of an Integrated Livestock Vehicle Trajectory Database Using Digital Tachograph Data. Sustainability, 13(5), 2694. https://doi.org/10.3390/su13052694