Techno-Environmental Analysis of the Use of Green Hydrogen for Cogeneration from the Gasification of Wood and Fuel Cell
Abstract
:1. Introduction
2. Methodology
2.1. Process Description
2.1.1. Syngas Production from Wood Gasification
- The system is isothermal and operates under steady-state conditions without transients.
- Pressure drops are overlooked. The formation of tars is neglected.
- The composition of the char is 100% carbon.
- The process is carried out under atmospheric pressure.
- Heat losses from the gasifier are ignored.
2.1.2. H2 Purification Using a PSA Unit
2.1.3. Power and Heat Generation through a TSOFC
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AC | Activated carbon |
BECC | Bioenergy with carbon capture and sequestration |
CBC | Coastal blue carbon |
CCS | carbon capture and storage |
CCUS | carbon capture use and storage |
DAC | Direct air capture |
ER | equivalence ratio |
GHG | greenhouse gas |
HHV | higher heating value |
IEA | International Energy Agency |
LHV | Lower heating value |
LPG | Liquid petroleum gas |
MA-GSR | membrane-assisted gas switching reforming |
NET | negative emissions technologies |
NGCC | Combined cycle power plant |
NG | Natural gas |
PEM | proton exchange membrane |
SMR | steam methane reforming |
SOFT | solid oxide fuel cells |
PSA | pressure swing adsorption |
PSOFC | planar SOFC |
S/B | steam to biomass |
TCRS | Terrestrial Carbon Removal and Sequestration |
TSA | temperature swing adsorption |
TSOFC | tubular solid oxide fuel cell |
VPSA | vacuum pressure swing adsorption |
Appendix A
Stream Name | Units | ASH | BIOMASS | ELEMENTS | GAS | GASIFOUT | S2 | S4 | STEAM |
---|---|---|---|---|---|---|---|---|---|
Temperature | K | 1100.1 | 298.2 | 298.2 | 1100.1 | 1100.2 | 298.2 | 1123.2 | 423.2 |
Pressure | atm | 1.04 | 1.00 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 |
Mass Flows | kg/hr | 2.8 | 132.0 | 132.0 | 189.5 | 192.3 | 132.0 | 189.5 | 60.3 |
Mole Fractions | |||||||||
H2 | 0.6379 | 0.4899 | 0.4899 | 0.6379 | 0.5240 | 0.0000 | |||
O2 | 0.2110 | 0.0000 | 0.0000 | 0.2110 | 0.0000 | 0.0000 | |||
N2 | 0.0006 | 0.0003 | 0.0003 | 0.0006 | 0.0003 | 0.0000 | |||
H2O | 0.1489 | 0.1213 | 0.1213 | 0.1489 | 0.1154 | 1.0000 | |||
CO | 0.0000 | 0.2405 | 0.2405 | 0.0000 | 0.2984 | 0.0000 | |||
CO2 | 0.0000 | 0.1071 | 0.1071 | 0.0000 | 0.0603 | 0.0000 | |||
CH4 | 0.0000 | 0.0399 | 0.0399 | 0.0000 | 0.0008 | 0.0000 | |||
H2S | 0.0000 | 0.0009 | 0.0009 | 0.0000 | 0.0008 | 0.0000 | |||
H3N | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||
S | 0.0016 | 0.0000 | 0.0000 | 0.0016 | 0.0000 | 0.0000 | |||
C | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||
CL2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||
HCL | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Stream Name | Units | ASH | BAMBOO | ELEMENTS | GAS | GASIFOUT | S2 | S4 | STEAM |
---|---|---|---|---|---|---|---|---|---|
Temperature | K | 1100.1 | 298.2 | 298.2 | 1100.1 | 1100.2 | 298.2 | 1123.2 | 423.2 |
Pressure | atm | 1.04 | 1.00 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 |
Mass Flows | kg/hr | 0.51 | 132.00 | 132.00 | 211.82 | 212.34 | 132.00 | 211.82 | 80.34 |
Mole Fractions | |||||||||
H2 | 0.6379 | 0.4909 | 0.4909 | 0.6379 | 0.5084 | 0.0000 | |||
O2 | 0.2110 | 0.0000 | 0.0000 | 0.2110 | 0.0000 | 0.0000 | |||
N2 | 0.0006 | 0.0003 | 0.0003 | 0.0006 | 0.0003 | 0.0000 | |||
H2O | 0.1489 | 0.1481 | 0.1481 | 0.1489 | 0.1503 | 1.0000 | |||
CO | 0.0000 | 0.2143 | 0.2143 | 0.0000 | 0.2673 | 0.0000 | |||
CO2 | 0.0000 | 0.1163 | 0.1163 | 0.0000 | 0.0725 | 0.0000 | |||
CH4 | 0.0000 | 0.0293 | 0.0293 | 0.0000 | 0.0005 | 0.0000 | |||
H2S | 0.0000 | 0.0008 | 0.0008 | 0.0000 | 0.0007 | 0.0000 | |||
H3N | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||
S | 0.0016 | 0.0000 | 0.0000 | 0.0016 | 0.0000 | 0.0000 | |||
C | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||
CL2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||
HCL | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Item | Unit | Inlet |
---|---|---|
Air mass flow | kg/s | 0.1133 |
Air pressure | bar | 2.3 |
Air temperature | °C | 320 |
Air enthalpy flow | J/s | 25,073.6 |
H2 mass flow | kg/s | 0.0029 |
H2 pressure | bar | 2 |
H2 temperature | °C | 105 |
H2 enthalpy flow | J/s | 138.215 |
Gas composition | ||
O2 | Mole fraction | 0.019 |
N2 | Mole fraction | 0.658 |
H2O | Mole fraction | 0.322 |
Flue gas flow rate | kg/s | 0.116 |
Flue gas pressure | Bar | 2 |
Flue gas temperature | °C | 355.54 |
Steam produced | kg/h | 45 |
Steam pressure | bar | 3 |
Temperature | °C | 300 |
Power pump | kW | 0.0084 |
References
- National Academies of Sciences, E. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda; National Academies Press: Washington, DC, USA, 2018. [Google Scholar]
- Meyer, L.; Brinkman, S.; van Kesteren, L.; Leprince-Ringuet, N.; van Boxmeer, F. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Synthesis Report: Geneva, Switzerland, 2014; p. 169. [Google Scholar]
- IEA. Energy Technology Perspectives 2020; IEA Webstore: London, UK, 2020. [Google Scholar]
- Stafford, W.; Lotter, A.; Brent, A.; von Maltitz, G. Biofuels Technology: A Look Forward; United Nations World Institute for Development Economics Research: Helsinki, Finland, 2017. [Google Scholar]
- Rios, M.; Kaltschmitt, M. Bioenergy potential in Mexico—Status and perspectives on a high spatial distribution. Biomass Convers. Biorefinery 2013, 3, 239–254. [Google Scholar] [CrossRef]
- Aldana, H.; Lozano, F.J.; Acevedo, J. Evaluating the potential for producing energy from agricultural residues in México using MILP optimization. Biomass Bioenergy 2014, 67, 372–389. [Google Scholar] [CrossRef]
- IRENA. Hydrogen from Renewable Power: Technology Outlook for the Energy Transition; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2018. [Google Scholar]
- IRENA. Hydrogen: A Renewable Energy Perspective; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- IRENA. Global Energy Transformation: A Roadmap to 2050, 2019th; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- CCC. Hydrogen in a Low-Carbon Economy; Committee on Climate Change: London, UK, 2018. [Google Scholar]
- Díaz-Herrera, P.R.; Ascanio, G.; Romero-Martínez, A.; Alcaraz-Calderón, A.M.; González-Díaz, A. Theoretical comparison between post-combustion carbon capture technology and the use of blue and green H2 in existing natural gas combined cycles as CO2 mitigation strategies: A study under the context of mexican clean energy regulation. Int. J. Hydrogen Energy 2021, 46, 2729–2754. [Google Scholar] [CrossRef]
- IEAGHG. Techno-Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant with CCS; IEAGHG Document Manager: Cheltenham, UK, 2017. [Google Scholar]
- GE. General Electric (GE): Power to Gas: Hydrogen For Power Generation; GE Document Number: GEA33861; GE: Boston, MA, USA, 2019. [Google Scholar]
- Programa Especial Para el Aprovechamiento de Energías Renovables. 2014. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5342501&fecha=28/04/2014 (accessed on 1 March 2021).
- Edenhofer, O. Bioenergy. In IPCC Special Report on Renewables Energy Sources and Climate Change Mitigation; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- SEMARNAT-INECC. Mexico’s Climate Change Mid-Century Strategy; Ministry of Environment and Natural Resources (SEMARNAT) and National Institute of Ecology and Climate Change (INECC): Veracruz, Mexico, 2016. [Google Scholar]
- Santin, M.; Traverso, A.; Magistri, L.; Massardo, A. Thermoeconomic analysis of SOFC-GT hybrid systems fed by liquid fuels. Energy 2010, 35, 1077–1083. [Google Scholar] [CrossRef]
- Larminie, J.; Dicks, A. Fuel Cell Systems Explained, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Jiang, L.; Gonzalez-Diaz, A.; Ling-Chin, J.; Roskilly, A.; Smallbone, A. Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption. Appl. Energy 2019, 245, 1–15. [Google Scholar] [CrossRef]
- Jiang, L.; Roskilly, A.; Wang, R. Performance exploration of temperature swing adsorption technology for carbon dioxide capture. Energy Convers. Manag. 2018, 165, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Ma, S.; Tong, L.; Xiao, J.; Bénard, P.; Chahine, R. Artificial neural network based optimization for hydrogen purification performance of pressure swing adsorption. Int. J. Hydrogen Energy 2019, 44, 5334–5344. [Google Scholar] [CrossRef]
- Liu, B.; Yu, X.; Shi, W.; Shen, Y.; Zhang, D.; Tang, Z. Two-stage VSA/PSA for capturing carbon dioxide (CO2) and producing hydrogen (H2) from steam-methane reforming gas. Int. J. Hydrogen Energy 2020, 45, 24870–24882. [Google Scholar] [CrossRef]
- Wassie, S.A.; Cloete, S.; Spallina, V.; Gallucci, F.; Amini, S.; Annaland, M.V.S. Techno-economic assessment of membrane-assisted gas switching reforming for pure H2 production with CO2 capture. Int. J. Greenh. Gas Control. 2018, 72, 163–174. [Google Scholar] [CrossRef]
- Murugan, S.; Horák, B. A review of micro combined heat and power systems for residential applications. Renew. Sustain. Energy Rev. 2016, 64, 144–162. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, C.; Ying, Z.; Wang, B. Experimental study on gasification performance of bamboo and PE from municipal solid waste in a bench-scale fixed bed reactor. Energy Convers. Manag. 2016, 117, 393–399. [Google Scholar] [CrossRef]
- Chiang, K.-Y.; Chen, Y.-S.; Tsai, W.-S.; Lu, C.-H.; Chien, K.-L. Effect of calcium based catalyst on production of synthesis gas in gasification of waste bamboo chopsticks. Int. J. Hydrogen Energy 2012, 37, 13737–13745. [Google Scholar] [CrossRef]
- Usack, J.; Van Doren, L.G.; Posmanik, R.; Tester, J.; Angenent, L. Harnessing anaerobic digestion for combined cooling, heat, and power on dairy farms: An environmental life cycle and techno-economic assessment of added cooling pathways. J. Dairy Sci. 2019, 102, 3630–3645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.W. Effect of different gasifying agents (steam, H2O2, oxygen, CO2, and air) on gasification parameters. Int. J. Hydrogen Energy 2020, 45, 31760–31774. [Google Scholar] [CrossRef]
- Brea, P.; Delgado, J.; Águeda, V.I.; Uguina, M.A. Comparison between MOF UTSA-16 and BPL activated carbon in hydrogen purification by PSA. Chem. Eng. J. 2019, 355, 279–289. [Google Scholar] [CrossRef]
- Tanim, T.; Bayless, D.J.; Trembly, J.P. Modeling of a 5 kWe tubular solid oxide fuel cell based system operating on desulfurized JP-8 fuel for auxiliary and mobile power applications. J. Power Sources 2013, 221, 387–396. [Google Scholar] [CrossRef]
- de Souza-Santos, M.L. Solid Fuels Combustion and Gasification; Taylor & Francis Group: Abingdon, UK, 2010. [Google Scholar]
- Song, T.W.; Sohn, J.L.; Kim, J.H.; Kim, T.S.; Ro, S.T.; Suzuki, K. Performance analysis of a tubular solid oxide fuel cell/micro gas turbine hybrid power system based on a quasi-two dimensional model. J. Power Sources 2005, 142, 30–42. [Google Scholar] [CrossRef]
- George, R.A. Status of tubular SOFC field unit demonstrations. J. Power Sources 2000, 86, 134–139. [Google Scholar] [CrossRef]
- Costamagna, P.; Magistri, L.; Massardo, A. Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine. J. Power Sources 2001, 96, 352–368. [Google Scholar] [CrossRef]
- Doherty, W.; Reynolds, A.; Kennedy, D. Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus. Energy 2010, 35, 4545–4555. [Google Scholar] [CrossRef] [Green Version]
- Nikoo, M.B.; Mahinpey, N. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass Bioenergy 2008, 32, 1245–1254. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Tomida, K.; Nishiura, M.; Hiwatashi, K.; Kishizawa, H. Development of Next-Generation Large-Scale SOFC toward Realization of a Hydrogen Society. Mitsubishi Heavy Ind. Tech. Rev. 2015, 52, 111. [Google Scholar]
- Gas Turbine World 2018, GTW Handbook; Pequot Publishing Inc.: Fairfield, CT, USA, 2018; Volume 30.
Ultimate Analysis (wt.%, Dry) | Wood Chip (Islam, 2020) [28] |
---|---|
Ash | 0.450 |
Carbon | 52.463 |
Hydrogen | 7.466 |
Nitrogen | 0.100 |
Sulfur | 0.299 |
Oxygen | 39.223 |
Proximate analysis (wt.%, dry) | |
Fixed carbon | 17.15 |
Volatile matter | 82.4 |
Ash | 0.45 |
Moisture | 13.48 |
Low heating value (LHV) (MJ/kg) | 19.54 |
ER | 0.25 |
Temperature (°C) | 827 |
Pyrolysis | endothermic stage | Biomass ↔ H2 + CO + CO2 + CH4 + H2O(g) + Tar + Char |
Oxidation | exothermic stage | C + O2 → CO2 Char combustion C + ½O2 → CO Partial oxidation H2 + ½O2 → H2O Hydrogen combustion |
Reduction | endothermic stage | C + CO2 ↔ 2CO Boudouard reaction C + H2O ↔ CO + H2 Reforming of the Char CO + H2O ↔ CO2 + H2 Water shift reaction C + 2H2 ↔ CH4 Methanation |
Wood Chip | Reference (Islam, 2020) [28] Experimental | Reference (Islam, 2020) [28] Aspen Plus Simulation (RSS) c | This Work a Aspen Plus Simulation (RSS) c |
---|---|---|---|
H2 (% mol) | 8 | 13 (0.39) | 26.64 (5.43) |
N2 (% mol) | N.A. b | N.A. b | 36.10 |
H2O (% mol) | N.A. b | N.A. b | 5.90 |
CO (% mol) | 19.5 | 22.5 (0.02) | 21.52 (0.01) |
CO2 (% mol) | 6.5 | 11 (0.48) | 8.57 (0.10) |
CH4 (% mol) | 4 | 11 (3.06) | 1.18 (0.49) |
Low heating value (LHV) (MJ/Nm3) | 4.93 | 8.48 (0.52) | 6.24 (0.07) |
Carbon conversion efficiency | N.A. b | N.A. b | 0.935 |
S/B Ratio | 0.3 | 0.4 | 0.6 |
---|---|---|---|
H2 mol% | 48.99 | 49.09 | 47.85 |
N2 mol% | 0.03 | 0.03 | 0.02 |
H2O mol% | 12.13 | 14.81 | 21.73 |
CO mol% | 24.05 | 21.43 | 15.94 |
CO2 mol% | 10.71 | 11.63 | 13.01 |
CH4 mol% | 3.99 | 2.93 | 1.38 |
LHV (MJ/Nm3) | 10.12 | 9.39 | 7.96 |
Carbon conversion efficiency | 0.961 | 1.0 | 1.0 |
PSA Results | Units | S/B | |
---|---|---|---|
0.4 | 0.3 | ||
Composition in the Purge Gas | |||
H2 | mass fraction | 0.0709 | 0.0744 |
O2 | mass fraction | 9.747 × 10−19 | 5.499 × 10−19 |
N2 | mass fraction | 0.000537 | 0.000601 |
H2O | mass fraction | 0.1874 | 0.1464 |
CO | mass fraction | 0.5181 | 0.5888 |
CO2 | mass fraction | 0.2208 | 0.1869 |
CH4 | mass fraction | 0.00055 | 0.00089 |
H2S | mass fraction | 0.0017 | 0.0019 |
H3N | mass fraction | 2.108 × 10−6 | 2.354 × 10−6 |
S | mass fraction | 8.459 × 10−12 | 9.176 × 10−12 |
Flow rate of H2 | kg/h | 10.57 | 10.54 |
Work capacity | kJ/molH2 | 4.76 | 4.80 |
H2 recovery | % | 75.1 | 74.3 |
Work capacity | kW | 6.98 | 7.02 |
TSOFC Results | Unit | This Work | Mitsubishi Hitachi Power Systems MEGAMIE [37] | Siemens–Westinghouse [32,33] |
---|---|---|---|---|
Cell operating temperature | °C | 850 | 850 | 850 |
Cell voltage | V | 0.831 | 0.11 | 0.61 |
AC Power output | kW | 217.1 | 210 | 220 |
Net electrical efficiency | % | 58.2 | 53.0 | 57.0 |
Power consumption of air compressor | kW | 12.12 | - | - |
Discharge air pressure | bar | 2.3 | - | - |
Flue gas mass flow | kg/s | 0.1165 | N.A. | N.A. |
H2 fuel consumption | kg/s | 0.0029 | N.A. | N.A. |
Supplementary fuel | kg/h | 0.80 | ||
Steam generated | kg/h | 60 |
Concept | Unit | Amount |
---|---|---|
Biomass mass flow | kg/h | 132 |
LHV of biomass | kJ/kg | 19,540 |
LHV natural gas | kJ/kg | 50,047 |
Supplementary gas | kg/h | 0.8 |
H2 produced | kg/h | 10.57 |
AC gross power output | kW | 217.1 |
Total work duty required for H2 separation | kW | 6.98 |
Total word required to pump the water for steam in the fuel cell | kW | 0.084 |
Power consumption of air compressor | kW | 12.12 |
Net power | kW | 197.92 |
Net efficiency | % | 27.20 |
CO2 generated in the gasifier | kg/h | 35.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Diaz, A.; Sánchez Ladrón de Guevara, J.C.; Jiang, L.; Gonzalez-Diaz, M.O.; Díaz-Herrera, P.; Font-Palma, C. Techno-Environmental Analysis of the Use of Green Hydrogen for Cogeneration from the Gasification of Wood and Fuel Cell. Sustainability 2021, 13, 3232. https://doi.org/10.3390/su13063232
Gonzalez-Diaz A, Sánchez Ladrón de Guevara JC, Jiang L, Gonzalez-Diaz MO, Díaz-Herrera P, Font-Palma C. Techno-Environmental Analysis of the Use of Green Hydrogen for Cogeneration from the Gasification of Wood and Fuel Cell. Sustainability. 2021; 13(6):3232. https://doi.org/10.3390/su13063232
Chicago/Turabian StyleGonzalez-Diaz, Abigail, Juan Carlos Sánchez Ladrón de Guevara, Long Jiang, Maria Ortencia Gonzalez-Diaz, Pablo Díaz-Herrera, and Carolina Font-Palma. 2021. "Techno-Environmental Analysis of the Use of Green Hydrogen for Cogeneration from the Gasification of Wood and Fuel Cell" Sustainability 13, no. 6: 3232. https://doi.org/10.3390/su13063232
APA StyleGonzalez-Diaz, A., Sánchez Ladrón de Guevara, J. C., Jiang, L., Gonzalez-Diaz, M. O., Díaz-Herrera, P., & Font-Palma, C. (2021). Techno-Environmental Analysis of the Use of Green Hydrogen for Cogeneration from the Gasification of Wood and Fuel Cell. Sustainability, 13(6), 3232. https://doi.org/10.3390/su13063232