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Abstract: A circular tube fitted with novel corrugated spring tape inserts has been investigated. Air
was used as the working fluid. A thorough literature review has been done and this geometry has not
been studied previously, neither experimentally nor theoretically. A novel experimental investigation
of this enhanced geometry can, therefore, be treated as a new substantial contribution in the open
literature. Three different spring ratio and depth ratio has been used in this study. Increase in thermal
energy transport coefficient is noticed with increase in depth ratio. Corrugated spring tape shows
promising results towards heat transfer enhancement. This geometry performs significantly better
(60% to 75% increase in heat duty at constant pumping power and 20% to 31% reduction in pumping
power at constant heat duty) than simple spring tape. This paper also presented a statistical analysis
of the heat transfer and fluid flow by developing an artificial neural network (ANN)-based machine
learning (ML) model. The model is evaluated to have an accuracy of 98.00% on unknown test data.
These models will help the researchers working in heat transfer enhancement-based experiments to
understand and predict the output. As a result, the time and cost of the experiments will reduce. The
results of this investigation can be used in designing heat exchangers.

Keywords: heat transfer; tape inserts; corrugation; heat exchanger; machine learning; prediction

1. Introduction

Energy is the essence of today’s world. The entire world is run by the force of energy.
The advancement and innovations in the last two decades make life easier as never before.
With the rise of technology usage, the need for energy is also rising. As per the report
of VGB Powertech [1], the energy consumption has increased by 66% in the past two
decades. The drastic increase in the demand for energy enhanced the consumption of
non-renewable fuel, which led to an increase in the pollution as well as cost of fuel. This
has caused researchers around the world to concentrate on energy conservation. One of the
easiest ways of energy conservation is to increase the efficiencies of various equipment by
employing the various techniques (passive and active) to increase the efficacy and reduce
the losses.

A heat exchanger (HE) is a device which can exchange the energy between multiple
fluids by direct or indirect contact. The fluids at different temperature transfer the energy
between them, and hence, the energy exchange takes place. To further increase the heat
transfer rate between the fluids, some additional attachment in the form of swirl genera-
tors [2–10], surface roughness [11–17] and other modifications [18–22] in the design of the
heat exchangers are required. The purpose of using such a modification is to enhance the
turbulence in the flow field, which leads to a disturbance in the boundary layer, promotion
of secondary flow and better mixing of hot elements with cold field elements [5,23–26].
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These modifications also reduce the size of heat exchangers for the same heat exchange
capacity. Moreover, the use of materials with higher thermal conductivity, such as steel,
copper, brass, aluminum, etc., also promotes the heat transfer rate.

Rashidi et al. [27] reviewed various articles related to enhanced techniques which
employed inserts with nanofluids for heat transfer (HT) enhancement and concluded that
combined techniques are more effective over single techniques with a slight increase in
the pressure drop (PD). Silva and Salviano [28] reported on the solar water heater with
longitudinal vortex generator to enhance the thermal performance. They found that at a 30◦

angle of attack, the thermal enhancement factor is highest while the maximum heat transfer
was reported with 45◦. Gorjaei and Shahidian [29] experimentally explored the thermal
enhancement in a tube fitted with twisted tapes and nanofluid and reported an increase
in the heat transfer rate as well as Darcy friction inside the tube. Dadvand et al. [30]
employed a flexible beam kind of vortex generator in the downstream of the fluid domain
having a cylindrical obstruction and reported an approximately 18% increase in the Nusselt
number (Nu), while a 42% decrease in the Darcy friction was reported. The overall thermal
performance was also enhanced. Arulprakasajothi et al. [31] conducted experiments in
the transitional flow regime with conical inserts of different twist ratios fitted inside a
cylindrical tube and found that conical strip with a twist ratio of 2 introduced more
swirls when compared with other twist ratio inserts. Gnanavel et al. [32] investigated the
thermal performance of a double pipe heat exchanger fitted with rectangular cut twisted
tape inserts with different nanofluid flowing through it and reported an enhancement
in the thermal performance of the heat exchanger with an increase in the flow velocity.
In another numerical investigation by Gnanavel et al. [33], a similar kind of study was
done with circular fin inserts. Keklikcioglu et al. [34] performed experiments with small
length spring tapes coiled conically and welded to a wire fitted inside a cylindrical duct in
which an ethylene glycol–water mixture flowed. The study was focused on the turbulent
flow regime and results revealed that spring tapes introduced more irreversibility inside
the fluid domain as a result enhancement in thermal performance. Klemeš et al. [35]
reviewed the various articles on the heat transfer improvement in heat exchangers and
the optimization tools used. They concluded that there is a need to investigate the gap
between theoretical approach and practical implementation. Saffarian et al. [36] conducted
a numerical investigation on the different flow paths of a flat plate collector and Al2O3
and CuO with water as the working nanofluid. It was found that a wavy and spiral flow
path shows maximum enhancement in heat transfer rate while the pressure drop was
observed to be maximum with the wavy path. Sheikholeslami et al. [37] computationally
explained the impact of twisted tape within twisted tape for heat transfer augmentation in
a cylindrical duct. It is revealed that introduction of secondary tape inside the fluid domain
promotes the secondary flow, which result in enhanced entropy in the flow field, and hence,
a higher heat transfer rate. Gholami et al. [38] investigated the influence of adding nanofluid
and dimples on the free convective heat transfer in a vertical channel. The results obtained
from the investigation revealed augmentation in the thermal performance. Li et al. [39]
reported on the heat transfer enhancement in a microchannel using a shark-skin bionic
modified surface and reported an increase in the thermal performance with an increase in
the Reynold number. Yu et al. [40] investigated the influence of triangular baffles on the
thermal performance of the air-based PVT collector and reported an increase in both the
outlet temperature as well as heat gain at the outlet of the collector. Chen et al. [41] reported
on the factor influencing the heat transfer in ground water heat exchanger and found that
an increase in the inlet temperature resulted in a higher heat transfer rate. Giwa et al. [42]
studied the influence of thermo-physical properties, temperature and volume concentration
of nanoparticle on the thermal and flow behavior and employed difficult machine learning
techniques to predict the thermo-physical properties of nanofluid. Osman et al. [43]
conducted experimental assessment to evaluate the convective heat transfer coefficient in
transitional flow regimes. Alumina-water was employed as the working fluid. The results
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obtained from the investigation shows enhancement in Nu and the heat transfer coefficient.
Other, similar investigations include [44–48].

A new technique known as machine learning has evolved in recent times which is very
helpful in the field of predicting the results with accuracy. It is defined as the method of
data analysis that allows the computer to automate the model building. Machine learning is
a system that learns from its past data to predict future results and to improve the accuracy
using the previous predictions. Machine learning has applications in various industries
and is proving its caliber with predicting the results with higher accuracy [49–54]. For
example, ML is used to analyze a vast volume of data derived from experiments, field
measurements and numerical simulations in the field of fluid mechanics [55,56]. A data
analysis based on machine learning not only increases the throughput and precision of the
flow interpretation, but also opens up new possibilities, such as flow property prediction
using quality data and past experiences [57].

The field of thermal science and engineering has also discussed how machine learning
is used to promote data processing. Machine learning will act as a useful tool for predicting
the results for the complex heat transfer and fluid flow problem in transitional and turbu-
lent flow regimes. Researchers across the globe have found machine learning to be very
useful. Lindqvist et al. [58], Baghban et al. [59], Kwon et al. [60] and Krishnayatra et al. [61]
employed a machine learning approach for the development of correlations and predicting
the thermal performance for heat exchangers. Baghban et al. [59] employed the machine
learning approach for predicting the thermal performance of a coiled heat exchanger. The
multilayer perceptron artificial neural network, adaptive neuro-fuzzy inference system
and least squares support vector machine model were employed to predict the Nusselt
number; they reported that the least squares support vector machine model predicted the
results with the best accuracy. Kwon et al. [60] employed a random forest algorithm for
predicting the heat transfer coefficient by training and testing the machine learning model
and reported that the machine learning model predicts the heat transfer coefficient with a
high accuracy, i.e., of 96.6%. Ahmadi et al. [62] employed neural networking for predicting
the friction factor in a car radiator while using CuO-water nanofluid as a working agent.
Golzar et al. [63] utilized the machine learning-based technique of artificial neural network-
ing and Monte-Carlo sensitivity analysis for predicting the temperature of wastewater.
Koroleva et al. [64] applied artificial neural networking for optimizing the rib roughness
parameters in an internally roughened circular tube. Abdollahi and Shams [65] engaged
the Pareto optimal strategy to optimize the design parameters of a winglet vortex generator
to achieve the highest heat transfer enhancement at the lowest pressure drop condition.
Sotgiu et al. [66] employed machine learning for predicting the turbulent heat fluxes in
the Reynolds-averaged Navier-Stokes equations and reported that initial results are ap-
preciable, predicting the heat fluxes in a more complex flow. Karkaba et al. [67] employed
large space exploration applications to optimize the design of vortex generators for maxi-
mum performance and heat transfer enhancement. Gerdroodbary [68] formulated a model
using neural networking to predict the heat flux for magnetohydrodynamic nanofluid
flow. Jovic et al. [69] explored the potentiality of adaptive neuro-fuzzy methodology in the
predicting of heat transfer enhancement for the mini channel heat sink with higher accuracy.
Machine learning techniques, such as fuzzy inference system (FIS), support vector machine
(SVM) and artificial neural network (ANN), have found application in predicting thermal
properties, such as effective thermal conductivity [70–73], thermal boundary resistance [74],
recapitulate entropy [75], specific heat [76], dynamic viscosity [77–80] etc.

A thorough literature review has been done, and this geometry, as shown in Figure 1,
has not been studied previously, neither experimentally nor numerically. A novel ex-
perimental investigation of this enhanced geometry can, therefore, be treated as a new
substantial contribution in the open literature. This paper also presented a statistical
analysis of the heat transfer and fluid flow by developing an artificial neural network
(ANN)-based machine learning (ML) model. The model is trained based on the features
of experimental data, which provides an estimation of the experimental output based on
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user-defined input parameters. These models will help the researchers working in heat
transfer enhancement-based experiments to understand and predict the output. As a result,
the time and cost of the experiments will reduce.
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2. Experimental Setup, Procedure and Data Reduction

Figure 2 shows the pictographic representation of the experimental test rig employed
for the experimental assessment. All the important parts have been leveled in Figure 2
for ease of understanding. Air enters the test section with the help of a blower of 7 kW
capacity, which then travels through the calming section and enters the test section with
uniform distribution. A rotameter with a range of 120 to 540 l/h is employed to measure
the mass flow rate of the working fluid. A calibrated U-tube manometer with a measuring
range of 0–150 mm of Hg is used to measure the pressure difference in the test section.
The measuring range of the major measuring instruments is given in Table 1. The test
section is made of a long circular metallic tube with a diameter of 20 mm and a length
of 2 m. The outer surface of the test section is properly insulated to ensure no heat loss
to the environment. A total of 36 thermocouples are attached to the surface of the test
section at seven equidistant stations to measure the surface temperature of the test section.
The system takes approximately 2 h to reach a steady-state condition. The steady state is
assumed when fluctuations in the reading were negligible. Further details regarding the
experimental setup and produce can be found in the authors’ previous work [6,8,10,18–21].
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Figure 2. Schematic diagram of the experimental setup.

Table 1. Measuring range of instruments.

Instrument Range

DC power supply 0–1500 W

Thermocouples −100–350 ◦C

Rotameter (i) 0–120 l/h, and
(ii) 0–540 l/h

U-tube Manometer 0–150 mm Hg

Experimental investigation has been done for various configurations of hybrid tapes,
as given in Table 2.
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Table 2. Various configurations of hybrid tapes.

Spring ratios (t = P/D) = 1.0, 2.0, and 3.0.
Depth ratio: (h = e/W) = 0.16, and 0.25.

Channel Diameter (D) = 0.02 m
Length of Channel (L) = 2.00 m
Tube thickness (δ) = 2.00 mm

Reynolds number: (Re) = 10,000 to 71,000.

The Nusselt number (Nu) can be calculated as follows, where k denotes the thermal
conductivity of air [61]:

Nu =
hc D

k
(1)

The Darcy friction coefficient, f, is further evaluated using the following formula [62,63]:

f =
∆p

L
D

1
2 ρV2

(2)

For calculating the ReDh, the authors referred to Bhattacharyya et al. [21]:

ReDh =
4× ṁ

π × D× µ
(3)

The thermo-hydraulic performance factor (η) was calculated as per Bhattacharyya et al. [20],
which gave an understanding of the combined performance increases:

η =
Nu/Nu0

( f / f0)
0.33 (4)

3. Results and Discussion

The results obtained for the smooth tube for the Nusselt number and friction factor are
validated with the well-established correlations of the Dittus-Boelter correlation [81], the
Meyer et al. [82] correlation was used for the Nusselt number and Blasius Correlation [82]
for the friction factor.

The Dittus-Boelter correlation [81] expressed the Nusselt number as follows:

Nu = 0.023 Re0.8
DhPr0.4 (5)

Range: 3000 < Re < 106; 0.7 < Pr < 120
Moreover, Meyer et al. [82] correlated the Nusselt number as follows:

Nu = 0.013 Re0.867
Dh Pr

1
3 (6)

Range: 2445 < Re < 410,600; 0.5 < Pr < 276
The correlation for the friction factor given by Blasius [82] is given by:

f =
0.3164

Re
1
4
Dh

(7)

Range: 4000 < Re < 105

Figures 3 and 4 show the validation analysis of the present study with previously es-
tablished and acclaimed correlations for the Nusselt number [81,82] and friction factor [82].
The results obtained for the smooth tube for the Nusselt number and friction factor are in
good accordance with previous studies. The Nusselt number deviates only 6% with the
Dittus-Boelter correlation and 4% with the Meyer et al. correlation, while the friction factor
differs only 4% from the data obtained using the Blasius Correlation.
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3.1. Influence on the Nusselt Number

The Nusselt number is a dimensionless parameter which gives the ratio of convec-
tion and conductive heat transfer for the fluid. Increase in the value of Nusselt number
represents the enhancement in the convective heat transfer.

Figure 5a depicts the relationship of Nusselt number (Nu) and Reynolds number (Re)
in a conduit fitted with novel spring corrugated tape for fixed ‘t’ and variable ‘h.’ It is clear
from Figure 5a that an increase in Re results in a higher Nu value. Further enhancement
in the average Nusselt number is visible when inserts (spring tape) are employed for the
investigation. For a given Reynolds number, the value of the Nusselt number is higher for
the channel fitted with inserts than that of a smooth channel, which depicts augmentation
of heat transfer in the presence of inserts. The maximum enhancement in the Nusselt
number is reported for tape, with t = 1.0 and h = 0.25. For a fixed spring ratio ‘t’, decreasing
the value of depth ratio ‘h’ results in a decreased Nusselt number.
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Figure 5. The Nusselt number as a function of the Reynolds number: (a) corrugated spring tapes
for varying depth ratios while keeping the spring ratio fixed at 1.0, (b) corrugated spring tapes for
varying spring ratios while keeping the depth ratio fixed at 0.25 and (c) comparison between all the
tested configured parameters.
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Figure 5b depicts that the Nusselt number is the function of the Reynolds number in a
conduit fitted with novel spring corrugated tape for a fixed ‘h’ and variable ‘t’. Once again,
one can see from Figure 5b that an increase in the Reynolds number results in the higher
Nusselt number value. For a given Reynolds number, the value of the Nusselt number is
higher for the channel fitted with inserts than that of the smooth channel which depicts
augmentation of heat transfer in the presence of inserts. The maximum enhancement in the
Nusselt number is reported for twisted tape with t = 1.0 and h = 0.25. For a fixed h = 0.25,
increasing the value of ‘t’ results in a decreased Nusselt number.

Figure 5c depicts the relationship of Nusselt number and Reynolds number in a
conduit fitted with novel spring corrugated tape for all possible cases. As expected, the
maximum enhancement in Nusselt number is reported for spring tape with t = 1.0 and
h = 0.25, while minimum enhancement is noted for spring tape with t = 2.0 and h = 0.

In conclusion, the grooved surface introduced disturbance in the flow field. The
depth of the groove brings in irregular disturbance in the flow field. The grooved surface
also disrupts the boundary layer, which results in a higher heat transfer rate. The further
enhancement in heat transfer is due to the complexity in the flow field due to the pres-
ence of spring tape, which makes the flow more complex by generating secondary flow,
recirculation and swirls, thereby enhancing the heat transfer rate.

3.2. Influence on the Friction Factor

The thermal performance of the thermal flow system also depends upon the friction
factor. Higher friction factor results in a low thermal performance. Hence, one should
consider the frictional losses seriously. The presence of inserts (corrugated spring tape)
in the flow field helps in the augmentation of heat transfer, but it will also escalate the
friction factor. The resulting pressure drop directly led to enhanced power for the same
output. The various causes of pressure drops are enhanced contact between fluid and
insert, reduction in dynamic pressure, formation of vortices in the flow field, generation of
secondary vortex, etc. Figure 6a–c show that the friction factor (f ) is the function of Re for
different combinations of configuration and parameters. As expected in the turbulent flow
regime, the friction factor shows a decreasing trend with an increase in the Re.
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Figure 6a presented the plot for the friction factor as a function of Re for corrugated
spring tape having a fixed spring ratio ‘t’ and variable depth ratio ‘h.’ Increase in the
friction factor is noticed when the spring tape is employed. The highest friction factor has
been noticed for t = 1.0 and h = 0.25. For a fixed t = 1.0, decreasing the value of h results in
decreased friction factor.
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Figure 6b shows the plot for friction factor (f ) versus Re for corrugated spring tape
having a fixed ‘h’ and variable ‘t’. Increase in friction factor is noticed when spring tape is
employed. The highest friction factor has been noticed for t = 1.0 and h = 0.25. For a fixed
h = 0.25, increasing the value of ‘t’ results in a decreased friction factor.

Figure 6c depicts the relationship of friction factor and Reynolds number in a conduit
fitted with novel spring corrugated tape for all possible cases. The maximum friction factor
is reported for spring tape having t = 1.0 and h = 0.25, while the minimum friction factor is
noted for spring tape having t = 2.0 and h = 0.

3.3. Influence on the Thermal Performance Factor

Thermo-hydraulic performance factor symbolized by ‘η’ is represented by Equation (4)
and is defined as the ratio of the Nusselt number enhancement (Nu/Nu0) and friction factor
enhancement (f/f 0). This factor is the best parameter to evaluate the actual enhancement
in the thermal performance of a heat exchanger [20,21]. Figure 7a–c shows the various
plot for thermo-hydraulic performance as a function of Re for different combinations of
parameters.
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for varying depth ratios while keeping the spring ratio fixed at 1.0, (b) corrugated spring tapes for
varying spring ratios while keeping the depth ratio fixed at 0.25 and (c) comparison between all the
tested configured parameters.

Figure 7a shows the plot for the thermal performance factor (η) as a function of Re
for corrugated spring tape with a fixed spring ratio ‘t’ and variable depth ratio ‘h.’ It is
clear from Figure 7a that ‘η’ is above unity for all the cases, which prove the applicability
of the present enhanced geometry. It is also clear from Figure 7a that an increase in the
Reynolds number results in a diminishing thermal performance factor. The highest η is
noted for t = 1.0 and h = 0.25 for all Re. A decrease in the value of h results in a decreased
value of η.

Figure 7b shows the thermal performance factor (η) as a function of Re for corrugated
spring tape having fixed ‘h’ and variable ‘t.’ The highest η is noted for t = 1.0 and h = 0.25
for all Re. Increase in the value of ‘t’ result in decreased value of η.

Figure 7c depicts the relationship of η and Reynolds number in a conduit fitted with
novel spring corrugated tape for all possible cases. The highest η is noted for t = 1.0 and
h = 0.25 for all Re, while the smallest η is noted for spring tape with t = 2.0 and h = 0.
The hydro-thermal characteristics depend on fluid properties, flow conditions as well as
geometric parameters of the fin geometry.

It is very important to compare the present geometry with the previously published
geometry performance. Thus, the thermohydraulic performance of the present configura-
tions is compared with previously studied geometries [83–87] and plotted in the Figure 8.
By looking into Figure 8 one can easily understand that the present geometry offered
superiority over other studied geometries.
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4. ANN-Based Heat Transfer Prediction

In this section, the influence of using ANN is described exhaustively. After the
experiment, we have received a good amount of data to be considered for future prediction
generalization. The generated data were used to train an ANN model which afterward
provided us a prediction of new inputs. The user-defined model architecture is discussed
in Section 4.1 and the computational environment is described in Section 4.2.

4.1. Model

The initial step of the ANN-based approach is collecting and analyzing the experimen-
tal data that were taken to train the model. The architecture of the ANN-based approach
for prediction was used. To understand the detailed architecture of the ANN-based model,
let us first walk through the workflow of ANN.

4.1.1. Workflow of ANN

At the initial stage, the dataset is divided into three categories: training data, validation
data and test data. A “neuron” in ANN is a single computing cell and the model is
composed of several neurons. Each neuron has activation functions that are mathematical
equations of the weighted sum of the outputs of the previous layer with a bias added to
it. Different types of activation functions are binary-step functions, linear and non-linear
activation functions are analyzed. The activation functions which are chosen in this work
are as follows:

• Linear: A straight line function where activation is proportional to the input (which is
the weighted sum from the neuron). It can be written as:

A(x) = cx. (8)
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• Relu: It stands for Rectified Linear Units. The formula is deceptively simple: max (0, z).
Despite its name and appearance, it is not linear and provides the same benefits as
Sigmoid but with better performance. It can be written as:

A(z) = z if z > 0 or
A(z) = 0 if z ≤ 0

(9)

The detailed workflow of ANN is described in the following five steps:

• The training and validation set is imported as the input layer. The validation set
is used to tune the parameters of a classifier, for example, to choose the number of
hidden units in a neural network.

• The input vector x = (x1
(0),x2

(0), . . . ,xn
(0)) is passed through the hidden layers of the

neural network to produce an output:

yk = f(zk) (10)

for an L layered neural network with 1 ≤ k < L. Here, f(x) is a nonlinear function,
also known as the activation function.

Zk =
n

∑
i=1

W(k−1)
i X(k−1)

i + b(k−1) (11)

is a weighted input signal for a layer where 1 ≤ k ≤ L and bk is the bias obtained from
the previous layer. After computation of (L−1) hidden layers, the final output i.e., the
Lth layer’s output, is calculated as:

yL = w(L−1)·y(L−1) (12)

The choice of the activation function is variable depending on the required problem to
be solved.

• Subsequently, the error is measured using the predicted value and the real available
value. The error is calculated as:

e = a − yL (13)

where a is the real value and yL is the predicted value. This is also known as the cost
function. A variety of cost functions are available like Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), etc. Choices are made based on the type of problem
being solved. Barron [88] investigated various error functions to show how they affect
the performance of a model.

• Next, backpropagation is used, which is an important mathematical tool for improving
the accuracy of predictions in ML. ANN uses backpropagation to compute a gradient
descent with respect to the weights and biases of the connections with every neuron.
For all weights of neurons in a level k, the gradient descent is updated as:

wik (new) = wi
k (old)− α

g′(e)
g′(w)

(14)

bik (new) = bi
k (old)− α

g′(e)
g′(w)

(15)

where 1 ≤ k < L and 1 ≤ i ≤ n and α is the convergence factor. g′(x) is the first order
derivation of function g(x).

• The above steps are repeated until the error is minimized sufficiently and this is done
by finding the optimal weights and biases.
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4.1.2. Full NN Model Architecture

This is a five-layered neural network-based ML model to predict the Nusselt number,
friction factor and thermohydraulic efficiency. Several tests are done using different
numbers of neurons and hidden layers. Among them, a model with four hidden layers,
each having 30–40 neurons, is determined to have good accuracy. The neural network
with four hidden layers with 40 neurons in each hidden layer has the best accuracy, and
hence, this configuration is suggested for comparison of the accuracy and calculation speed.
The result is being shown in Table 3. To run the training, the batch size is taken as 12
and epoch size as 200. The change in training loss with an increase in epoch numbers is
shown in Figure 9a,b. For leverage validation, the values from the test set are considered.
Corresponding outputs are predicted and are shown with the actual experimental output
values (Table 4). The values that are considered for this validation are mainly the lower
and upper bounds values of the actual experimental inputs.

Table 3. Training accuracy.

Output Parameters Test Error (%)

Nusselt Number 98.25
Friction Factor 97.89

Thermohydraulic Efficiency 98.74

Table 4. Leverage Validation.

Actual Nusselt Number Predicted Nusselt Number Spring Ratios Depth Ratio Reynolds Number

137.729 134.226 1 0.000 56,647.063

104.401 103.048 1 0.250 13,657.714

46.669 45.724 2 0.000 13,932.029

171.270 173.049 2 0.250 56,530.302

Actual Friction Factor Predicted Friction Factor Spring Ratios Depth Ratio Reynolds Number

0.025 0.024 1 0.000 70,670.947

0.052 0.052 1 0.250 10,100.000

0.033 0.034 2 0.000 10,325.645

0.040 0.041 2 0.250 70,759.913

Actual
Thermohydraulic

Efficiency

Predicted Thermohydraulic
Efficiency Spring Ratios Depth Ratio Reynolds Number

1.086 1.083 1 0.000 20,280.421

1.085 1.085 1 0.250 68,287.116

1.058 1.058 2 0.000 10,325.645

1.040 1.035 2 0.250 68,613.056

4.2. Computational Situation

All the experiments were run on Google Colab Notebook with an Nvidia GPU version
1.4.0 enabled, and Keras 2.4.0 was used as an API to train and test the neural network
models, thus favoring a way to clone hardware configuration. The best model is reported
after experimenting with different configuration of the models.
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4.3. Predictions Using ANN

Figure 10a–c shows the assessment between the predicted and actual experimental
value of the test data for Nu, f and η, respectively. From Figure 10a–c, one can understand
that the ANN model fits the dataset acceptably. The performance of the models has
reported an accuracy of more than 97% on the test dataset.
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The detailed statistical analysis of the generated data is shown in Table 5, which
includes a count of the data, mean, and standard deviation that elaborates the range or the
distribution of the generated data.

Table 5. Analysis of the generated data.

Spring Ratio Depth Ratio Reynolds Number

Count 776 776 776
Mean 1.85 0.19 31,428.57

Standard Deviation 0.61 0.073 19,798.55

The newly generated parameters for prediction are shown in Table 6. The Nusselt
number, friction factor and thermohydraulic efficiency results of generated data are shown
in Tables 7–10. The inputs are new to the model, and hence, the accuracy is measured to
their outcomes.

Table 6. New generated parameters for prediction.

Sl. No. Parameters Values

1 Spring Ratios 0.5, 0.75, 1.25, 1.75, 2.25, 2.5, 2.75, and 3
2 Depth Ratio 0.1, 0.12, 0.17, 0.22, 0.27 and 0.30

3 Reynolds number (Re) 10,000, 15,000, 20,000, 25,000, 30,000,
50,000 and 70,000

Table 7. Predicted result of Nu, f and η with the generated data at a constant spring ratio of 0.5.

Sl. No Spring Ratios Depth Ratio Nusselt Number Reynolds Number Friction Factor Efficiency

1 0.5 0.1 15,000 79.37996 0.03522217 1.1265842
2 0.5 0.1 20,000 90.3596 0.033631414 1.0964329
3 0.5 0.1 50,000 151.32751 0.028542683 0.98946524
4 0.5 0.1 70,000 188.50266 0.028558515 0.9411039
5 0.5 0.12 10,000 76.44916 0.041002803 1.2566105
6 0.5 0.12 15,000 87.77288 0.03921072 1.1936426
7 0.5 0.12 50,000 161.64597 0.031991724 1.0116853
8 0.5 0.12 70,000 195.88791 0.03200489 0.9546453
9 0.5 0.27 10,000 117.5347 0.052579053 1.731573
10 0.5 0.27 15,000 128.20746 0.051320527 1.5592642
11 0.5 0.27 50,000 195.00299 0.04585679 1.0967546
12 0.5 0.27 70,000 221.64325 0.045865685 0.99121326
13 0.5 0.3 10,000 118.074036 0.052124266 1.7174882
14 0.5 0.3 15,000 128.15224 0.05087162 1.5457976
15 0.5 0.3 50,000 194.97162 0.045490377 1.0872625
16 0.5 0.3 70,000 222.19823 0.04550107 0.9797186

The present model for Nu, f and η will ease a huge workload by determining the
required outputs. With given test data as mentioned in Tables 7–10, the researchers working
with some similar experimental work will get help to tune their parameters according to
their needs and get their required result. It is important to note and consider an error factor
of ±3–5% while considering the results.
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Table 8. Predicted result of Nu, f and η with the generated data at a constant spring ratio of 0.75.

Sl. No Spring Ratios Depth Ratio Nusselt Number Reynolds Number Friction Factor Efficiency

1 0.75 0.1 10,000 67.99744 0.036494825 1.1545019
2 0.75 0.1 15,000 78.82527 0.034750223 1.1164212
3 0.75 0.1 50,000 150.75844 0.028146021 0.9856459
4 0.75 0.1 70,000 187.99026 0.028218526 0.93835825
5 0.75 0.12 10,000 75.708496 0.040506277 1.2372814
6 0.75 0.12 15,000 87.06183 0.0386977 1.1797061
7 0.75 0.12 50,000 160.94188 0.03156229 1.0071446
8 0.75 0.12 70,000 195.30498 0.031639773 0.951452
9 0.75 0.27 10,000 115.3594 0.05216585 1.7006153
10 0.75 0.27 15,000 126.030235 0.050907873 1.5363052
11 0.75 0.27 50,000 193.65616 0.04535187 1.0875276
12 0.75 0.27 70,000 220.56442 0.045359384 0.9855498
13 0.75 0.3 10,000 115.87105 0.051728677 1.6873885
14 0.75 0.3 15,000 125.895035 0.0504768 1.5236944
15 0.75 0.3 50,000 193.47389 0.044995386 1.0782328
16 0.75 0.3 70,000 221.02788 0.04499829 0.9740696

Table 9. Predicted result of Nu, f and η with the generated data at a constant spring ratio of 2.75.

Sl. No Spring Ratios Depth Ratio Nusselt Number Reynolds Number Friction Factor Efficiency

1 2.75 0.1 10,000 64.38968 0.032834537 1.0981691
2 2.75 0.1 15,000 75.11141 0.03136564 1.0711987
3 2.75 0.1 50,000 146.70876 0.025430866 0.9651202
4 2.75 0.1 70,000 183.03188 0.025414007 0.92323864
5 2.75 0.12 10,000 71.10724 0.03624366 1.1564618
6 2.75 0.12 15,000 82.24923 0.034679912 1.1184247
7 2.75 0.12 50,000 155.22401 0.028402777 0.9830122
8 2.75 0.12 70,000 189.7021 0.028389916 0.93364227
9 2.75 0.27 10,000 101.19361 0.048271976 1.5135043
10 2.75 0.27 15,000 111.37276 0.046978466 1.3949823
11 2.75 0.27 50,000 180.69826 0.040935393 1.0376029
12 2.75 0.27 70,000 210.35638 0.040666554 0.9524145
13 2.75 0.3 10,000 101.36578 0.04800595 1.5002298
14 2.75 0.3 15,000 110.75813 0.046733737 1.380851
15 2.75 0.3 50,000 179.58052 0.040895592 1.0287775
16 2.75 0.3 70,000 210.03546 0.0405635 0.9411752

Table 10. Predicted result of Nu, f and η with the generated data at a constant spring ratio of 3.0.

Sl. No Spring Ratios Depth Ratio Nusselt Number Reynolds Number Friction Factor Efficiency

1 3 0.1 10,000 64.024864 0.03240527 1.0953414
2 3 0.1 15,000 74.69814 0.030972851 1.0688862
3 3 0.1 50,000 146.40587 0.025158633 0.96376675
4 3 0.1 70,000 182.36119 0.025060937 0.9221999
5 3 0.12 10,000 70.68053 0.035722174 1.1523054
6 3 0.12 15,000 81.739815 0.034201264 1.1152515
7 3 0.12 50,000 154.66966 0.02805507 0.9813919
8 3 0.12 70,000 188.9134 0.02796031 0.93236125
9 3 0.27 10,000 99.77054 0.0477052 1.4983823
10 3 0.27 15,000 109.91505 0.046400424 1.3836051
11 3 0.27 50,000 179.01501 0.04038874 1.0341384
12 3 0.27 70,000 208.94516 0.04003634 0.9498908
13 3 0.3 10,000 99.937706 0.047467355 1.48402
14 3 0.3 15,000 109.26468 0.046184637 1.3687065
15 3 0.3 50,000 177.78868 0.040400542 1.0253074
16 3 0.3 70,000 208.54733 0.03999533 0.93863714
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5. Conclusions

The experiment was conducted to investigate the thermal performance of a circular
channel with corrugated spring tape inserts. For this study, the following conclusions were
drawn:

1. An enhancement in Nu was recorded with an increase of Re for all the cases.
2. The heat transfer was found to rise with an increased depth ratio. Likewise, the

average Nu declined with a rise in the spring ratio.
3. The present geometrical configuration significantly better than the simple spring

tape (60% to 75% increase in heat duty at constant pumping power and 20% to 31%
reduction in pumping power at constant heat duty, without corrugation).

4. An ANN model was used for the regression analysis to predict the thermal energy
transport coefficient, pressure penalty and thermohydraulic efficiency.

5. The models were evaluated to have an accuracy of 97.00% on unknown test data
and the proposed model was able to reasonably forecast the Nu, f and η. The results
obtained from the analysis can be conveniently used to design highly efficient tube
type heat exchangers.

6. From the above results, it can be concluded that the use of corrugated spring tape is
an effective technique to enhance the thermal energy transport coefficient.

7. These models will help the investigators working in heat transfer enhancement-based
experiments to understand and predict the output.
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Nomenclature

A tube inner wall surface area, m2

b breadth, m
cp heat capacity, J/kgK
D inner diameter of test tube, m
f Darcy friction factor
hc convective heat transfer coefficient, W/m2K
h depth ratio
k fluid thermal conductivity, W/mK
L tube length, m
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m mass flow rate, kg/s
Nu Nusselt number
∆p pressure drop, N/m2

Pr Prandtl number
Rw Wall thermal resistance, K/W
qw Wall heat flux
Re Reynolds number
T temperature, K
t Spring ratios
δ tape thickness, m
V bulk velocity for plain tube, m/s; voltage V

Greek Symbols
ρ fluid density, kg/m3

Subscripts
b bulk
i inlet
o outlet
ow outer wall
w inner wall
0 plain tube (turbulator free)
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