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Abstract: The Coronavirus Disease 2019 (COVID-19) pandemic poses a serious threat to global health
system and economy. It was first reported in Wuhan, China, and later appeared in Central Asia,
Europe, North America, and South America. The spatial COVID-19 distribution pattern highly
resembles the global population distribution and international travel routes. We select 48 cities in
16 countries across 4 continents having infection counts higher than 10,000 (by 25 April 2020) as
the COVID-19 epicenters. At the initial stage, daily COVID-19 counts co-varies strongly with local
temperature and humidity, which are clustered within 0–10 ◦C and 70–95%, respectively. Later,
it spreads in colder (−15 ◦C) and warmer (25 ◦C) countries, due to faster adaptability in diverse
environmental conditions. We introduce a combined temperature-humidity profile, which is essential
for prediction of COVID-19 cases based on environmental conditions. The COVID-19 epicenters
are collocated on global CO2 emission hotspots and its distribution maximizes at 7.49 ◦C, which
is 1.35 ◦C/2.44 ◦C higher than current (2020)/historical (1961–1990) mean. Approximately 75%
of the COVID-19 cases are clustered at severe-extreme end of historical temperature distribution
spectrum, which establish its tighter and possible association with extreme climate change. A strong
mitigation measure is essential to abate the GHG emissions, which may reduce the probability of
such pandemics in the future.

Keywords: COVID-19; global; population density; temperature & humidity; climate change and
extremes

1. Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic poses a serious threat to the human
civilization and has triggered shockwaves to the global economy and healthcare system [1].
The COVID-19 was first reported in Wuhan, China, during December 2019 [2–5] and later
spread to the other provinces and different countries across the globe [6]. According to a
World Health Organization (WHO) report, the global risk assessment level for COVID-19 is
still very high. The confirmed number of COVID-19 cases crosses 90 million worldwide and
death toll exceeds 2 million in 219 countries [6].

It was found that for the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-
CoV-2) transmission, respiratory droplets and international travel routes are the dominant
transmission modes causing the COVID-19 [7–12]. Usually, coronaviruses, like SARS-Cov-2
virus (100 nm diameters), require liquid nuclei to travel in the atmosphere or bond with
the particulate matters (PM) e.g., PM2.5 and PM10, which acts as carrier for SARS-Cov-2 in
the air [13,14]. It was reported that the aerosols with carrier particle size ≤ 5 µm diameter
are appropriate for the airborne transmission of SARS-Cov-2 (Modes of transmission of
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virus, WHO Report). Weber and Stilianakis (2008) [15] and Pyankova et al. (2018) [16]
reported that the existence and transmission of SARS-CoV virus and Middle East Respi-
ratory Syndrome-Coronavirus (MERS-CoV-2012) in the atmosphere depends strongly on
environmental factors e.g., temperature, humidity, solar intensity, etc. It was observed that
the MERS-CoV virus is effective and survives at temperature around 25 ◦C and relative
humidity higher than 79%. It remains infectious for 60 min after aerosolization [16]. More-
over, dry viruses can remain active on smooth surfaces for ~5 days and at temperatures
and relative humidity within 22–25 ◦C and 40–50%, respectively [17]. There are several
studies showing that meteorological factors alone may not explain most of the variability
of the COVID-19 outbreak (Mecenas et al., 2020 and references therein) [18], however, they
might facilitate the virus transmission. Public isolation policies, herd immunity, migration
patterns, containment measures, population density, and cultural aspects directly influence
how the spread of this disease occurs. According to Oliveiros et al. (2020) [19], temperature
and humidity contribute to a maximum of 18% of the variation, the remaining 82% being
related to other factors. Sasikumar et al. (2020) [20] selected 20 densely populated cities of
India as COVID-19 hotspots and reported a strong covariability with local temperature at
the initial phase of the outbreak. They showed that local temperature accounts approxi-
mately 65–85% of the explained variance, i.e., the spread of COVID-19 depends strongly
on local temperature rise prior to the community transmission phase.

The impact of climate change on epidemiology of zoonotic disease [21] and their
transmission from animal species to human [22,23] are well reported. Global warming
induced extreme weather events have a strong negative impact on the biodiversity and
seasonality of different vector borne diseases [24]. For example, the West Nile fever and
Lyme disease are the cause of climate change induced zoonosis [21]. In general, bats are the
natural reservoir or the potential source for the SARS-CoV [25]. In recent decades, the Earth
has experienced an increase in greenhouse gas emissions due to unprecedented burning of
fossil fuel, which causes the global mean temperature to increase at a rate of 0.2 ◦C/decade
and predicted to reach 4 ◦C by the end of 21st century [26]. Subsequently, it increases the
frequency and intensity of heat waves and heat stress, which may disrupt the metabolism,
increase the oxidative stress, and suppress the immune system, causing infections and
release of the viruses to the environment [27] (more in Supplementary Information 1).

In the current manuscript, we investigate the role of population density, interna-
tional air travel, pollution, temperature and humidity underlying the rapid spread and
transmission of the SARS-CoV-2 virus, globally at its initial phase. Here, we define the
severity of COVID-19 from its cumulative counts over the epicenters. Figure 1 represents
the distribution of COVID-19 cases globally. The regions with higher cumulative counts
are extremely severe, while with less cumulative counts are less severe. Furthermore, we
establish a tighter relationship between emissions induced extreme climate change and the
COVID-19 pandemic. In addition, we ascertain that the differences in health systems and
governmental strategies may influence spread and magnitude of the pandemic. However,
the actions taken so far are “slow and insufficient” with “scrambling to implement appro-
priate measures to delay spread of the virus” [28]. We also analyze the spatial pattern of
the COVID-19 infected territories and gradual emergence of the epicenters across the globe.
The research results are novel and of utmost importance to understand and contain the
spread of the SARS-Cov-2 virus in the future.
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Figure 1. Global distribution of the COVID-19 Pandemic (updated 25 April 2020). The color code indicates the severity
of the event. The epicenters (infection count > 10,000) are marked with bigger dots. The higher the number of COVID-19
counts, the higher the severity is.

2. Population Density

Respiratory droplets and contact routes are the fastest modes of COVID-19 transmis-
sion across the globe [12]. In addition, population density plays a significant role in its
transmission. At the beginning of the outbreak, the epicenters or the COVID-19 hotspots
are clustered in the northern hemisphere (Figure 1, Table 1), centered in Wuhan (China),
Singapore and Iran in Asia, Turkey, United Kingdom (UK), Italy, Spain, Portugal, France,
Belgium, Netherlands, Germany in Europe, Canada, and the United States of America
(USA) in North America, Russia, and Sao Paulo (Brazil) in South America. The hotspots
or the epicenters are selected based on the number of COVID-19 cases exceeds 10,000
(extremely affected) by 25 April 2020. Based on the above criteria, we have selected 48 cities
in 16 countries across 4 continents (methods).

Due to more landmass, approximately 88% of the global population resides in northern
hemisphere, particularly beyond 23◦ N. The population density (Supplementary Figure
S1a) is highest in East and South Asian countries (China, India, Japan, Korea, and Thailand
etc., 250–1000+ i.e., severe to extremely dense), Central Asia (25–250 i.e., highly dense),
Europe (25–250+ i.e., high to severely dense), western part of Russia (5–250 i.e., moderate to
highly dense), eastern coast of USA (5–250 i.e., moderate to highly dense), central-southern
Africa (25–250+ i.e., high to severely), and coastal Southern America (5–25 i.e., moderately
dense) (SEDAC, 2020) [29]. As a consequence, the COVID-19 epicenters are collocated
on the regions of higher population density and its global distribution pattern resembles
clearly with the population density distribution across the globe, except in the African
continent (more in Supplementary Information 2). Therefore, the higher the population
density, the higher the proximity between people, and the higher the risk of COVID-19
infection is.
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Table 1. List of COVID-19 Epicenters selected for the study.

Sr. No. Continent Country City/States Latitude &
Longitude

Distance from
Waterbody

(km)

Cumulative
Counts

1

North America
United States
of America

New York 40.71 N, 74 W 2.4 287,898

2 New Jersey 39.83 N, 74.87 W 68.5 105,198

3 Michigan 44.18 N, 84.5 W 25 38,789

4 Massachusetts 42.40 N, 71.38 W 5 57,537

5 Pennsylvania 41.2 N, 77.19 W 344 41,153

6 California 36.77 N, 119.4 W 200 42,771

7 Louisiana 30.39 N, 92.32 W 120 95,058

8 Illinois 39.83 N, 89.64 W 10 41,777

9 Florida 27.66 N, 81.51 W 75 30,839

10 Texas 31.16N, 99.68 W 500 24,287

11 Georgia 33.24 N, 83.44 W 200 23,222

12 Connecticut 41.51 N, 72.66 W 50 24,583

13 Washington 47.75 N, 120.74 W 250 13,319

14 Maryland 38.95 N, 76.70 W 100 17,766

15 Indiana 39.91 N, 86.28 W 200 14,399

16 Colorado 38.99 N, 105.54 W 1000 12,968

17 Canada Quebec 53.21 N, 72.45 W 300 46,371

18

Europe

Italy

Lombardy 45.46 N, 9.18 E 200

195,351
19 Emilia-Romagna 44.49 N, 11.32 E 100

20 Piedmont 45 N, 7.68 E 100

21 Veneto 45.54 N, 11.55 E 25

22

Germany

Bavaria 48.13 N, 11.57 E 250

156,51323 North
Rhine-Westphalia 50.73 N, 7.09 E 150

24 Baden-Wurttemberg 48.75 N, 8.24 E 300

25

Spain

Catalonia 41.35 N, 1.49 E 75

205,905

26 Madrid 40.25 N, 3.42 W 250

27 Castile-La Mancha 39.85 N, 4.02 W 200

28 Castila Leon 41.65 N, 4.72 W 150

29 Andalusia 37.78 N, 3.78 W 100

30 Valencia 39.46 N, 0.36 E 5

31 Galicia 42.46 N, 7.24 E 75

32 Basque Country 43.26 N, 2.92 W 25

34
France

Ile-de-France 48.84 N, 2.63 E 125
161,647

35 Alsace-Champagne-
Ardenne-Lorraine 48.79 N, 4.47 E 300

36 UK England 51.30 N, 0.7 W 100 155,453

37
Netherlands

North Brabant 51.57 N, 4.76 E 50
37,384

38 Amsterdam 52.35 N, 5.00 W 5
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Table 1. Cont.

Sr. No. Continent Country City/States Latitude &
Longitude

Distance from
Waterbody

(km)

Cumulative
Counts

39 Belgium Hasselt 50.92 N, 5.33 E 20 45,325

40 Portugal Porto 41.14 N, 8.61 W 3 23,392

41

Turkey

Istanbul 41.01 N, 28.97 E 2

107,77342 Izmir 38.41 N, 27.12 E 1

43 Trabzon 41.00 N, 39.71 E 1

44 Russia Moscow City 46.73 N, 117 W 915 74,588

45 South America Brazil Sao Paulo 23.55 S, 46.63 W 50 290,200

46

Asia

China Wuhan 30.58 N, 114.26 E 832 83,909

47 Singapore Singapore 1.22 N, 103.48 E 10 29,020

48 Iran Tehran 35.69 N, 51.42 E 75 89,328

3. International Air Transport Traffic

It is well known that the wide scale human migration and international travel can
transform a localized outbreak into a widespread pandemic [30]. The COVID-19 pandemic
poses an extreme threat to the travelling public because intercontinental travel is one of the
fastest modes of transmission of the novel pathogens [31]. Therefore, airports and interna-
tional air transport routes are vulnerable to COVID-19 virus transmissions. Supplementary
Figure S1b shows the worldwide distribution of airports [32] and air transport traffic statis-
tics [33]. The big clusters of airports are centered over Europe stretching southeastward to
Central Asia, South Asia, East Asia, and Southeast Asia. In North America, the airports are
clustered mainly in the eastern part of USA, California in the west coast, eastern Canada
(Quebec, Ontario), Mexico, and the Caribbean islands. In South America, the airports are
clustered in Venezuela, Colombia, Ecuador, and Peru in the west coast and Brazil in the east
coast. Moreover, the international air traffic accounts approximately 55.7% in Europe, 44%
in Asia, and 28.9% in North America, whereas it is only 7.4% in South America, 5.8% in
Africa, and 5% in Australia. Like population density, the worldwide distribution of airports
correlates strongly with the COVID-19 pandemic distribution pattern. Despite higher
population density, the African continent has experienced a lesser number of SARS-CoV-2
cases, which is possibly due to the lesser number of airports and limited international air
traffic movements. Therefore, the higher the density of airports and international travels,
the higher the risk of SARS-CoV-2 virus transmission. However, it is worthy to mention
that many of the underdeveloped countries have deficiency in the health care system and
may have not done enough testing to detect the actual spread of this virus (Bukhari et al.,
2020) [34].

4. Pollution

The epidemiology of infectious diseases has a close association with the atmospheric
pollutants like ozone, SO2, NO2, and Particulate Matter (PM). Due to higher ozone and
PM levels, respiratory infections affect the immune system and have a strong association
with influenza and pneumonia, respectively [35,36]. It is not only the impact of pollution
on the human immune system; usually the viruses interact with the pollutants, and remain
airborne for longer time, which make their way to the lungs. Moreover, in air, coronaviruses
may infect after 60 min of aerosolization [16] (more in Supplementary Information 3).

A statistical relationship between the concentrations of PM, CO, NO2, ozone, and
COVID-19 was demonstrated in 120 cities in China [37]. Fattorini et al. [38] demonstrated
using the air-quality data of 71 Italian provinces that air pollution correlates with COVID-19
cases [38]. Pansini et al. [39] investigated this worldwide and demonstrated that infection
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spreading was correlated with several annual satellite and ground indexes of air quality
in China, the USA, Italy, Iran, France, Spain, Germany, and the UK. They found a higher
incidence of SARS-CoV-2 in areas with high PM and NO2 concentrations. The study by
Pozer et al. [40] demonstrated that particulate air pollution contributed 15% to COVID-19
mortality worldwide, 27% in East Asia, 19% in Europe, and 17% in North America and
that globally, 50–60% of the attributable, anthropogenic fraction is related to fossil fuel use,
up to 70–80% in Europe, West Asia, and North America.

In the decadal mean (1998–2012) PM2.5 data from MODIS, MISR and SeaWiFS Aerosol
Optical Depth (AOD), the fine PM concentration is extremely high (>75 micrograms/cubic
meter) over East Asia (China) and South Asia (India), whereas it is severe (20–75 micro-
grams/cubic meter) over Central Asia, the Arabian Peninsula, and the northern part of the
African continent (Supplementary Figure S2). The concentration is moderate (12–20 micro-
grams/cubic meter) over Europe, the western part of Russia, and the eastern part of USA,
and low (<12 micrograms/cubic meter) in rest of USA and Canada, South America, South-
ern Africa, and Australia [41] (Supplementary Figure S2). The COVID-19 epicenters are
not exactly collocated with PM2.5 concentration hotspots, except China, Turkey (Strongly),
Europe, Moscow (Moderately), and USA (weakly). These conflicting results in different
cities, countries, and continents are due to the seasonal variation of various pollutants at
different regions [42].

5. Ambient Temperature and Relative Humidity

In the environment, an infectious virus remains active on the contaminated surfaces; the
duration of its persistence and transmission is affected by the external conditions, e.g., tem-
perature and relative humidity [8]. For example, in tropical and temperate climates, humidity
and temperature are the key indicators for predicting the influenza epidemics [43–45]. In the
subtropical countries, the SARS Coronavirus remains active on smooth surfaces for ~5 days
and facilitate community transmission at temperature and relative humidity between
22–25 ◦C and 40–50%, respectively [8]. In the present study, we investigate whether the
climate variables, e.g., ambient temperature and relative humidity could be the factors in
the survival and transmission of COVID-19.

For this study, we select 48 cities in 16 countries spread across 4 continents as epicenters
(Table 1, Data and Methods). They include China, Iran, Singapore in Asia, Turkey, UK, Italy,
Spain, Netherlands, Belgium, France, Portugal in Europe, Moscow in Russia, USA, and
Canada in North America and Brazil in South America. Initially, the COVID-19 community
transmission exhibits a consistent east to west pattern from Wuhan in China, Iran, Turkey,
Europe, New York in USA, particularly above 25◦ N latitude (Figure 1). However, at
the later stage (April–May) Brazil (Sao Paulo), Peru (Lima), Ecuador in South America
and Singapore and India (Mumbai, Delhi) [20] in Asia also emerged as new COVID-19
hotspots [46,47].

The scatter diagram (gray dots) of NCEP Reanalysis (Data and Methods) T (2 m) and
RH (925 hPa) and their mean values (black dots) are shown in Figure 2a; the top 10 vulner-
able countries alongside USA and China are clustered between 0 ◦C and 10 ◦C (Figure 2b,
histogram plot). A Gaussian fit on the histogram shows that Brazil and Singapore falls
in the warmer side, whereas, Canada and Russia in the colder side of the spectrum. RH,
on the other hand is clustered between 70–95% (Figure 2c, histogram plot). The scatter
plot of daily COVID-19 counts as a function T and RH are shown in the right hand side of
Figure 2b,c, respectively. Although, in the initial phase majority of the COVID-19 epicen-
ters are clustered between 0–10 ◦C and above 25◦ N latitudes, there are emerging hotspots
in the Southern Hemisphere (Brazil) and in the tropical region (Singapore) as well.
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Gaussian fit during the current period (1 January–25 April 2020, red bar) and historical period (1 January–25 April but for
the period of 1961–1990, cyan bar) as a function of T, (c) (left panel) percentage of occurrences of RH (925 hPa) and Gaussian
fit during the current period (1 January–25 April 2020, blue bar) as a function of RH.

In general, seasonal respiratory diseases have a closer association with ambient tem-
perature and humidity. We further analyze the changes in daily COVID-19 count as a
function of T and RH for 16 epicenters in the Supplementary Figures S3–S8. During the
entire evolution period (initial growth, faster growth, and decay), in most cases, daily
COVID-19 counts vary quasi-linearly with T and RH, but in the opposite direction. In
the growing phase, the near-linear covariability between T and daily COVID-19 counts
is very prominent between 0 ◦C and 10 ◦C in USA, UK, Spain, Italy, France, Netherlands,
China, Belgium, Portugal, and Turkey. The correlation coefficient is higher than 0.8 and
in some cases, it exceeds 0.95, which can accounts at least 65–95% of the explained vari-
ance. It indicates that the spread and survival of SARS-CoV-2 in the environment depends
on the complex interplay between T and RH. In the warmer (Singapore and Brazil) and
colder (Russia and Canada) countries, T co-varies with the COVID-19 counts but in the
higher (20 to 26 ◦C) and lower (−15 ◦C to 0 ◦C) temperature ranges, respectively. The
RH, though, behaves similarly but in a less systematic fashion compare to T and remains
above 70% throughout the growing phase. Most of the epicenters have experienced humid
environmental conditions, which is due to the proximity of the epicenters (distance from
the capital of the states/cities) to the larger water bodies like sea, ocean or lakes. It indicates
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that relative humidity in most of the epicenters is high, which may facilitate a favorable
environment for the transmission of SARS-CoV-2. However, the topography of the regions
needs to be considered as well, e.g., in California, which expands along the ocean, towns
inside the land sometimes experience huge difference in relative humidity than the coastal
towns at a short distance. In the decay phase, the daily count decreases as T increases
beyond 10 ◦C and RH decreases below 70%, particularly in UK, Germany, Spain, Italy,
France, Netherlands, China, Iran, Belgium, and Portugal. A stronger covariability between
daily COVID-19 counts and T/RH in diverse environmental conditions (particularly tem-
perature) indicates that SARS-Cov-2 possesses characteristics which are beyond seasonal
in nature.

By screening 517 articles and reviewing 17 studies, Mecenas et al. (2020) [18] observed
homogeneity in the findings regarding the effect of temperature and humidity on trans-
missibility of COVID-19. They concluded that “a warmer climate is less likely to spread
the virus”, “wetter climate inhibits the virus spread” and “cold and dry conditions were
potentiating factors on the spread of the virus”. In the current study, we observe that
the epicenters are mostly clustered at temperatures within 0 ◦C–10 ◦C, however, at the
later stage, COVID-19 counts are higher in the warmer (South Africa, Brazil, and India;
Sasikumar et al., 2020 [20]) and colder (Russia, Canada) countries, as well. In addition,
most of the epicenters are close to the large water bodies i.e., the regions with higher
relative humidity. These results are partly contradictory to the previous findings, which is
probably due to the higher capability of SARS-Cov-2 to adapt in diverse environmental
conditions. Secondly, we observe that the increase in COVID-19 counts depend more on the
environmental conditions at the initial stage of the outbreaks i.e., prior to the community
transmission phase.

Due to the closer association between COVID-19 counts and environmental conditions,
we introduce a combined profile of temperature and humidity by employing a best fit
polynomial curve (order 5) on the mean (in each of the epicenters) T and RH distribution
(Figure 2a), which is statistically significant for predicting the COVID-19 cases and model-
ing cities or countries based on the environmental factors. In addition, any prior knowledge
of external environmental conditions is significant to assess the degree of vulnerability of
specific countries in different time periods.

6. CO2 Emission, Global Warming and Climate Change

According to the Paris Agreement (IPCC, 2015), it is widely understood that limiting
the surface air temperature rise below 2.0 ◦C and more specifically within 1.5 ◦C could
significantly reduce the threat and impacts of climate change [48]. Under the present
scenario (business-as-usual/RCP8.5), the current emissions are slightly higher than RCP8.5,
and therefore significant reduction in emissions are needed to keep 2 ◦C as an achievable
goal in the near term [49]. It is known that global warming induced heat stress has a
significant impact on the release and transmission of the zoonotic diseases. Wittmann
et al. (2001) [50] reported that a rise in temperature by 2 ◦C could increase the release of
the bluetongue virus and spread of Culicoides imicola. Moreover, it was reported that
changes in temperature extremes (14–18 ◦C at the lower end and 35–40 ◦C at the upper
end) facilitate a faster transmission of infectious diseases [18].

It is evident from the Fossil Fuel Data Assimilation System (FFDAS) V2 (Version 2)
data that global CO2 emissions (Kg C m2 yr−1) have increased rapidly between 1997 and
2015 over East Asia (China, Japan, South Korea), South Asia (India), with the eastern
part of United States and Europe accounting the most to this rise (Figure 3a), whereas,
CO2 emissions are much less over the African Continent. The global zoonotic disease
outbreak hotspots (heat map), i.e., high risk regions are centered in Europe, USA, Asia
and Latin America. The predicted occurrences of the infected diseases are centered in the
tropical regions, North America, Asia, Central Africa, and South America (Allen et al.,
2017) [51], which collocate on the CO2 emission hotspots. In our present analysis, emissions
of the particulate matters can block the natural immune system of the hosts and make
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them vulnerable to the infections. Interestingly, the location of the COVID-19 epicenters
(>10,000 counts) coincide with the emission hotspots, e.g., Wuhan in China, Singapore, Iran,
Turkey, Europe, Moscow in Russia, New York and New Jersey in the eastern part of USA,
Washington and California in the western part of USA, Quebec and Ontario, in Canada,
Sao Paulo in Brazil, South Africa and Egypt in Africa, and so on. The emission levels
are higher in the severe, high, and medium COVID-19 affected centers, which suggest a
possible linkage between fossil fuel emissions and COVID-19 outbreaks.
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On one hand, the regions with higher CO2 emissions are vulnerable to the COVID-19
infections, while on the other hand, the survival and transmission of the SARS-CoV-2
virus depends strongly on ambient temperature conditions. Therefore, it is essential to
investigate the empirical relationship between climate change due to fossil fuel emissions
and COVID-19 pandemic. The histogram is constructed with T (2 m) data over 16 epicenters
for the current period (1 January–25 April 2020) and the historical time period (1 January–25
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April but for the period 1961–1990) in Figure 2b. Gaussian distribution curves are fitted on
the histograms and the mean of the distributions are located at 6.40 ◦C and 5.05 ◦C for the
current and historical period, respectively. The current distribution mean has shifted by
1.35 ◦C from its historical mean value towards the hotter extreme.

To evaluate the shift in current mean and the corresponding extremes, in Figure 3b, we
classify the hotter extreme into moderate hot (mean-75th percentile), severe hot (75th–90th
percentile) and extreme hot (>90th percentile) events. The 75th and 90th percentile of
the distribution and centered at 6.86 ◦C and 13.09 ◦C, respectively. The right-hand side
of Figure 3b displays total COVID-19 counts as a function of temperature. The fitted
Gaussian curve on COVID-19 count peaks at a temperature of 7.49 ◦C, which is 2.44 ◦C
and 1.35 ◦C higher than the historical mean and current mean value, respectively. The
mean value (50th percentile) of COVID-19 count distribution lies in the severe domain of
the historical (1 January–25 April for the period of 1961–1990) temperature distribution
curve. Approximately 75% of the COVID-19 cases are clustered at the severe-extreme
domain of the historical T (2 m) spectrum. The results indicate a possible association of
COVID-19 pandemic with extreme hot climate. A combined schematic diagram linking the
socio-environmental and climatic conditions are shown in Figure 4.
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Figure 4. Schematic Diagram. The background map represents the Population Density distribution over the globe. The
socio-environmental (CO2 Emissions, International travels, Temperature & Relative humidity) and Climatic conditions
(Global warming and Climate extremes) of the epicenters are shown above. The figures in red indicate cumulative COVID-19
counts. The bigger circle indicate COVID-19 counts higher than 500,000.

The viruses have the capability to adapt in diverse environmental conditions, par-
ticularly at different temperature and humidity conditions. They can block the natural
immune system of the hosts and make them vulnerable to the infections [52] (more in
Supplementary Information 1). Burning fossil fuel significantly increases the CO2 emission,
which causes the regional and global surface temperature to rise beyond 2.0 ◦C. A hotter
planet may induce heat stress on the zoonotic species and increases the adaptability of the
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viruses in hotter climate and diverse environmental conditions. It may change the rela-
tionship among the host species, infectious agents and their interactions with the human
beings’ immune systems. From the spatial distribution of COVID-19 transmission pattern,
it is evident that SARS-CoV-2 can adapt in the diverse (warmer/colder) environmental
conditions (Figure 2). In the beginning, COVID-19 infections are clustered to the regions
which are beyond 25◦ N latitude and atmospheric temperature ranges within 0–10 ◦C. In
the later stage, the transmission occurs in the warmer countries like Brazil and Peru in
South America and Singapore in the tropical region. It is interesting to note that India,
being the closest neighbor to China, Japan, and South Korea, has an ambient temperature
which probably inhibits the COVID-19 to spread in the warmer environmental conditions.
The spread of SARS-CoV-2 in the tropical regions is probably due to the unique quality
of SARS-CoV-2 to adapt in diverse environmental conditions. The mean temperature
(7.49 ◦C) at which the SARS-CoV-2 is active over the epicenters is 1.35 ◦C higher than the
climatological mean value. Therefore, the COVID-19 pandemic can be understood as a
probable outcome of extreme climate change.

7. Summary and Conclusions

The ongoing COVID-19 outbreak has emerged as a global pandemic and the epicenters
(infections >10,000) are distributed in 48 cities (16 countries) across 4 continents. Apart
from higher population density and international travel routes, at the initial stage of the
outbreak, i.e., prior to the community transmission phase, the survival and growth of
SARS-CoV-2 also has tighter association with ambient temperature and relative humidity.
The activity of SARS-CoV-2 is higher at temperature ranges between 0 ◦C and 10 ◦C and
humidity above 70%, which are due to proximity of the epicenters closer to water bodies,
i.e., regions with higher relative humidity. However, SARS-CoV-2 has the capability to
adapt in diverse environmental conditions e.g., colder (−15 ◦C) countries like Russia
and Canada and warmer (25 ◦C) countries like Singapore and Brazil. The combined
temperature and humidity spectrum is highly significant for predicting the COVID-19
cases and modeling cities based on the environmental conditions.

It is known that an increasing CO2 emission due to unprecedented fossil fuel burning
is the root cause of regional and global warming. In the recent decades, the global mean
temperature distribution has shifted towards the hotter extremes, which increases the
occurrences of extreme events, globally. An extreme hotter climate may induce excessive
heat stress on the zoonotic species, providing a suitable environment for the viruses to
adapt to the newer climate as well. It could alter the relationship among the infectious
agents, host species, and their interactions with the humans’ immune systems. In addi-
tion, coronaviruses like SARS-CoV-2 are highly sensitive to global warming and climate
change, which is evident from the fact that epicenters are collocated on global CO2 emission
hotspots. The daily COVID-19 count peaks at 7.49 ◦C which is 1.35 ◦C and 2.44 ◦C higher
than the current (1 January–25 April 2020) and historical (1 January–25 April for the period
1961–1990) mean value, respectively. Approximately 75% of the COVID-19 cases are clus-
tered in severe-extreme domain of historical temperature distribution spectrum. COVID-19
poses serious health risk to the global community, which is possibly an outcome of anthro-
pogenic climate change due to greenhouse gas emission. Despite a stronger association
of COVID-19 epicenters with local CO2 emission hotspots, a quantitative assessment is
necessary with many more cases and for longer timescale. Therefore, strenuous mitigation
measures to abate GHG emission and limiting warming further beyond is an urgent need
to avoid such pandemics in the future.

8. Data

The daily and cumulative COVID-19 counts data available from https://covid19.
who.int/ and https://coronavirus.jhu.edu/ (accessed on 25 April 2020). For daily air
temperature (T) at 2 m and Relative Humidity (925 hPa) data, we used the NCEP Reanalysis
product (https://psl.noaa.gov/data/timeseries/daily/ (accessed on 25 April 2020)) over

https://covid19.who.int/
https://covid19.who.int/
https://coronavirus.jhu.edu/
https://psl.noaa.gov/data/timeseries/daily/
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the selected locations, spanning from 1 January to 11 April 2020 (peak date for worldwide
COVID-19 counts). However, for analysis, we have chosen the date when the first confirm
cased was reported in the individual cities. 2-m Temperature (2 m) is temperature at the
height of 2 m above earth’s surface. Relative humidity (RH) at 925 hPa is the percentage of
the maximum amount of water vapor that the atmosphere can hold at a given temperature
(saturation). For daily climatology, we used the 30 years of NCEP data from 1961 to 1990.

The Global Population Density (2020) was available from Gridded Population of the
World, Version 3 (GPWv3): Population Count Grid. Palisades, NY: NASA Socioeconomic Data
and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4639MPP (accessed on
1 May 2020). The Global annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol
Optical Depth (AOD) were available from Global Annual PM2.5 Grids from MODIS, MISR and
SeaWiFS Aerosol Optical Depth (AOD), 1998–2012. Palisades, NY: NASA Socioeconomic Data
and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4028PFS (accessed on 1
May 2020). Fossil Fuel Data Assimilation System (FFDAS) version 2.0 data is available from
the Purdue University. It can be downloaded from https://ffdas.rc.nau.edu/Data.html
(accessed on 28 April 2020).

9. Materials and Methods

For our study, we select the COVID-19 pandemic epicenters or cities exceeding the
infection counts of 10,000 by April 25th, 2020. The 48 cities in 16 countries spread across 4
continents have satisfied the above criteria are tabulated in Table 1. They include China,
Iran, Singapore in Asia, Turkey, UK, Italy, Spain, Netherlands, Belgium, France, Portugal
in Europe, Moscow in Russia, USA, and Canada in North America and Brazil in South
America. We have selected the initial period of the outbreak, i.e., prior to the period when
almost none of the selected countries met the first peak of the disease transmission. It is the
period when the transmission depends more on the background environmental conditions.
Initially, the COVID-19 community transmission exhibits a consistent east to west pattern
from Wuhan in China, Iran, Turkey, Europe, New York in USA, particularly above 25◦ N
latitude (Figure 1). However, at the later stage (April–May) Brazil (Sao Paulo), Peru (Lima),
Ecuador in South America and Singapore, India (Mumbai, Delhi) in Asia also emerge as
new COVID-19 hotspots.

To evaluate the shift in current mean and the corresponding hot extremes, we classify
the hotter extreme into moderate hot (mean–66th percentile), severe hot (66–90th percentile),
extreme hot (90–95th percentile) and record breaking hot (>95th percentile) events. Then we
calculate the 66th, 90th and 95th percentile value of the historical (1961–1990) temperature
distribution and compare with current year (1 January–25 April 2020) distribution to
estimate the increase in extreme events. We plotted the COVID-19 count distribution over
48 epicenters as a function surface temperature and fitted the Gaussian curve on COVID-19
count distribution.

We applied a 5-day smoothing on each variable (Temperature and Relative Humidity)
to obtain the background environmental condition, considering the COVID-19 incubation
period of ~5 days.

Supplementary Materials: The following are available online at https://www.mdpi.com/2071-1
050/13/6/3029/s1, Figure S1: Global Population Density Grid, 2020 (upper panel), Worldwide
distribution of Airports and Air Transport Traffic Statistics (bottom panel). The population density
map is available from Socio-Economic Data and Applications Center (SEDAC), Worldwide Airport
distribution map from https://www.partow.net/miscellaneous/airportdatabase/ (accessed on 1
May 2020) and Air Transport Traffic Statistics data from International Air Transport Association, 2019;
Figure S2: Global annual PM2.5 data; Figure S3: USA, Canada and Russia. (Top Panel) Daily and
Cumulative COVID-19 Counts as a function of time, (Middle Panel) Daily temperature and Relative
Humidity as a function of time, (Bottom Panel) Daily COVID-19 Counts as function of temperature
and Relative humidity; Figure S4: Same as Figure S3 but for UK, Germany and Spain; Figure S5:
Same as Figure S3 but for Italy, France and Netherlands; Figure S6: Same as Figure S3 but for China,

http://dx.doi.org/10.7927/H4639MPP
http://dx.doi.org/10.7927/H4028PFS
https://ffdas.rc.nau.edu/Data.html
https://www.mdpi.com/2071-1050/13/6/3029/s1
https://www.mdpi.com/2071-1050/13/6/3029/s1
https://www.partow.net/miscellaneous/airportdatabase/
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Iran and Singapore; Figure S7: Same as Figure S3 but for Belgium, Portugal and Turkey; Figure S8:
Same as Figure S3 but for Brazil.
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