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Abstract: In recent years, through the implementation of a series of policies, such as the delimitation
of major grain producing areas and the construction of advantageous and characteristic agricultural
product areas, the spatial distribution of agriculture in China has changed significantly; however,
research on the impact of such changes on the efficiency of agricultural technology is still lacking.
Taking 11 cities in Hebei Province as the research object, this study examines the spatial depen-
dence of regional agricultural technical efficiency using the stochastic frontier analysis and spatial
econometric analysis. The results show that the improvement in agricultural technical efficiency
is evident in all cities in Hebei Province from 2008 to 2017, but there is scope for further improve-
ment. Industrial agglomeration has statistical significance in improving the efficiency of agricultural
technology. Further, there is an obvious spatial correlation and difference in agricultural technical
efficiency. Optimizing the spatial distribution of agricultural production, promoting the innovation,
development, and application of agricultural technology, and promoting the expansion of regional
elements can contribute to improving agricultural technical efficiency.

Keywords: agricultural technical efficiency; spatial dependence; industrial agglomeration; stochastic
frontier; space metrology

1. Introduction

While agricultural development has greatly increased food supply over the past half
century, it has also consumed nearly 75% of fresh water resources; farmland or pasture
occupies more than 50% of the global ice-free land area [1–3]. Since the resource require-
ments of global agriculture are becoming increasingly tense, the intensive and efficient use
of agricultural resources has become the focus of future agricultural development [4–6].

Over the years, 7–10% of China’s agricultural gross domestic product (GDP) was used
to compensate for the environmental costs of increasing food supply [7]. The development
of green and efficient modern agriculture requires that technical efficiency be improved to
increase future agricultural supply [8,9]. However, China’s current level of agricultural
technical efficiency is low [10,11]. Given that the concept of green development has been
thoroughly implemented, only by improving its efficiency of agricultural production can
the increasing demands for food due to population growth and economic development
be met [12]. In this context, it is of great practical significance to explore the influencing
factors and mechanisms of agricultural technical efficiency in the new period.

Agricultural technical efficiency is affected by many factors. First, at the regional
macro level, Sabasi and Shumway [13] revealed that technological progress can significantly
promote agricultural technical efficiency. Ghoshal and Goswami [14] and Shuaibu and
Nchake [15] showed that economic development, education level, and scale level will
have an impact on agricultural technical efficiency. Shanmugam and Venkataramani [16]
pointed that agricultural technical efficiency across districts depends greatly on public
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health and environmental factors, such as agro-climatic zones. Sunge and Ngepah [17]
and Quiroga et al. [18] believed that agricultural technical efficiency can also be affected
by institutional policies. Second, on the individual level of farmers, Yonas et al. [19] and
Wanglin Ma et al. [20] suggested that management measures influences farmers’ technical
efficiency. Naveed et al. [21] and Ojiya et al. [22] showed that the infrastructure and return
rate of production input have a significant impact on farmers’ technical efficiency. Chen
et al. [23]. revealed that technical efficiency is also related to the age of the household
head and the village migration ratio. Spatial dependence reflects the spatial interaction
of economic behaviors caused by the flow of various variables, such as labor, capital,
and other economic factors among regions [24]. Scholars have pointed out that economic
development, market price, stock risk, energy development, and other aspects of social and
economic development show spatial dependence [25–27]. In recent years, many studies
have introduced the spatial characteristics of technical efficiency into the literature, and its
positive spatial externality has been found both at regional and enterprise levels [28–30].

In recent years, China has continued to promote the construction of major grain-
producing and special-quality areas. The pattern of agricultural production has significantly
changed, and more industrial clusters have emerged [31–34]. Most of the existing studies
in the literature only analyzed the evolution and influencing factors of China’s agricultural
technical efficiency based on time, or compared the horizontal regional technical efficiency
based on cross-sectional data. China’s agricultural technical efficiency has rarely been
examined from a spatial perspective. Taking Hebei Province as an example, this study
applies a spatial econometric analysis to measure spatial influencing factors on the basis
of using the stochastic frontier model to evaluate agricultural technical efficiency. Hebei
Province is a major agricultural province in China, which is the main production area of
wheat, corn, cotton, vegetables, fruits, and other major food crops. It is the core of Beijing,
Tianjin, and Hebei metropolitan area, being the main source of grain and food supply in
the region, and makes an important contribution to the national food security. The study of
agricultural efficiency in Hebei province is not only of great significance to the provincial
economic development, but also has practical significance for the metropolitan area and
even the whole country. Compared with previous studies, we not only consider panel data
characteristics, but also the spatial correlation of agricultural production, which can provide
a new perspective for the analysis of factors affecting agricultural technical efficiency.

2. Materials and Methods
2.1. Overview of the Study Area

Hebei Province is located in North China, bounded between 36◦05–42◦40 N and
113◦27–119◦50 E, with a total area of 188,800 km2. It surrounds Beijing and Tianjin, with
the Bohai Sea in the east, Taihang Mountain in the west, and Yanshan Mountain in the
north. The terrain is high in the northwest and low in the southeast, and inclines from
northwest to southeast. It has a temperate continental monsoon climate, with an average
annual precipitation of 484.5 mm. It has four distinct seasons with a frost-free period of
81–204 days, an average temperature below 3 ◦C in January, and between 18 ◦C and 27 ◦C
in July.

Hebei Province governs 11 prefecture-level cities, including Shijiazhuang, Tang-
shan, Qinhuangdao, Handan, Xingtai, Baoding, Zhangjiakou, Chengde, Cangzhou, Lang-
fang, and Hengshui. By the end of 2017, the added value of its primary industry—
agriculture—was 313 billion yuan, up 3.9% year on year, and its residential population was
at 75.1952 million.

2.2. Methods
2.2.1. Stochastic Frontier Model—Measurement of Agricultural Technical Efficiency

An Input–Output Analysis is often used to study technical efficiency, which is a set
of analytical methods proposed by economist Wassily Leontief to analyze the flow of
goods and funds among various sectors of the economic system [35]. The total output
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value of agriculture, forestry, animal husbandry, and fishery is taken as the output (y) in
the agricultural production function according to the research needs of this study. The
input variables are crop planting area (x1), rural labor force of agriculture, forestry, animal
husbandry, and fishery (x2), total power of agricultural machinery (x3), and the pure
application amount of agricultural fertilizer (x4). Among them, the sown area of crops
represents land input; the rural labor force of agriculture, forestry, animal husbandry,
and fishery represent labor input; the total power of agricultural machinery represents
the agricultural capital stock; and the pure application amount of agricultural fertilizer
represents the intermediate input.

Production frontier analysis is commonly used to measure technical efficiency. It can
be divided into non-parametric and parametric methods according to whether the specific
form of the production function is known. The former is represented by data envelopment
analysis (DEA), while the latter by stochastic frontier analysis (SFA).

DEA is a linear programming method, which has been widely used in efficiency
research of different industries and departments since it was proposed by A. Charnes and
W. W. Cooper in 1978 [36]. For example, Moutinho et al. [37], Namazi and Mohammadi [38],
and Laurinavicheius and Rimkuvienė [39] applied this method to the study of ecological
efficiency, resource efficiency, and agricultural production efficiency, respectively.

SFA is a parametric frontier method, which was founded by Battese G.E. and Coelli
T.J. in 1992 [40]. Compared with the non-parametric method, the stochastic frontier model
is easier to explain and can estimate the reliability of the results [41]. What is more, DEA
does not estimate the impact of random disturbance on production activities. There is a
large noise in agricultural production [42], which causes the measurement of agricultural
technical efficiency in DEA to have inevitable estimation bias. SFA takes into account the
impact of such random factors on output. Therefore, it is favored by an increasing number
of scholars and has been applied to the evaluation of agricultural technical efficiency in
many countries and regions around the world [43–47]

The panel stochastic frontier model was used to investigate technical efficiency. Its
basic form is as follows:

Yit = f (Xit, β) exp(Vit − Uit) (1)

In Equation (1), Yit is the output of the ith region at time t; f (Xit, β) is the production
function; Xit is the production input; and β is the parameter to be estimated. Vit is the
random error of the system, which obeys the normal distribution, that is, Vit ∼ N

(
0, σ2).

Uit is the error caused by technical inefficiency, which obeys a truncated normal distribution,
that is, Uit ∼ N+

(
m, σ2). We suppose that Vit and Uit are independent of each other.

This study assumes that the agricultural production function is in the form of a
transcendental logarithm. Combined with the selected variables, Equation (1) can be
transformed into a specific form of agricultural production function in Hebei city, as shown
in Equation (2):

ln Yit = β0 + β1lnx1 + β2lnx2 + β3lnx3 + β4lnx4 + β5(lnx1)
2+

β6(lnx2)
2 + β7(lnx3)

2 + β8(lnx4)
2 + β9lnx1lnx2+

β10lnx1lnx3 + β11lnx1lnx4 + β12lnx2lnx3+
β13lnx2lnx4 β14lnx3lnx4 + (Vit − Uit) (i = 1, 2, . . . , 11; t = 1, 2, . . . , 10)

(2)

Equation (2) is in the form of a logarithm on both sides of the stochastic frontier
production function.

2.2.2. Spatial Econometric Model—Analysis of Agricultural Technical Efficiency Factors

The value of agricultural technical efficiency (expressed by ate) in the function mea-
sured by the stochastic frontier model is taken as the explained variable. The core variable
of this study is the industrial agglomeration index (agg), also known as the regional spe-
cialization index, which is measured by location entropy. It is an effective index used to
measure the degree of industrial agglomeration [48].
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IAIij =
eij/ ∑11

1 eij

∑3
1 eij/ ∑11

1 ∑3
1 eij

where IAIij is the location entropy of industry j in city i, and eij is the output value of
industry j in city i. i = 1.2.3 . . . 11, j = 1, 2, 3, representing primary, secondary, and tertiary
industries. This study only calculates the location entropy of the primary industry in each
city. The higher the location entropy, the higher the degree of agglomeration.

The control variables include the following:
(1) Technical factors: Measured by the logarithm of the number of rural science and

technology practitioners (lnatp), representing the local agricultural science and technology
extension service level.

(2) Economic structure: Since the agglomeration factor is the agglomeration of the
primary industry, the proportion of the tertiary industry (pti) was calculated to measure
the economic structure, that is, the proportion of the output value of the tertiary industry
in the GDP.

(3) Infrastructure: Measured in the form of the logarithm of the effective irrigation
area (lneia), reflecting the water conservancy infrastructure conditions of local agricultural
production.

(4) Income level: Measured in the logarithmic form of per capita GDP (lnpgdp),
reflecting the economic development level or local income level.

(5) Scale level: Measured by per capita sown area (psa), that is, the ratio of the
total sown area to the labor force of agriculture, forestry, animal husbandry, and fishery,
reflecting the land resources owned by the labor force.

(6) Industrial structure: Measured by the proportion of grain sown area (pga), that is,
the ratio of grain sown area to total sown area, representing the proportion of traditional
crop planting in agricultural production activities.

(7) Natural factors: In terms of temperature (tem), the influence of annual average
temperature change on agricultural technical efficiency was investigated.

(8) Regional factor: The spatial weight matrix W was introduced. We selected the
inverse distance matrix as the spatial weight matrix and defined it as the reciprocal matrix
of the distance of the cities’ center.

The model used in this research was mainly based on the improved form of the spatial
econometric model proposed by Lee [49] and Elhorst [50]. In the empirical study, we used
the external command in Stata to build the model.

Three types of models were constructed: The spatial autoregressive model (SAR)
(Equation (3)), spatial error model (SEM) (Equation (4)), and spatial Durbin model (SDM)
(Equation (5)).

EFi,t = α + βControlit + ρ
11

∑
j

wijEFj.t + ui + εit (3)

EFi,t = α + βControlit + ui + εit + λ
11

∑
j

wijε jt (4)

EFi,t = α + βControlit + ρ
11

∑
j

wijEFj.t + δ
11

∑
j

wijControljt + ui + εit (5)

(i = 1, 2, . . . , 11; t = 1, 2, . . . , 10)

where i and j represent the region, and t is the time. EFi,t is the agricultural technical
efficiency of city i at time t; Controlit is a matrix composed of control variables, including
the industrial agglomeration index (agg), logarithm of the number of rural science and
technology practitioners (lnatp), proportion of the tertiary industry (pti), logarithm of
effective irrigation area (lneia), logarithm of per capita GDP (lnpgdp), per capita sown area
(psa), proportion of grain-sown area (pga), and annual average temperature (tem). ui is
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the intercept term of the spatial fixed effect; wij is the element of row i and column j of
the spatial weight matrix. wij plays a different role in Equations (3)–(5). In Equation (3), it
interacts with the spatial lag dependent variable EFj.t. In Equation (4), wij interacts with
the spatially correlated random error term ε jt. In Equation (5), wij interacts with both the
spatial lag dependent variable EFj.t and independent variables. Table 1 shows the variable
description of the spatial analysis in this paper.

Table 1. Descriptive statistics of key variables.

Variable Obs Mean SD Min Max

ate 110 0.522 0.138 0.259 0.8
agg 110 1.103 0.259 0.673 1.743

lnatp 110 6.964 0.876 5.489 8.656
pti 110 0.381 0.062 0.248 0.529

lneia 110 12.77 0.566 11.414 13.411
lnpgdp 110 10.394 0.409 9.557 11.326

psa 110 0.158 0.038 0.096 0.252
pga 110 0.711 0.063 0.589 0.917
tem 110 12.349 2.19 7.1 14.8

This paper studies the spatial econometric model according to the research paradigm
of Lesage and Pace [51]. First, the overall and local Moran index (I value) was used to test
whether there is an overall spatial correlation and local spatial correlation in agricultural
technical efficiency. Then, we estimated the three models in Equations (3)–(5), and used
the Hausman test to determine that we should choose the spatial panel fixed effect model
for our data. We then tested the following assumptions when estimating the spatial
econometric model:

Hypothesis 1 (H1). H0 : θ = δ1 = δ2 = . . . = δ6 = 0

Hypothesis 2 (H2). H0 : (θ = −ργ)(δ1 = −ρβ1)(δ2 = −ρβ2) . . . (δ6 = −ρβ6)

For Hypotheses 1 and 2, the Wald test was used to check whether the model parameters
are linear. If hypothesis 1 is rejected, SDM is more suitable than SAR; If hypothesis 2 is
rejected, SDM is more suitable than SEM. Finally, we replaced the SDM with the spatial
auto-correlation model (SAC) to re-estimate the data to test the robustness.

2.3. Data Sources

The data used in this study were mainly obtained from the Hebei Rural Statistical
Yearbook, Hebei Economic Yearbook, statistical yearbooks of various cities, statistical
bulletin of national economic and social development, China Urban Statistical Yearbook,
and China Meteorological Statistical Yearbook. To eliminate the impact of price fluctuations,
the total output value of agriculture, forestry, animal husbandry, and fishery were converted
into comparable prices based on data from 2008.

3. Results
3.1. Estimation Results of the Stochastic Frontier Production Function

The maximum likelihood function estimation results show that the agricultural pro-
duction function model has a good fitting effect (Table 2). The significant one-sided
likelihood ratio (LR) indicates that the error term has an obvious compound structure. σ2

and γ are highly significant, which indicates that there is obvious efficiency loss in the
agricultural technical efficiency of Hebei Province.
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Table 2. Production function estimation results of stochastic frontier model.

Parameter Coefficient S.D. T Value

σ2 0.0363 0.0041 8.7670
γ 0.9492 0.0107 88.4930

Maximum likelihood function estimation: 147.6131
One sided test value of maximum likelihood function = 221.1584

The results show that the 11 regions in Hebei Province have a low level of agricultural
efficiency (Table 3). During the study period, the agricultural efficiency gradually improved,
with the average value increasing from 0.4462 in 2008 to 0.5950 in 2017. At the same time,
the efficiency of agricultural technology shows obvious regional differences. Among the
11 regions, Xingtai had an average efficiency level of 0.3427; its lowest level was recorded
at 0.2590 in 2008, but this increased to 0.4273 in 2017. Qinhuangdao had the highest level
of efficiency, averaging 0.7533, which increased to 0.8001 in 2017.

Table 3. Agricultural technical efficiency and average efficiency of cities in Hebei Province in 2008
and 2017.

City|Year 2008 2017

Shijiazhuang 0.5121 0.6563
Handan 0.3311 0.4987
Xingtai 0.2590 0.4273
Baoding 0.3004 0.4692

Zhangjiakou 0.4532 0.6077
Chengde 0.3762 0.5405
Tangshan 0.5259 0.6673

Qinhuangdao 0.7017 0.8001
Cangzhou 0.4890 0.6375
Hengshui 0.3104 0.4789
Langfang 0.6489 0.7617

Average efficiency 0.4462 0.5950

3.2. Estimation Results of the Spatial Econometric Model
3.2.1. Spatial Auto-Correlation Test of Agricultural Technical Efficiency

First, this paper uses the global Moran index (I value) to test whether agricultural
technical efficiency has spatial correlation at the prefecture level. The Moran test was used
as follows [52]:

I =
n ∑n

i=1 ∑n
j=1 wij

(
AEFi − AEF

)
(AEFj − AEF)

∑n
i=1 (AEFi − AEF)2

∑n
i=1 ∑n

j=1 wij

where i and j represent cities, wij is the element of row i and column j in the spatial weight
matrix, AEFi is the agricultural technical efficiency of city i, and AEF is the overall average
technical efficiency among cities.

In Table 4, the p-value indicated a significance level of less than 0.05, that is, the Moran
index I is significant at the 5% level from 2008 to 2017. This also indicates that agricultural
technical efficiency has spatial autocorrelation at the prefecture level. As time progressed,
the Moran index increased year by year, and the spatial agglomeration of agricultural
technical efficiency became increasingly evident.

Furthermore, to investigate local spatial correlation, this study used the local Moran
index and Moran scatter plot (MSP) to test agricultural technical efficiency at the prefec-
ture level. The results show that Baoding, Hengshui, Xingtai, and Handan have low-low
agglomeration, while high-high agglomeration occurs in Langfang, Tangshan, and Qin-
huangdao.
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Table 4. Global Moran index and p value from 2008 to 2017.

Year Moran Index p-Value

2008 0.041 0.043
2009 0.042 0.043
2010 0.042 0.043
2011 0.043 0.042
2012 0.043 0.042
2013 0.044 0.042
2014 0.044 0.041
2015 0.044 0.041
2016 0.045 0.041
2017 0.045 0.041

3.2.2. Influencing Factors of Agricultural Technical Efficiency

Three models of spatial metrology were selected for estimation based on the anal-
ysis above, as shown in Table 5. We estimated the spatial panel Durbin model (SDM),
spatial panel autoregressive model (SAR), and spatial panel error model (SEM) from the
perspective of the FE and RE. The results of the Wald test reject the original hypothesis,
that is, SAR and SEM models cannot accurately describe the spatial relationship of our
data; therefore, the SDM model should be used for analysis. Compared with the SAR and
SEM models, SDM considers the common influence of the spatial lag explanatory variable
on the explained variable, and has the general form of the spatial lag model and spatial
error model. As the only model that can obtain unbiased coefficient estimation, SDM
decomposes the total impact into direct and indirect impacts. It can more comprehensively
measure the spatial spillover effect of each individual observation from different angles
based on panel data [53].

Table 5. Estimation results of spatial Durbin model, spatial autoregressive model, and spatial error model.

Var|Model SDM FE SDM RE SAR FE SAR RE SEM FE SEM RE

agg 0.0336 *** 0.0352 *** 0.0341 *** 0.0357 ** 0.0472 *** 0.0471 ***
(4.11) (4.04) (3.65) (3.59) (3.99) (3.83)

lnatp 0.0111 ** 0.0105 ** 0.0074 0.0057 0.0046 0.0028
(2.29) (2.03) (1.39) (1.01) (0.69) (0.40)

pti 0.0733 * 0.0765 * 0.0957 ** 0.1145 *** 0.4311 *** 0.4403 ***
(1.76) (1.74) (2.50) (2.77) (14.70) (14.85)

lneia 0.0048 0.0073 0.0160 0.0107 0.0122 0.0042
(0.40) (0.59) (1.16) (0.73) (0.85) (0.29)

lnpgdp 0.0599 *** 0.0686 *** 0.0599 *** 0.0662 *** 0.1488 *** 0.1480 ***
(4.26) (4.62) (5.03) (5.11) (27.43) (26.70)

psa 0.2412 ** 0.2101 * 0.1690 0.1539 0.0664 0.0431
(2.30) (1.87) (1.38) (1.19) (0.43) (0.27)

pga −0.0263 −0.0275 −0.0002 −0.0013 −0.0139 −0.0197
(−1.12) (−1.10) (−0.01) (−0.04) (−0.41) (−0.56)

tem 0.0009 0.0006 0.0008 0.0007 0.0004 0.0003
(1.59) (1.11) (1.21) (1.08) (0.46) (0.31)

Cons −0.4484 −0.7556 *** −1.3050 ***
(−1.57) (−3.13) (−6.18)

N 110 110 110 110 110 110
rsq 0.006 0.154 0.040 0.011 0.614 0.669

R2_w 0.9798 0.9788 0.9559 0.9577 0.9327 0.9317

Note: *** indicates significant correlation when the confidence level is 0.01, ** means significant correlation when the confidence level is
0.05, * means significant correlation when the confidence level is 0.1, and the t-test values of regression variables are in brackets.

To test the fixed effect (FE) and random effect (RE) of SDM, the Hausman test was
used. Because the p-value of SDM significantly rejects the original hypothesis at the 1%
level (assuming that RE is more effective than FE), we chose to explain the SDM FE model.
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Furthermore, according to the method proposed by Lesage and Space [51], we report
the marginal impact of each explanatory variable on agricultural technical efficiency, as
shown in Table 6.

Table 6. Average marginal impact.

Var Direct Impact Indirect Impact Total Impact

agg 0.0312 ***
(3.77)

0.1020 ***
(3.11)

0.1332 ***
(3.76)

lnatp 0.0094 **
(1.97)

0.0605 ***
(2.64)

0.0699 ***
(2.80)

pti 0.0623 *
(1.81)

0.5547 ***
(8.23)

0.6169 ***
(10.51)

lneia 0.0058
(0.47)

−0.0449*
(−2.31)

−0.0392
(−1.58)

lnpgdp 0.0589 ***
(4.37)

0.0448 ***
(3.10)

0.1037 ***
(8.20)

psa 0.2252 **
(2.13)

0.9610 *
(1.79)

1.1862 **
(2.08)

pga −0.0187
(−0.73)

−0.2533 ***
(−3.56)

−0.2720 ***
(−3.63)

tem 0.0008
(1.58)

0.0011
(0.55)

0.0020
(0.87)

Note: *** indicates significant correlation when the confidence level is 0.01, ** indicates significant correlation
when the confidence level is 0.05, * means significant correlation when the confidence level is 0.1, and the t-test
values of regression variables are in brackets.

The direct impact coefficient of industrial agglomeration (agg) is 0.0312, which is
significant at the 1% level. This means that when the level of industrial agglomeration
increases by 1%, the agricultural technical efficiency of the region increases by 0.0312%.
Industrial agglomeration has a positive direct effect on regional agricultural technical
efficiency through the spatial correlation of regional economic development. Meanwhile,
it produces a positive indirect effect—spatial spillover effect. This spillover effect affects
other regions, forming a cumulative effect. The indirect impact coefficient is 0.1020, which
is significant at the 1% level; every 1% increase in the level of local industrial agglomeration
can raise the agricultural technical efficiency of neighboring areas by 0.1020%. The spatial
effect of industrial agglomeration on agricultural technical efficiency is such a dynamic
adjustment. When the positive direct and spatial spillover effects are combined, the cumu-
lative long-term effect is positive. When the level of industrial agglomeration increases by
1%, the overall agricultural technical efficiency increases by 0.1332%. This process can be
seen as the path of industrial agglomeration to promote the improvement of agricultural
technical efficiency.

The study also showed that the number of rural science and technology practitioners
(lnatp), proportion of the tertiary industry (pti), and per capita GDP (lnpgdp) have a
positive impact on agricultural technical efficiency at the 1% significance level, and the
effect of per capita sown area (psa) was significant at 5%. The proportion of grain sown
area (pga) has a negative impact on agricultural technical efficiency, which is significant at
the 1% level. The effects of the effective irrigation area (lneia) and temperature (tem) were
not statistically significant.

3.2.3. Robustness Analysis

The SAC model was further used for re-estimation, and the results were compared
with those of SDM. After changing the method, the main effect coefficient of industrial
agglomeration was still positive, which was significant at the 1% level. The main effect
coefficient of key variables, such as the number of rural science and technology practitioners,
proportion of the tertiary industry, and per capita GDP, was still positive, proving the
robustness of the previous estimation.
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4. Discussion

The results show that there is obvious spatial heterogeneity of agricultural technical
efficiency in Hebei Province. The city with the lowest efficiency level is Xingtai, and the
highest is Qinhuangdao. The possible reason is that there are differences in natural resource
endowment, economic base, technology level, and industrial structure among cities in
Hebei. Qinhuangdao is located along the coast of the Bohai Sea with high levels of economic
and social development. The city’s developed sea transportation method is convenient for
the transportation of agricultural products. It also has more economic exchanges, which
stimulate consumption and drive local agricultural production activities, modernizing
agricultural production. Qinhuangdao also pays attention to the popularization and
application of technology, so its agricultural technical efficiency is higher. Xingtai is located
in the inland area, which mainly relies on traditional cultivation because the resource and
transportation conditions of its agricultural development are relatively limited. Overall,
the agricultural technical efficiency of each region has increased year by year and is
developing rapidly.

The results also show that there is spatial spillover effect of agricultural technical
efficiency in Hebei Province, and the spatial agglomeration of efficiency becomes more and
more significant as time goes on. The improvement in industrial agglomeration level has
a significant role in promoting the agricultural technical efficiency of local and adjacent
areas, which shows positive direct impact and indirect impact respectively. The possible
mechanisms are as follows. In regard to the direct impact for the region, on the one hand,
industrial agglomeration suggests that there are more production and operational enti-
ties in local regions. Fierce market competition pushes them to actively learn advanced
technology and experience, upgrade, and transform production equipment to reduce costs
and increase competitiveness, thus driving technological progress and enhancing labor
quality. On the other hand, areas with high levels of industrial agglomeration tend to
pay more attention to the layout of industrial development. A reasonable production
pattern can make better use of agricultural technology. In regard to the indirect impact
for neighboring areas, the regional economy is an open system, and the interactive mecha-
nism of spatial correlation promotes the innovating, leading, driving, and demonstrating
functions of industrial agglomeration regions. The diffusion of innovation activities and
innovative achievements can continuously strengthen regional economic ties. Additionally,
the spillover of knowledge and technology is conducive to their technological progress
and innovation, thus improving overall agricultural technical efficiency, which can be
explained by agricultural technology spillover theory [54]. The coordinated development,
cooperation, and exchange between regions can tap the development potential of backward
areas, give full play to the advantages of backwardness, and gradually improve overall
agricultural technical efficiency.

In recent years, China has continuously optimized the layout of agricultural devel-
opment and industrial structure, accelerated the construction of agricultural functional
areas, and launched development strategies such as the construction of major grain pro-
ducing areas and advantageous agricultural product producing areas. This is bound to
further promote the agglomeration of agricultural industry in space. As this paper studied,
industrial agglomeration has a significant pulling effect on agricultural technical efficiency,
as is consistent with that of scholars on the agglomeration of technical efficiency [55,56].
However, at the same time, there is spatial competition in the development of regional
agricultural industry. The improvement of industrial agglomeration level may lead to the
flow of technology, labor, capital, and other factors to the local, and increase the difference
of agricultural technical efficiency among regions [57–59]. Therefore, local governments
should speed up the formation of a scientific and reasonable layout of agricultural industry
development and establish a healthy market operation order. This can maximize the advan-
tages of industrial agglomeration, which is of great significance to improve the agricultural
technical efficiency.
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5. Conclusions

This paper first estimates the agricultural technical efficiency of cities in Hebei Province
through the stochastic frontier production function. While the agricultural technical effi-
ciency of Hebei cities significantly improved from 2008 to 2017, there is still much room for
development; there is obvious correlation and heterogeneity in space, showing the distri-
bution characteristics of high-high agglomeration and low-low agglomeration. Through
a positive spatial spillover effect, industrial agglomeration has a pulling impact on the
agricultural technical efficiency. Technical level, economic structure, income level, and
scale level have a positive impact on agricultural technical efficiency, while agricultural
industrial structure has a negative impact.

Based on these conclusions, we suggest implementing the following policies to further
improve agricultural technology efficiency. First, we recommend promoting the agglom-
eration of regional technology, capital, talent, and other elements to optimize the spatial
distribution and industrial structure of agricultural production, with a strong focus on
the construction of agricultural functional areas and major grain producing areas. Sec-
ond, we recommend strengthening financial, technological, and educational support for
agricultural departments to promote the innovation, development, and application of
agricultural technology, which can directly contribute to agricultural technical efficiency.
Third, we recommend developing and expanding regional technology and capital, training
more agricultural science and technology talents, to play a positive spatial spillover effect
through industrial agglomeration.

Based on a spatial econometric model, our study contributes to enriching theoretical
and practical knowledge about the impact of industrial agglomeration on agricultural
technical efficiency, and helping improve managerial practices by highlighting the impor-
tance of the spatial distribution and industrial structure of agricultural production in our
policy suggestions. There are more in-depth research projects for the future. First, our
results show that Hebei’s agricultural technical efficiency has obvious spatial correlation
and heterogeneity. Agglomeration can promote the agricultural technical efficiency at the
municipal level, but the effects at the county level remain unknown. Hence, research using
the data on a smaller scale is necessary in the future with the improvement of statistical
data. Second, we mainly use the spatial parametric models in this study to estimate the
linear spatial effect. The spatial nonparametric models can also be adopted to analyze the
nonlinear relationship between agricultural technical efficiency and agricultural industrial
agglomeration in the future.
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